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Abstract: As shown recently, oleic acid (OA) in complex with lactoferrin (LF) causes the death of
cancer cells, but no mechanism(s) of that toxicity have been disclosed. In this study, constitutive
parameters of the antitumor effect of LF/OA complex were explored. Complex LF/OA was prepared
by titrating recombinant human LF with OA. Spectral analysis was used to assess possible structural
changes of LF within its complex with OA. Structural features of apo-LF did not change within
the complex LF:OA = 1:8, which was toxic for hepatoma 22a cells. Cytotoxicity of the complex
LF:OA = 1:8 was tested in cultured hepatoma 22a cells and in fresh erythrocytes. Its anticancer
activity was tested in mice carrying hepatoma 22a. In mice injected daily with LF-8OA, the same
tumor grew significantly slower. In 20% of animals, the tumors completely resolved. LF alone was
less efficient, i.e., the tumor growth index was 0.14 for LF-8OA and 0.63 for LF as compared with
1.0 in the control animals. The results of testing from 48 days after the tumor inoculation showed
that the survival rate among LF-8OA-treated animals was 70%, contrary to 0% rate in the control
group and among the LF-treated mice. Our data allow us to regard the complex of LF and OA as a
promising tool for cancer treatment.

Keywords: lactoferrin; oleic acid; tumor growth; anticancer drugs

1. Introduction

Despite the apparent progress in the development of medicine, every year more than
14 million people are diagnosed with malignancies. Both the incidence of cancer and
oncological mortality keep growing [1]. The International Agency for Research on Cancer
reported about 18 million cases of cancer diagnosed in 2018, of which more than half
had a lethal outcome [2]. These numbers have a tendency to grow, which is caused by
insufficient prophylaxis, early diagnosis and screening, but also by the imperfection of
current antitumor therapies.
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State-of-the-art oncology largely uses three basic methods, i.e., surgery, radiation treat-
ment and drug therapy, which includes chemotherapy and a number of novel techniques.
However, all methods presently used not every time bring forth positive effect which is the
ultimate recovery. Moreover, serious side effects are not infrequent, and some approaches
to cancer treatment are efficient exclusively at the early stages of the disease.

Perhaps the crucial factor making treatment of malignant tumors particularly difficult
is their rapid growth. Moreover, even a relatively small tumor can disseminate with
metastases in distant organs/tissues. On account of these factors, a doctor often chooses
a drug treatment having toxic effect both on the tumor and upon non-malignant cells
afield. Another problem that complicates treatment is the appearance of tumor multidrug
resistance. All this brings forth an extremely important task of looking for novel compounds
with low toxicity that target and destroy exclusively malignant cells, but have no effect
upon normal ones.

One of the promising current approaches is discovering natural molecules which,
upon the contact with malignant cells, either cause their death or arrest their propagation.
The most efficient seem to be combinations of two and more molecules normally found in
the human organism that do not cause such an effect when taken separately. A number of
proteins are known to have specific antitumor activity.

It has been shown that lactoferrin (LF), the protein of milk and other secretions, also
present in neutrophilic leukocytes, can suppress the growth of tumor cells in cultures and
in animal bodies [3]. This effect is explained by the capacity of LF to stimulate the immune
system and to increase the number of apoptotic cells, most probably because of the arrest
of cytokinesis at G0-G1 induced by LF [4–6]. The threshold of tumor cell sensitivity to
chemotherapeutic agents can be lowered by LF, as demonstrated in mice bearing either
EL-4, Lewis lung carcinoma or B16 melanoma tumors [7,8]. Natural products and bioactive
molecules like LF have noticeable advantages as potential pharmacies thanks to their
relative availability and normally high content. They also do not cause immune responses,
and sometimes their oral intake is possible. Therefore, it makes sense to undertake a
profound study of LF as a prospective anticancer drug. It became even more reasonable
when a report appeared on the capacity of non-esterified oleic acid (OA) to cause the
death of cancer cells after forming a complex with cow-milk LF [9]. OA has somewhat
high toxicity among quite a few fatty acids [10]. However, nothing is known about
the mechanism(s) of its toxic effect in complex with LF; hence, the investigation of this
phenomenon is really topical.

1.1. Lipolytic Effect of LF

Treatment of volunteers with LF caused an egress of fatty acids from the depot and a
decrease of body mass index and the amount of visceral fat [11]. When cultured adipocytes
were treated with LF, the glycerol content in the medium increased, which is likely to result
from the disintegration of triglycerides [12].

1.2. Anticancer Effect of LF

The first suggestions of LF anticancer activity appeared when it was shown that the
LF gene is not expressed or is absent in cancer cells [13–18].

In some types of cultured tumor cells, LF stimulated apoptosis and inhibited prolifera-
tion by arresting the transition from the G1 to S phase [19–21]. Right at that moment, LF
inhibits cyclin-dependent kinases and increases the level of p21, the cell cycle inhibitor, but
also sustains retinoblastoma protein (pRb) in its hypophosphorylated form, which most
likely arrests the cell cycle in breast cancer cells [21]. Recombinant LF efficiently inhibited
both metastatic and non-metastatic breast cancer cells by arresting the cell cycle at the S
phase [22], and in squamous cell culture it induced a dose-dependent arrest of cell growth
at the G0/G1 phases [6]. Neutrophilic LF activates the synthesis of the tumor suppressor
p53 using the NF-κB-dependent pathway [23].



Materials 2021, 14, 1602 3 of 17

LF is believed to increase the synthesis of tumour necrosis factor receptor (Fas) in
colon mucosa both at the early and late stages of carcinogenesis [24]. Particularly enhanced
expression of Fas increases the capacity of target cells to bind the Fas ligand exposed at
the membrane of natural killer (NK) cells, which induces apoptosis. Interestingly, Se- and
Fe-saturated LF more efficiently induced apoptosis in cultured colon tumor cells [25]. Using
animal models allowed researchers to show that LF inhibits angiogenesis, in particular,
that induced by vascular endothelial growth factor [26,27].

A bulk of evidence was collected in favor of the in vivo protective effect of LF against
chemical carcinogenesis in a large number of organs [28–31]. Clinical studies demonstrated
significant growth retardation of colorectal adenomatous polyps in patients receiving LF
from cow milk [32]. Its antimetastatic effect was shown in mice with colorectal carcinoma
Co 26Lu, perhaps due to the enhancement of immunity, as judged by an increased content
of CD4+, CD8+ and NK-cells in the animals’ blood [33]. A similar effect was documented
earlier for human LF [34].

When LF is considered as a prospective medicinal agent, its very important feature
should not be neglected, i.e., this protein is able to cross the blood-brain barrier and deliver
an anticancer drug to the cerebral tissue [35,36].

1.3. Complexes Formed by LF and Low-Molecular Substances

Treatment of malignant tumors is not infrequently based on interactions of LF with
low-molecular compounds [37–43]. The conjugation of LF with low-molecular antitumor
drugs increases their solubility in water [39]. Besides, a rich vascularization of tumors
provides accumulation of such conjugates in malignant cells [40], which results in the
gradual release of the drug from the complex. Among the low-molecular anticancer
compounds studied so far is temozolomide (TMZ), used for the treatment of malignant
gliomas [41]. Nanoparticles formed by LF and TMZ more efficiently cross the blood–brain
barrier and reach the tumor cells, where they are retained for a longer period [37]. This
allows for treatments to reduce the dosage and avoid some of the side effects of TMZ.

Another example is the complex of LF with 5-fluorouracil (5-FU), the fluorinated
nucleotide, which undergoes intracellular transformation into 5-fluorodesoxyuridine
monophosphate, an inhibitor of thymidine synthase. This effect causes an arrest of DNA
replication, after which rapidly dividing tumor cells switch to apoptosis [43]. Nanoparticles
of LF conjugated with 5-FU were obtained for treatment of melanoma [38]. Testing on
cultured mouse melanoma B16F10 showed that 5-FU conjugated with LF has cytotoxicity
2.7 times higher than 5-FU alone.

1.4. Complexes of Milk Proteins with Oleic Acid

The first complex formed by α-lactalbumin and OA was described some 25 years
ago [44,45] and its antitumor activity was revealed [46]. Depending on the biological species
that served the source of α-lactalbumin the complexes were termed Human/Bovine/Camel
Alpha-lactalbumin made lethal to tumor cells (HAMLET/BAMLET/CAMLET). Along
with α-lactalbumin, OA was shown to make complexes with ß-lactoglobulin, termed
BLAGLET [47], with equine lysozyme, termed ELOA [48,49], and with other proteins, all
of which displayed cytotoxicity towards tumors mostly due to their capacity to initiate
apoptosis [50–57]. The capacity to form such complexes is likely to be a common feature
of all partly unfolded proteins that have sufficient number of hydrophobic sites to bind
fatty acids.

Complex of LF with OA

So far, the complex formed by LF and OA has not been featured in detail. An in vitro
study revealed its cytotoxic activity in tumor cell lines, such as HepG2, HT29 and MCF-7,
where the complex showed the dose-dependent antitumor effect [9]. Since LF itself does
not cause apoptosis, the notion that a proapoptotic mechanism of the complex is realized
via OA seems quite reasonable. Recently we demonstrated that the complex between
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human LF and OA interacts with the chromatin of the isolated nuclei of HeLa cells, and
thus, affects the chromatin structural organization [58]. However, the overall mechanism
of cytotoxicity towards tumor cells displayed by the complex between LF and OA remains
a moot question.

1.5. Cytotoxicity of Oleic Acid

Non-esterified fatty acids are toxic towards a variety of cells [59–61]. OA is not an
exception; therefore, it can be regarded as a prospective anticancer agent [10]. Indeed,
added to the J774 cell line (murine macrophages), S91 (murine melanoma cells) or fresh
human lymphocytes, OA (200 µM) caused DNA fragmentation [59–61]. Meanwhile, the
same OA concentration had no cytotoxic effect on murine melanoma B16-F0 or human
melanoma SK-Mel 23 and SK-Mel, which shows that its toxicity depends on cell type [60].
Interventions of OA into the genetic machinery of tumor cells were also reported in a
number of studies. In one of those, OA was shown to inhibit 5α-reductase that normally
suppresses testosterone conversion into 5α-dihydrotestosterone, and thus, arrests the pro-
liferation of prostate cancer cells [62]. Another recent work showed that OA strongly
suppresses the proliferation of esophageal cancer cells (OE19, OE33), most likely by acti-
vating suppressor genes p53, p21 and p27 [63]. In breast cancer cells SK-Br3 and BT-474,
OA suppressed the expression of human epidermal growth factor receptor (Her-2/neu)
oncogene that plays an important role in the progression of certain malignancies and ovary,
stomach and uterus cancer [10,64,65]. The proapoptotic effect of OA was observed when it
enhanced the production of reactive oxygen species and increased the activity of caspase-3
in lymphoma YAC-1 cells [66]. OA administration to mice carrying lung adenocarcinoma
LAC-1 resulted in a significant retardation of tumor growth and increased longevity of
the animals [67]. Hence, a large number of studies carried out so far, in vitro and in vivo,
evidence that OA displays cytotoxicity towards a variety of cell types and can suppress
tumors utilizing different mechanisms.

2. Materials and Methods
2.1. Reagents

The following reagents were used. Aniline naphthalene-8-sulfonic acid (1,8-ANS),
dimethylsulfoxide (DMSO) and fatty acids, including oleic acid (OA), linoleic, arachidonic,
linolenic, palmitic and stearic acids, were from Sigma-Aldrich (Saint Louis, MO, USA);
NaCl, Na2HPO4, NaH2PO4 and HCl were from Merck KGaA (Darmstadt, Germany);
ethanol, methylene blue and formalin were from Serva (Heidelberg, Germany); Bio-Gel P-6
was from Bio-Rad (Hercules, CA, USA).

In regard to recombinant lactoferrin, the milk of transgenic goats was used to isolate
recombinant human lactoferrin (rhLF) as described previously [68]. Briefly, milk was
centrifuged at 20,000× g for 30 min at 4 ◦C to remove the fat and then was acidified to
pH 4.6 by adding 1 M HCl at 37 ◦C for 30 min to precipitate casein. The precipitate was
removed by centrifugation (20,000× g for 30 min), the pH of the supernatant was adjusted
to 7.0 by adding 1 M NaOH and the second step of centrifugation was performed to collect
the final rhLF-enriched supernatant. The supernatant was loaded onto a TOYOPEARL
SP-550 cation-exchange column (Tosoh Bioscience, Griesheim, Germany), which was
equilibrated and washed with a buffer containing 20 mM sodium phosphate and 0.4 M
NaCl at pH 7.0. A linear gradient of 0.4–1.0 M NaCl was used to elute cationic proteins, and
the fractions with rhLF were pooled. After dialysis/filtration, the content was concentrated
by ultrafiltration using Sartorius Vivaflow-200 crossflow (Sartorius, Göttingen, Germania)
cassette with 30 kDa MWCO membrane, and lyophilized. The purity of the rhLF was
verified by SDS polyacrylamide gel electrophoresis, which showed a single band of ~80 kDa.
The percentage of rhLF purity was not less than 99%, with iron saturation not higher than
10%. LF eluted from the TOYOPEARL SP-550 column was subjected to an additional
cation-exchange chromatography on a Mono S column (Amersham Pharmacia Biotech,
Uppsala, Sweden) to separate the rhLF from goat LF. The concentration of rhLF in the milk



Materials 2021, 14, 1602 5 of 17

of transgenic goats ranged from 2 g/L to 16 g/L, which significantly exceeded the content
of goat LF in the milk of various caprine breeds (0.073–0.089 g/L).

2.2. Experimental Animals

Male C3HA mice (16–26 g) were obtained from Rappolovo farm (Rappolovo, Leningrad
Region, Russia). Animals were kept under regular vivarium conditions receiving standard-
ized forage and water.

2.3. Cell Cultures

The hepatoma 22a cell culture was obtained from the Biobank at the Institute of
Cytology of the Russian Academy of Sciences (1-20/27.02.2020, Saint-Petersburg, Russia).
Hepatoma 22a had been induced in 1951 in C3HA mice using ortho-aminoazotoluene,
after which it was adapted to in vitro culturing. Cells were cultured in DMEM (Biolot,
Russia) supplemented with 10% fetal calf serum (FCS; HyClone, Cramlington, UK), 0.1
mg/mL gentamycin (Biolot, Moscow, Russia) and 0.6 mg/mL glutamine (Biolot, Moscow,
Russia) at 5% CO2 and 37 ◦C. The dense monolayer of hepatoma 22a cells was washed
with a physiological solution, after which the cells were detached by keeping them for
a minute in a trypsin:Versene solution (1:1) at 37 ◦C. They were resuspended in DMEM
containing 0.6 mg/mL glutamine, 0.1 mg/mL gentamycin and 5% FCS and transferred
into Carrel’s flasks.

2.4. Obtaining Complexes of LF with Fatty Acids. Assessing LF/FA Stoichiometry

Next, 4 mL of LF (120 mg/mL) in phosphate buffer saline (PBS) were used to prepare
complexes. Then, 1 mL of PBS was layered above that solution, and 100 µL of ethanol was
cautiously dropped. Fatty acid (FA) was dissolved in a small volume of ethanol and mixed.
To obtain complexes, the solution of LF was titrated with aliquots of FA (from 2:1 to 8:1
molar excess). Upon adding another portion of FA, the solution was thoroughly mixed on
a vortex (2400 r.p.m.) at room temperature. Three mixings were done after every addition
at 1 min intervals. Excessive FA was eliminated by overnight dialysis against PBS at 4 ◦C
followed by passing the solution through 0.45 µM filter. The protein concentration after
the dialysis was assayed at 280 nm on a spectrophotometer SF-2000-02 (OKB-Spectr, Saint
Petersburg, Russia). The amount of FA bound to LF was assayed by colorimetry at 550 nm
using the enzymatic kit NEFA (Randox, Crumlin, UK).

A column (100 × 5 mm) packed with Bio-Gel P-6 (Bio-Rad, Hercules, CA, USA) was
used for gel filtration of the LF-8OA complex at a flow speed of 0.25 mL/min. Then, 100 µL
of LF-8OA (40 mg/mL) were loaded on the column equilibrated with PBS. The column was
washed with PBS and the effluent was collected in 500 µL fractions. Protein in the fractions
was detected by absorption at 280 nm. The enzymatic kit NEFA (Randox, Crumlin, UK)
was used to measure FA in a fraction with maximum protein concentration. The relation
of the protein to the OA content in the sample prior to gel filtration was assessed and
compared with that of the LF-containing fraction eluted from the column.

2.5. Fluorescence and Circular Dichroism Spectra
2.5.1. Registering Circular Dichroism Spectra

To register the circular dichroism (CD) spectra protein samples were dissolved in a
phosphate-saline buffer (0.15 M NaCl, 10 mM sodium-phosphate, pH 7.4) to obtain con-
centrations of 0.1 mg/mL (far UV) and 1 mg/mL (near UV), using the spectropolarimeter
Jasco J-810 (Jasco, Tokyo, Japan). Samples were kept at 25 ◦C for 10 min before spectroscopy.
Using a quartz cuvette with an optical path of 1 mm, far UV spectra were registered in
the range of 190–250 nm at a scanning pitch of 0.1 nm (spectrometer slit was 2 nm). For
near UV spectra, a cuvette with an optical path of 10 mm was used and the spectra were
registered in the range of 250–360 nm, other parameters being the same. To avoid the
increment of low-frequency random processes, CD spectra for each sample were registered
four times and then averaged. Smoothing of the spectra was achieved against the CD
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spectra obtained for PBS using software provided by the manufacturer of the Jasco J-810
(Jasco, Tokyo, Japan). The results of three separate experiments were averaged. Data
obtained were expressed as molar ellipticity ([θ]), deduced from the equation [69]:

θ = (MRW × θ)/(10 × c × l), (1)

where θ is ellipticity (◦), c is protein concentration (g/mL), l is the optical path (cm) and
MRW was calculated according to the formula:

MRW = MM/(Na.r. − 1), (2)

where MM is the molecular mass of the protein (g/mol) and Na.r. is the amount of the
amino acid residues in the polypeptide.

2.5.2. Registering Fluorescence Spectra

Using a quartz cuvette, fluorescence spectra were registered in the range of 305–500 nm
on a Jasco EP-6500 fluorimeter (Jasco, Tokyo, Japan), at excitation wavelengths of 280 nm
and 295 nm. Samples were kept at 25 ◦C for 10 min before spectroscopy. Results obtained
from three measurements were averaged.

To obtain the complexes LF/ANS and LF-8OA/ANS, each protein sample was incu-
bated for 1 h with a fivefold excess of ANS at room temperature in the dark. Emission
spectra were registered in the range of 400–700 nm, at an excitation wavelength of 390 nm.

2.6. Studying Hepatoma 22a Viability and Lysis of Erythrocytes Induced by LF and LF-8OA
2.6.1. Viability of Hepatoma 22a Cells

The direct cytotoxic effect on tumor cells in vitro was assessed using 24-well plates
with 5 × 104 hepatoma 22a cells in 500 µL DMEM with 5% FCS per well. Cells were
cultured until a subconfluent monolayer was formed. The samples under testing were
added at concentrations varying from 3.25 µM to 25 µM (LF, LF-8OA, 8OA) and incubated
for 24 h at 37 ◦C. A stock solution of 20 mM OA in DMSO was added to the medium and
cells so that the final concentration of DMSO did not exceed 1%. After that, the cells were
fixed in 10% formalin and stained with 0.05% methylene blue. The dye was dissolved in
0.3 M HCl and the absorption was measured at 620 nm. The viability of cells was calculated
according to the formula:

V = As × 100%/Ac, (3)

where As is absorption in the wells with samples under study and Ac is absorption in the
wells with hepatoma cells to which the phosphate-saline buffer was added instead of the
samples under study.

2.6.2. Isolation of Erythrocytes from Peripheral Blood and Studying the Hemolysis

Erythrocytes were isolated from the citrate-treated blood of healthy donors after triple
washing with PBS to eliminate plasma, followed by centrifugation at 600× g for 10 min.
The erythrocytic mass obtained was diluted with PBS to the ratio cells:buffer = 1:8, and
incubated in 96-well plates for 1 h at 37 ◦C, with the samples under study diluted to the
concentration needed in a thermal shaker (290 r.p.m.).

Hemolysis was assessed in a plate spectrophotometer CLARIOstar (BMG Labtech,
Ortenberg, Germany) by absorption at 412 nm (Soret band) in the supernatant, transferred
to a clean 96-well plate after precipitating the erythrocytes. The intensity of hemolysis was
calculated using the equation:

H = 100% × (ODs − ODc)/(OD100 − ODc), (4)

where ODs is the optical density of the supernatant in the samples under study, ODc is the
optical density in the control wells and OD100 is the optical density of the fully lyzed cells.
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The control wells contained a sodium-phosphate buffer, which was substituted for
pyrogen-free deionized water (Mediana-Filter, Moscow, Russia) when complete cell lysis
was required. The results of the two separate experiments, with four repeated measure-
ments in each, were averaged.

2.7. Studying the Effect of LF and LF-8OA on Mortality of Mice with Hepatoma 22a

Hepatoma 22a cells were detached as described above, resuspended in physiological
solution (DPBS) and serum proteins were washed off by centrifugation at 800× g for
10 min. Washing was repeated thrice. Live and dead cells stained with 3% Trypan blue
were calculated in a cell chamber. Hepatoma 22a cells (2 × 105 in 0.25 mL of the DPBS
per animal) were inoculated subcutaneously into the dorsal region of each mouse (n = 30).
All animals were divided in three experimental groups. The control group received the
physiological solution, another group received recombinant human LF (5 mg per mouse)
and animals in the third group were injected with the same dose of LF-8OA complex. The
dorsal subcutaneous injections of the preparations to mice of the second and third groups
started on the day after the tumor inoculation. Such daily injections were continued for
24 days. The moment of a tumor’s appearance, its size and the time of the animal’s death
were registered every second day. Beginning from the 10th day past the tumor inoculation,
the size of the malignant node was measured in all mice and its volume was determined
using the formula:

V = (a × b2)/2, (5)

where a and b are the length and width of the tumor node, respectively.
The antitumor activity of the complex formed by LF and OA was assessed as tumor

growth retardation (TGR) and tumor growth index (TGI) expressed in percentages. The
TGR percent was determined using the formula:

TGR = 100% × (Vc − Ve)/Vc, (6)

where Vc and Ve are the mean volume of the tumor (mm3) in the control and experimental
group, respectively.

The TGI was determined using the formula:

TGI = Se/Sc, (7)

where Se is the area (mm2) under the kinetic curve of tumor growth in mice receiving
substances under study and Sc is the area (mm2) under the kinetic curve of tumor growth
in mice of the control group.

To measure the area under the kinetic curve of tumor growth, the trapezium method
was used, represented by the following equation:

S = t1 × (V1 + V2)/2 + t2 × (V2 + V3)/2 + . . . + tn−1 × (Vn−1 + Vn)/2, (8)

where: Vi is the volume (mm3) of a tumor numbered I, n is the number of measurements,
t1 is the time between the first and the second measurement (days), t2 is the time between
the second and the third measurement (days) and tn−1 is the time between the ultimate
and the penultimate measurement (days).

The study involving mice was approved by the Ethical Committee of the Institute of
Experimental Medicine, protocol No 7-09RA/2020 stating the compliance with the ARRIVE
2.0 guidelines (14 July 2020).

3. Results
3.1. Specificity of LF Interaction with Fatty Acids

When studying the interaction of LF with a number of non-saturated (arachidonic,
linoleic, linolenic and oleic) FA dissolved in ethanol, we observed no micelle formation
typical of mixing FA with a physiological solution. Protein titration showed that 1 mole of
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LF is capable of binding up to 8 moles of OA, or nearly 6 moles of linoleic acid, and almost
5 moles of linolenic and arachidonic acids (Table 1). Saturated FA (palmitic, stearic) did not
interact with LF. No traces of FAs were detected in the initial LF preparation.

Table 1. Stoichiometry of interaction between lactoferrin (LF) and fatty acid (FA).

Fatty Acid FA/LF (Mole/Mole)

Linolenic 4.7
Arachidonic 5.5

Linoleic 5.8
Oleic 8.4

The results of measuring the protein-bound OA before and after the gel filtration of
the LF-8OA complex on a Bio-Gel P-6 column are summarized in Table 2. Since 1 mole of
LF bound 7.8 ± 0.2 and 7.6 ± 0.2 moles of FA before and after gel filtration, repectively, it
can be concluded that virtually all OA was within the complex with LF and the presence of
unbound OA in a solution can be ruled out.

Table 2. The amount of LF and the FA/LF relation in a sample of LF-8OA before and after gel
filtration on a Bio-Gel P-6 column.

LF (mg) FA/LF (Mole/Mole)

Before loading 4.0 ± 0.2 7.8 ± 0.2
In eluted fraction 3.8 ± 0.2 7.6 ± 0.2

3.2. Tryptophan Fluorescence and CD Spectra of LF and LF-8OA

The intrinsic fluorescence of LF and of its complex with OA was registered. Exci-
tation wavelengths were specified corresponding to the absorption maximum for tyro-
sine plus tryptophan (total fluorescence λexc = 280 nm) and that for tryptophan alone
(λex = 295 nm). Figure 1a,b shows the intrinsic fluorescence spectra of tryptophan in the
preparations studied. It is seen that excitation at 280 and 295 nm resulted in emission
with λmax = 330–330.2 nm, which is evidence of substantial contribution of Trp into the
fluorescence spectra.
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Figure 1. Intensity of intrinsic fluorescence of LF (red line) and LF-8OA (blue line) in phosphate-saline buffer (0.15 M NaCl,
10 mM sodium-phosphate buffer, pH 7.4): (a) λexc = 280 nm; (b) λexc = 295 nm. Protein concentration was 1 mg/mL. Spectra
were registered at 25 ◦C on a JASCO EP-6500 spectrophotometer. Results show the mean value ± SD (n = 3).

Neither in LF itself, nor in LF-8OA, were any significant differences between the
intensity of the total fluorescence (Tyr + Trp) and that of Trp alone were observed. Indeed,
the preparations studied had similar spectra with the maximum at 330 nm, which rejects
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the assumption of substantial structural perturbations in LF upon adding OA in eightfold
molar excess.

Figure 2 shows the fluorescence spectra of LF and LF-8OA upon binding the hy-
drophobic probe 1-aniline naphthalene-8-sulfonic acid (1,8-ANS).
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Figure 2. Intensity of fluorescence of LF (red line) and LF-8OA (blue line) in phosphate-saline buffer (0.15 M NaCl, 10 mM
sodium-phosphate buffer, pH 7.4) upon binding at room temperature to a fivefold excess of 1-aniline naphthalene-8-sulfonic
acid (1,8-ANS) for an hour at dark. The protein concentration was 1 mg/mL. The excitation wavelength was 390 nm. Spectra
were registered in the range of 400–700 nm. Results show the mean value ± SD (n = 3).

Free ANS showed practically no light emission in the sodium-phosphate buffer. In
contrast, the fluorescence intensity of LF and of its complex with OA became increased
dozens of times, which is explained by the capacity of ANS to interact with clusters of
hydrophobic amino acids in the protein.

Binding 1,8-ANS with LF and with LF-8OA shifted the fluorescence maximum to
~479 nm and 476 nm, respectively. The fluorescence intensity of LF in complex with OA
was higher than the same feature of LF alone, which may be due to a larger number of
hydrophobic sites available for ANS in the complex LF-8OA.

The effect of OA on the secondary structure of LF in the phosphate-saline buffer
was studied by registering CD spectra in the far UV region (200–250 nm). No significant
differences were observed between the spectrum of LF and of its complex with OA. Both
spectra had noticeable negative ellipticity in the region of 209–224 nm, which is typical for
an α-helix structure. The same conformity of CD spectra was registered for LF, and for
LF-8OA, it was observed in the near UV region (Figure 3). It can be concluded that adding
the amounts of OA used in our experiments to LF did not alter its secondary structure.
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3.3. Effect of LF and LF-8OA on Hepatoma 22a Cells and on Stability of Erythrocytes

Cytotoxic activity of LF and LF-8OA was assessed in vitro using cultured normal
and malignant cells. The direct cytotoxic effect of LF complexed with OA on hepatoma
22a cells was evident. Indeed, the complex displayed dose-dependent antitumor activity.
as increasing its concentration from 3 to 25 µM diminished the percentage of viable cells in
comparison with the control culture (Figure 4). Neither LF without OA, nor OA prepared
as stock solution in DMSO, had such a pronounced effect on the viability of hepatoma
22a cells.
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It is noteworthy that the viability of hepatoma H22a cells decreased by 16% upon
treatment with 12.5 µM LF-8OA, while the same concentration of LF alone or 100 µM
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OA (8 × 12.5 µM) did not affect their viability. Taken separately at higher concentrations,
i.e., 25 µM LF and 200 µM OA (8 × 25 µM), these two factors caused the viability to
decrease by 11% and 13%, respectively. Meanwhile, it decreased by 34% when cells were
treated with 25 µM LF-8OA. Hence, the effect of the complex LF-8OA on the viability of
tumor cells cannot be explained by a summation of the effects produced by LF and OA.

Adding LF-8OA at a concentration of 8 µM, and more to freshly isolated human
erythrocytes, caused increasingly noticeable hemolysis, while LF alone had no hemolytic
activity (Figure 5).
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Figure 5. Concentration-dependent hemolytic effect of LF-8OA in comparison with LF. Efficiency of hemolysis was assessed
upon 1 h of human erythrocytes incubation with LF (white circles) and LF-8OA (red circles) at 37 ◦C. In control experiments,
a phosphate-saline buffer (0.15 M NaCl, 10 mM sodium-phosphate buffer, pH 7.4) was used, which was substituted for
deionized water to obtain complete hemolysis. Results show the mean value ± SD (n = 3).

3.4. Effect of LF and LF-8OA on Mortality of Mice with Hepatoma 22a

The changes of tumor volume in mice were continuously registered until the moment
of an animal’s death. Kinetic curves were plotted to monitor the dynamics of hepatoma 22a
growth (Figure 6). Rapid growth was observed in the control group. Meanwhile, a single
daily injection of LF-8OA (5 mg per mouse) caused growth retardation registered at every
stage of the monitoring. In some cases, it resulted in a complete resorption of the tumor
node. LF injected into mice without OA did not cause such a tumor-inhibitory effect.
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gevity of mice, as compared with the control group and the animals that received only LF. 
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Figure 6. Tumor growth dynamics in C3HA mice after inoculation of 2 × 105 hepatoma 22a cells and administration of the
preparations under study. Plots represent mean tumor volumes in mice from the control group (green circles), LF-treated
group (blue circles) and LF-8OA-treated group (red circles). Daily injections of preparations (5 mg per mouse) began on the
day after the tumor inoculation and lasted for 24 days. Starting from the 10th day, tumor size was measured in every mouse.

On day 30 after the tumor inoculation, the TGR in mice that received LF-8OA was
about 79% as compared with the control group. The same index was 21% in mice treated
with LF alone (Figure 7).

Materials 2021, 14, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 6. Tumor growth dynamics in C3HA mice after inoculation of 2 × 105 hepatoma 22a cells and 
administration of the preparations under study. Plots represent mean tumor volumes in mice from 
the control group (green circles), LF-treated group (blue circles) and LF-8OA-treated group (red 
circles). Daily injections of preparations (5 mg per mouse) began on the day after the tumor inocu-
lation and lasted for 24 days. Starting from the 10th day, tumor size was measured in every mouse. 

On day 30 after the tumor inoculation, the TGR in mice that received LF-8OA was 
about 79% as compared with the control group. The same index was 21% in mice treated 
with LF alone (Figure 7). 

 
Figure 7. Dynamics of hepatoma 22a growth retardation in C3HA mice after administration of LF 
or LF-8OA. Grey and white columns represent the process of hepatoma growth retardation in LF-
treated and in LF-8OA-treated mice, respectively. 

Careful calculations of the TGI, that presents the efficiency of antitumor therapy, 
yielded 0.14 for LF-8OA and 0.63 for LF. 

The retardation of tumor growth by the complex LF-8OA resulted in increased lon-
gevity of mice, as compared with the control group and the animals that received only LF. 
In the control group, the first mice died on day 30 after the tumor inoculation. In the group 
receiving only LF, the first death was registered on day 15 after the tumor inoculation. At 
that moment, the survival in the group treated with LF-8OA was 100%. 

On day 48, all mice died in the control group and in the group that received only LF. 
Meanwhile the survival among the animals treated with LF-8OA was 70%. On days 73 

Figure 7. Dynamics of hepatoma 22a growth retardation in C3HA mice after administration of LF or LF-8OA. Grey and
white columns represent the process of hepatoma growth retardation in LF-treated and in LF-8OA-treated mice, respectively.

Careful calculations of the TGI, that presents the efficiency of antitumor therapy,
yielded 0.14 for LF-8OA and 0.63 for LF.
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The retardation of tumor growth by the complex LF-8OA resulted in increased
longevity of mice, as compared with the control group and the animals that received
only LF. In the control group, the first mice died on day 30 after the tumor inoculation.
In the group receiving only LF, the first death was registered on day 15 after the tumor
inoculation. At that moment, the survival in the group treated with LF-8OA was 100%.

On day 48, all mice died in the control group and in the group that received only
LF. Meanwhile the survival among the animals treated with LF-8OA was 70%. On days
73 and 106, this index was 50 and 20%, respectively. In 20% of the animals, the tumor
nodes were fully resolved. Figure 8 shows the plot illustrating the survival in all groups
of tested animals. Comparing the three survival curves in Figure 8 shows that they differ
with p = 0.016 (χ2 = 13.705). Gehan’s Wilcoxon Test was applied to compare the survival
curves obtained for the control and LF-8OA groups, and showed significant differences
between them (p = 0.00271). The same test also indicated significant differences between
the curves obtained for the LF and LF-8OA groups (p = 0.00167).
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and LF-8OA-treated (red) mice. Each group consisted of 10 animals. Every point on a curve means the number of mice that
remained alive by the day of observation.

4. Discussion

As specified in the Introduction, the starting point for this work was a report on the
capacity of cow-milk LF in complex with OA to suppress the growth of tumor cells [9].
One of the aims of this study was to demonstrate the relative specificity of the interaction
between LF and OA, but also to show that human LF in complex with OA is an efficient
inhibitor of tumor growth.

Among the non-saturated fatty acids tried in our experiments properly, OA showed
the highest binding with LF. Importantly, no saturated fatty acid got bound to that pro-
tein (Table 1).

We showed previously that LF-8OA complex forms a monodisperse system with
a gyration radius of 8 nm, which is almost two times bigger than the same feature of
LF, i.e., of 4.8 nm [58].

Moreover, in view of the fact that cow-milk LF in complex with OA had altered
tryptophan fluorescence as well as CD spectrum [9], we checked whether similar changes
occur in human LF upon its interaction with OA. Interestingly, neither intrinsic fluores-
cence nor secondary structure elements in human LF underwent considerable alterations
(Figures 2 and 3). However, ANS, the hydrophobic probe, showed a noticeable increase of
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hydrophobicity in LF upon its interaction with OA. A cautious suggestion can be made
that gradual titration of the protein with fatty acid in the presence of a minimum of ethanol
(later eliminated by dialysis) allowed us to obtain the barely denatured complex LF-8OA.

Cytotoxicity of that complex was tested on erythrocytes, which serve as the simplest
model for testing the agents disturbing the stability of the cell membrane. It was the LF-8OA
complex that caused hemolysis in our experiments, unlike LF without a fatty acid (Figure 5).
It seems likely that LF-8OA is capable of forming pores in cell membranes. On account
that such complex may be toxic for non-malignant cells, we performed subcutaneous, but
not intraperitoneal, injections to mice used in experiments with tumor growth.

In the course of treatment with LF-8OA (days 1–24 after the tumor inoculation) not a
single mouse died in that group, so, a conclusion can be made about the absence of acute
toxicity of the complex in the dose used. Moreover, only in that group did quite a few
animals remain alive seven weeks after the start of the experiment. Thus, in contrast to the
preparation of comparison (LF), the LF-8OA complex caused a significant increase of the
animals’ survival rate and a complete resolution of tumor nodes in 2 animals out of 10 in
the group (Figure 8).

We chose OA on account of the fact that among fatty acids, it has the highest capacity
to get bound by LF. Besides, a large bulk of evidence concerning its antineoplastic activity
can be found in the literature. Recently, the antitumor effect of LF and linolenic acid was
studied on a murine model [70].

Considering the lipolytic effect of LF and the prevalence of OA among fatty acids in
mammalian tissues, it cannot be excluded that LF and OA can form a complex in vivo.
Testing this hypothesis requires another series of experiments.

5. Conclusions

The results obtained clearly show the capacity of LF in combination with OA to inhibit
the growth of hepatoma 22a, chosen as a model in our experiments. At least two important
observations were made, i.e., the presence of a dose-dependent antitumor effect of the
complex LF-8OA, and the significant suppression of tumor growth in vivo caused by that
complex, which resulted in the increased longevity of the tumor-carrying animals. It is
worth noting that in 20% of mice with hepatoma, the tumor nodes disappeared in the course
of treatment with LF-8OA. Since LF alone had none of these effects, but on the contrary
stimulated tumor progression, it can be concluded that OA imparts antitumor activity to
its complex with LF. In this study, we did not explore the molecular mechanisms of the
antitumor effect of the complex formed by LF and oleic acid. Details of such mechanisms
will be the aim of a future investigation.
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