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Paris Diderot, Sorbonne Paris Cité, Paris, France, 5 Genotyping of Pathogens and Public Health, Institut

Pasteur, Paris, France, 6 Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Paris,

France, 7 Chaire de Microbiologie et Maladies Infectieuses, Collège de France, Paris, France

¤a Current address: APC Microbiome Institute and School of Microbiology, University College Cork, Cork,

Ireland.

¤b Current address: genOway, Lyon, France.

¤c Current address: Pherecydes-Pharma, Romainville, France.

* regis.tournebize@pasteur.fr

Abstract

Rhinoscleroma is a human specific chronic granulomatous infection of the nose and upper

airways caused by the Gram-negative bacterium Klebsiella pneumoniae subsp. rhinoscler-

omatis. Although considered a rare disease, it is endemic in low-income countries where

hygienic conditions are poor. A hallmark of this pathology is the appearance of atypical

foamy monocytes called Mikulicz cells. However, the pathogenesis of rhinoscleroma

remains poorly investigated. Capsule polysaccharide (CPS) is a prominent virulence factor

in bacteria. All K. rhinoscleromatis strains are of K3 serotype, suggesting that CPS can be

an important driver of rhinoscleroma disease. In this study, we describe the creation of the

first mutant of K. rhinoscleromatis, inactivated in its capsule export machinery. Using a

murine model recapitulating the formation of Mikulicz cells in lungs, we observed that a K.

rhinoscleromatis CPS mutant (KR cps-) is strongly attenuated and that mice infected with a

high dose of KR cps- are still able to induce Mikulicz cells formation, unlike a K. pneumoniae

capsule mutant, and to partially recapitulate the characteristic strong production of IL-10.

Altogether, the results of this study show that CPS is a virulence factor of K. rhinoscleroma-

tis not involved in the specific appearance of Mikulicz cells.

Author summary

Rhinoscleroma is a human specific chronic infection characterized by the formation of

granuloma in the nose and upper airways. It is a rare disease endemic in low-income
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countries where hygienic conditions are poor and caused by the Gram-negative bacterium

Klebsiella pneumoniae subsp. rhinoscleromatis. A hallmark of this pathology is the appear-

ance of atypical foamy monocytes called Mikulicz cells. Very little is known about the cel-

lular and molecular mechanisms underlying this disease and the bacterial virulence

factors of K. rhinoscleromatis are unknown. In this study, we created the first mutant

made in K. rhinoscleromatis and inactivated the production of capsule, an outer-mem-

brane-anchored polysaccharide. Using a murine model recapitulating the formation of

Mikulicz cells and this bacterial capsule mutant, we observed that capsule is a virulence

factor for K. rhinoscleromatis which is not required for the formation of Mikulicz cells,

indicating that other specific virulence factors are present in the genome of the bacterium.

This works opens the way to further genetic analysis of K. rhinoscleromatis and identifica-

tion of new specific virulence factors.

Introduction

Rhinoscleroma is a chronic granulomatous infectious disease that affects the nose and other

parts of the respiratory tract down to the trachea [1]. Although few sporadic cases are typically

described in Western Europe and in the USA, this disease is still endemic in impoverished

areas of the Middle East, Eastern Europe, tropical Africa, South East Asia, Central and South

America. A delay in the diagnosis can lead to complications such as physical deformity, upper

airway obstruction and, rarely, sepsis. Treatment can be challenging and includes surgery and

prolonged course of antibiotics to avoid relapses. The bacterium implicated as the causative

agent of rhinoscleroma is Klebsiella pneumoniae subsp. rhinoscleromatis (hereafter mentioned

as K. rhinoscleromatis or KR), a subspecies of Klebsiella pneumoniae. Despite being geographi-

cally broadly distributed, K. rhinoscleromatis has been isolated mainly in human [2] although

three recent reports mention the identification of K. rhinoscleromatis in cockroaches [3,4] or

chickens [5] in low hygiene settings. K. rhinoscleromatis is very closely related to Klebsiella
pneumoniae subsp. pneumoniae but can be distinguished from K. pneumoniae sensu stricto by

biochemical properties and multilocus sequence typing [6].

Rhinoscleroma development is typically described clinically and pathologically into three

overlapping stages: catarrhal stage, proliferative stage, and sclerotic stage [7]. The catarrhal

stage is marked by purulent rhinorroea and nasal obstruction, which persists for months. His-

tological examination shows evidence of squamous metaplasia with a subepithelial infiltrate of

polymorphonuclear cells. However, in the subepithelial layer, bacteria are incompletely

digested and further released into tissues. The proliferative stage is characterized by symptoms

of epistaxis, nasal deformity and other problems depending on the other areas affected. In

addition, histology shows the appearance of Mikulicz cells, a hallmark of rhinoscleroma [8].

These cells are large foamy macrophages with numerous enlarged vacuoles containing viable

or non-viable bacteria. Finally, the sclerotic stage is characterized by increasing deformity,

granulomatous areas and scar formation. Most patients are diagnosed in the proliferative

stage, when the lesion appears as a bluish-red, rubbery granuloma and the typical Mikulicz

cells can be observed.

Mikulicz cells are only documented in rhinoscleroma and have been described as atypical

inflammatory monocytes specifically recruited from the bone-marrow upon K. rhinoscleroma-
tis infection [9]. These cells represent a peculiar state of highly vacuolated inflammatory

monocytes unable to digest bacteria. Moreover, it has been shown that IL-10, an anti-
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inflammatory cytokine, is essential in the establishment of a proper environment leading to

the phenotypic maturation of Mikulicz cells [9].

Different virulence factors have been implicated in the pathogenesis of K. pneumoniae. Cap-

sule polysaccharide (CPS) is recognized as one of the most important virulence determinants

of this pathogen. The presence of CPS inhibits the deposition of complement components

onto the bacterium [10–12], impedes adhesion and reduces phagocytosis of the bacterium by

macrophages and epithelial cells [10,12–17]. Using in vivo models of colonization and patho-

genesis, CPS mutants have been shown to be unable to colonize either pulmonary or systemic

tissues [13,18,19]. Clearly, CPS plays an important role in the interplay between K. pneumoniae
and the innate immune system.

K. pneumoniae and K. rhinoscleromatis are heavily capsulated bacteria. K. pneumoniae
express 134 different capsular serotypes that they are easily transferred via homologous recom-

bination [20,21]. Interestingly, despite their scattered geographical distribution, all K. rhino-
scleromatis isolates belong to capsular type 3 (K3) [6]. This is raising the question of whether

the K3 serotype capsule composition plays any specific role in rhinoscleroma pathology.

Indeed the K3 capsule repeated unit is rich in mannose residues, its repeated unit being com-

posed of!2-[(4,6-(S)-pyruvate)-α-D-Man-(1!4)]-α-D-GalA-(1!3)-α-D-Man-(1!2)-α-

D-Man-(1!3)-ß-D-Gal-(1! [22]. This is also suggestive of possible interaction of the bacteria

with mannose receptors mainly carried by macrophages and dendritic cells. Indeed, the K3

capsule has been shown to be one of the few Klebsiella K types able to bind to the mannose

receptor [23]. The complete sequence of the genomic region comprising the capsule polysac-

charide synthesis gene cluster was determined [24]. However, to date, the link between CPS

and K. rhinoscleromatis virulence remains to be elucidated. The role of the K. rhinoscleromatis
CPS has never been tested in vivo since, currently, there are no K. rhinoscleromatis CPS

mutants available.

As CPS is a prominent factor in other bacteria, here we explored the possibility that K. rhi-
noscleromatis CPS is implicated in the peculiar pathophysiological aspects of rhinoscleroma.

We have previously established an intranasal mouse model of K. rhinoscleromatis infection

recapitulating the formation of Mikulicz cells, the major histological feature of the disease [9].

In this work, we successfully constructed a K. rhinoscleromatis CPS mutant strain, representing

the first report of the use of genetic tools in K. rhinoscleromatis. Further, using our mouse

model, we compared the host responses to wild-type and K. rhinoscleromatis CPS mutant

infections by examining cytokine production and pulmonary histology. We report that the K.

rhinoscleromatis CPS mutant is attenuated in vivo but also that Mikulicz cells are observed

upon infection with high dose of K. rhinoscleromatis CPS mutant. Our data indicate that cap-

sule is a virulence factor of K. rhinoscleromatis but is not involved in the specific appearance of

Mikulicz cells.

Materials and methods

Ethics statement

All protocols involving animal experiments were carried out in accordance with the ethical

guidelines of Pasteur Institute, Paris and approved by the Comité d’Ethique de l’Institut Pas-

teur (CETEA) (comité d’éthique en expérimentation animale n˚89) under the protocol license

number: 2013–0031. All mice had free access to food and water and were under controlled

light/dark cycle, temperature and humidity. Animals were handled with regard for pain allevi-

ation of suffering. Animals were anesthetized using ketamine and xylazine, and euthanized

with CO2.
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Bacterial strains, plasmids and media

Bacterial strains and plasmids used in this study are listed in Table 1. The K. pneumoniae
subsp. rhinoscleromatis SB3432 strain (KR WT) was isolated in 2004 at the Avicenne hospital,

Bobigny, France, from a biopsy of the left nasal cavity of an 11-years old patient diagnosed

with rhinoscleroma. The K. pneumoniae subsp. pneumoniae Kp52145 strain is a previously

described clinical isolate (serotype O1:K2) [25]. The Escherichia coli strains used in the cloning

experiments were DH5α λpir (Invitrogen) and ß2163, kind gift from Didier Mazel (Institut

Pasteur, France). pGEM-T (Promega) is TA cloning vector used for cloning PCR products.

pDS132 was a kind gift from Dominique Schneider (Université Joseph Fourier, France). A

kanamycin cassette was PCR amplified from the plasmid pKD4 [26] and recombineering plas-

mid pSIM6 expressing Red system was used to create mutant in Kp52145 [27]. The plasmid

pAT881 carrying the luxABCDE operon was used to make bioluminescent strains [28].

Bacteria were grown in Lysogeny Broth (LB) medium at 37˚C with shaking. When appro-

priate, antibiotics were added at the following concentrations: ampicillin (Amp) 100 μg/ml;

chloramphenicol (Cm) 30 μg/ml; kanamycin (Kan) 50 μg/ml. When necessary, DAP was sup-

plemented to a final concentration of 0,3 mM. For selection against sacB, LB medium was sup-

plemented with sucrose to a final concentration of 5% (wt/vol).

Inocula were prepared from overnight bacterial cultures grown on a loan on LB plates at

37˚C resuspended in physiological saline.

Construction of a cps mutant in K. rhinoscleromatis and in K. pneumoniae
Capsule K. rhinoscleromatis mutant (KR cps-) was obtained by insertion of the plasmid pAM2

in the wzc gene. Briefly, a kanamycin cassette flanked by 1kb of upstream (wzb) and 1 kb of

downstream (wbaP) sequences of wzc using a three-step PCR method [29] was cloned into

Table 1. Bacterial strains and plasmids used in this study.

Strain Description Reference or source

E. coli
DH5α λpir F- Δlac169 rpoS(Am) robA1 creC510 hsdR514 endA recA1 uidA(ΔMluI)::pir Invitrogen

β2163 (F−) RP4-2-Tc::Mu ΔdapA::(erm-pir) [KmR EmR] [32]

K. rhinoscleromatis
KR WT (strain SB3432) Wild-type; K3 serotype [6]

KR-lux Transformant from KR WT harbouring pAT881 This study

KR cps- Capsule mutant harbouring pDS132 This study

KR cps—lux Capsule mutant harbouring pAT881 This study

K. pneumoniae
Kp52145 Wild-type; K2 serotype [25]

Kp52-pSIM6 Kp52145 wild-type harbouring pSIM6 This study

Kp52Δwzc Capsule mutant; the wzc gene was inactivated This study

Plasmid Description Reference or source

pGEM-T Cloning vector Promega

pDS132 Derived from pCVD442 (R6K ori, mobRP4, bla, sacB), without ISl sequences, bla gene replaced by cat gene (CmR) [33]

pKD4 Template plasmid carrying kanamycin resistance gene flanked by FRT sites [26]

pSIM6 red genes expression vector (AmpR); low copy number (pSC101 replication origin) [27]

pAT881 pGB2OPamiluxABCDE [28]

pAM1 pGEM-T vector with the wzb-kana-wbaP fragment inserted in SacI site This study

pAM2 pDS132 vector with the wzb-kana-wbaP fragment inserted in SacI site This study

https://doi.org/10.1371/journal.pntd.0006201.t001
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pGEM-T and then subcloned into pDS132 suicide vector. The resulting plasmid was intro-

duced in the E. coli ß2163 donor strain (DAP-) and the recombinant strain was used for conju-

gation with K. rhinoscleromatis. KR cps- mutants were selected onto Kan/DAP- plates.

K. pneumoniae 52Δwzc (Kp52Δwzc) was generated using the λ RED recombination tech-

nique [26]. Briefly, a kanamycin cassette was amplified by PCR from the pKD4 plasmid using

primers Kp52WzcUpKan (5’-ATCAGTGTTCAAACTTATTGAGCAATCTGCACTGTTATG

GGCTGAGAAATTAAAAGCTTAGAAATTCAGGAAATAATGCATGATTGAACAAGAT

GGATTG -3’) and Kp52WzcDownKan (5’- CGATATGGATGACGTTCATTATTATCCTTT

TATTATATATTTTAAAAAAGGGGATTCTTCGTCCCCTTCTTGAGTAACTCAGAAG

AACTCGTCAAGAAGG -3’). The PCR product was purified onto a column, digested with

DpnI, repurified and electroporated into K. pneumoniae carrying pSIM6, which encodes the λ
RED recombinase. Kan-resistant clones were screened for successful genomic replacement of

the entire wzc. Deletion of wzc on the K. pneumoniae 52145 chromosome was confirmed by

PCR and sequencing.

Infection of mice, determination of CFUs and LD50

Female BALB/cJ mice were purchased from Janvier (Le Genest-Saint-Isle, France).

Inocula of WT and mutant bacteria used in this study are 2.107 bacteria for KR WT, 2.107,

4.108 and 109 for KR cps- and 109 for Kp52Δwzc. When appropriate, similar inocula of the

respective bioluminescent strains were used.

Bacterial counts were determined as colony forming units (CFU) by plating serial dilutions

of lung homogenates in 3 ml ice-cold PBS supplemented with 0,5% Triton X-100 and EDTA-

free protease inhibitors (Fisher Scientific).

For survival studies, mice received either 2.107 KR WT or 2.107, 4.108, 109 KR cps- by the

intranasal route. Following infection, animals were returned to standard housing and observed

for 14 days. A census of survivors was taken daily.

Bioluminescence imaging

In order to maintain the plasmid conferring luciferase expression, mice were injected intraper-

itoneally twice daily from 1 day post-infection with 20 mg/kg spectinomycin (Spectam). Fol-

lowing isoflurane anesthesia, bioluminescence imaging was performed using an IVIS

Spectrum (Perkin Elmer). Analysis and quantification of bioluminescence were done using

Living Image (Perkin Elmer).

Histology and Fluorescence In situ Hybridization (FISH)

At 96h post-infection lungs were inflated with 4% PFA and fixed overnight at 4˚C. Paraffin-

embedded tissue blocks were cut into 7 μm sections and stained with hematoxylin-eosin (HE).

Images were acquired with the AxioScan.Z1 (Zeiss) using the Zeiss Zen2 software.

FISH staining was performed as follows. Paraffin lung sections were deparaffinized, rehy-

drated in PBS and covered with a solution of lysozyme at 10 mg/ml in PBS during 30 min at

37˚C. Slides were then washed twice in PBS, preincubated 30 min at 42˚C in hybridization

buffer (20 mM Tris-HCl [pH 8], 0.9 M NaCl, 0.01% SDS, 30% formamide) and incubated

overnight at 55˚C in hybridization buffer containing 50 nM of the pan-bacteria probe

Eub338-Alexa555 50-GCTGCCTCCCGTAGGAGT-3 [30]. After washing in 1X SSC (1 SSC is

0.15 M NaCl plus 0.015 M sodium citrate), slides were covered for 1 min with DAPI to visual-

ize the nuclei, washed in PBS and mounted in Prolong Gold reagent. Images were acquired on

an upright fluorescence microscope equipped with the Apotome technology (Zeiss AxioIma-

ger with Apotome2, Carl Zeiss Jena).

Capsule in Klebsiella rhinoscleromatis infection
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Images analysis

The number of Mikulicz cells was estimated from HE stained sections by manually segmenting

region containing high number of Mikulicz cells in Zen Blue software (Zeiss). Regions con-

taining Mikulicz cells within dense infiltrate of inflammatory cells were not included. Mikulicz

cells-containing region was quantified as % area of the total lung area.

The number of bacteria present in the tissue section was quantified from fluorescence

images using the Fiji plugin TrackMate [31]. Bacteria were defined as spots of 1.5 μm after

Laplace Gaussian fitting.

Capsule quantification

Capsule was quantified as the concentration of uronic acid in the samples from a standard

curve of D-glucuronic acid as described by Favre-Bonte et al [14]. The uronic acid content was

expressed in nanograms per 106 CFU.

Quantification of cytokines by ELISA

At various time post-infection the five pulmonary lobes were removed and collected in

ceramic-beads containing tubes (Precellys lysing kit CK28) with 2,5 ml of ice cold PBS supple-

mented with 0,5% Triton X-100 and EDTA-free protease inhibitors (Fisher Scientific). Sam-

ples were then crushed using the Precellys homogenizer with the following program: 3 cycles

of 15 sec at 5.000 × g with 10 sec pause. Twenty microliters were removed to determine the

number of CFU/lung. After adding 10 μl of Pen/Strep (100X, Sigma), samples were centrifuged

at 300 × g for 10 min and left on ice for 30 min. The supernatants were frozen rapidly in dry-

ice ethanol bath and stored at -80˚C. The following cytokines were measured: IL1ß, IL-10, IL-

17, TNFα (Duoset, all from R&D Systems). Assays were performed according to the manufac-

turer’s instructions.

Statistical analysis

Correlation between bioluminescence signal and CFU number was analyzed by Pearson corre-

lation using GraphPad Prism 5.

Results

Genotypic and phenotypic characterization of the K. rhinoscleromatis
capsule mutant strain

To investigate the role of capsule in K. rhinoscleromatis virulence, we constructed a KR cap-

sule mutant (KR cps-) from the K. rhinoscleromatis wild-type strain SB3432 (KR WT) by

insertion of a suicide plasmid. It has been shown that inactivation of wzc gene, whose prod-

uct is involved in capsular polysaccharide export machinery, leads to a capsule-minus phe-

notype in K. pneumoniae [13]. We decided thus to mutate the capsular operon in SB3432

by replacing the wzc gene by a kanamycin cassette by using the suicide plasmid pAM2.

Although this suicide plasmid can be normally excised following double crossover using

sacB counter-selection, we did not manage to obtain the desired gene replacement, possibly

because KR does not grow on media without salt which is required for sacB counter-selec-

tion. Nevertheless, sequencing of KR cps- confirmed the integration of the suicide plasmid

in the wzb gene leading to a polar effect and one base deletion in the sacB gene leading to

the production of a truncated SacB protein, hence explaining the selection of this mutant

during the counter-selection step. A schematic representation of the wild-type KR and the
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capsule mutant KR cps- capsule export portion of cps operon is shown in Fig 1A. As expe-

cted, colonies of KR cps- did not show the slimy and mucoid phenotype characteristic of

surface polysaccharide-producing KR colonies (Fig 1B). We also quantified the amount of

capsule produced and observed a drastic reduction from 329±59 to 10±9 ng uronic acid /

106 bacteria for KR WT and KR cps- respectively. Altogether, these results indicated that

this KR mutant is an effective capsule mutant.

Capsule is a well-characterized virulence factor of K. pneumoniae. K. pneumoniae capsule

mutants are avirulent and they are not able to cause pneumonia or urinary tract infections

[13,19,34]. We sought to analyze whether the KR cps- strain was attenuated in vivo. Anticipat-

ing that at identical inoculum of KR WT and KR cps- this would be the case, we wondered

whether we could recapitulate part of the disease by increasing the infectious dose of the KR

cps-. BALB/c mice were thus infected intranasally with 2.107 KR WT or 2.107, 4.108 or 109 KR

cps- and survival was monitored over 14 days (Fig 1C). While all mice infected with 2.107 bac-

teria of KR WT strain succumbed within 6 days post-infection, mice infected with 2.107 or

4.108 KR cps- bacteria recovered from the infection and survived. However, a 50% death rate

was observed with the highest dose of 109 KR cps-. Altogether, these findings show that the KR

cps-strain is attenuated in vivo, confirming the crucial role of capsule in KR virulence.

Fig 1. Characterization of the K. rhinoscleromatis capsule mutant strain (KR cps-). (A) Schematic representation of the wild-type K. rhinoscleromatis (top) and KR

cps- (bottom) capsule export region of the capsule locus. The insertion of the suicide plasmid pDS132 occurred at the level of the wzb gene. The asterisk indicates the

base deletion in the sacB gene leading to aberrant protein production. (B) Morphology of the colonies of KR WT and KR cps- strains after overnight culture on LB agar

plates. (C) Quantification of capsule expressed as amount of uronic acid / 106 bacteria in KR WT and KR cps-. (D) Mice survival after pulmonary infection with KR WT

or KR cps- strains. BALB/c mice were infected with 2.107 KR WT, 2.107 KR cps-, 4.108 KR cps- or 109 KR cps-. Survival was followed overtime. Data are representative of

10 mice per group from two independent experiments.

https://doi.org/10.1371/journal.pntd.0006201.g001
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The capsule is a virulence factor of K. rhinoscleromatis
In order to compare KR WT and KR cps- infections, we tested the capacity of bioluminescent

bacteria to colonize the lungs after intranasal instillation. Mice were infected with either 2.107

bioluminescent KR WT or 2.107, 4.108 or 109 bioluminescent KR cps-, and bioluminescence

imaging was performed and quantified 6, 24, 48, 72, 96 hours post-infection (Fig 2A and 2B).

Mice infected with bioluminescent KR WT showed a gradual increase in lungs biolumines-

cence with a 430 fold signal increase at 4 days post-infection as compared after 6 hours. On the

other hand, the bioluminescence signal started to decrease from 6 hours post-infection with

2.107 KR cps- and reached background level at day 1. A similar but less pronounced decrease

was observed in mice infected with 4.108 or 109 KR cps- indicating a higher persistence of the

mutant bacteria in the lungs. Moreover, because of a more viscous inoculum at high infection

doses leading to difficulties to achieve proper intranasal infection, some mice swallowed part

of the inoculum and showed a bioluminescent signal in the gut that disappeared in most of the

animals at day 4, indicating that the bacteria transited in the gut before being eliminated. To

correlate the bioluminescent signal with the bacterial load, we quantified the number of CFU

in the lungs after bioluminescence imaging 96 hours post-infection. After subtraction of the

background signal, we observed a significant correlation between bioluminescence and CFU

in mice infected with 2.107 KR WT and 4.108 or 109 KR cps- (S1 Fig), allowing a good estimate

of CFU greater than 5.105 bacteria in the lungs from the bioluminescence signal.

We also directly monitored the lungs bacterial load during the same time course in mice

infected with inocula of 2.107 KR WT or 2.107, 4.108 KR cps- (Fig 2C). While the number of

bacteria in mice infected with 2.107 KR WT gradually increased from 4.107 bacteria per lungs

6 hours post-infection to reach 4.109 bacteria at 96 hours, the number of bacteria in animals

infected with the same inoculum of KR cps- decreased gradually until the bacteria were being

completely cleared from the organ in 72 hours. However, lungs from mice infected with a

higher inoculum of 4.108 KR cps- presented a still significant amount of bacteria in the organ 4

days post-infection, providing a more relevant comparison to the wild-type infection. By 96

hours after infection with 4.108 KR cps-, 33% of mice successfully cleared the infection while

the others were still being colonized and had between 5.105 and 109 bacteria in their lungs.

These results indicated that the KR cps- mutant is strongly attenuated but that at a higher inoc-

ulum, after a certain threshold, KR cps- is able to persist and proliferate within the host.

The formation of Mikulicz cells in K. rhinoscleromatis is not capsule-

dependent

To examine the pathology induced by KR cps-, lungs of mice were also examined histologically

at 4 days post-infection (Fig 3A). Animals infected by 2.107 KR WT presented the classical

extensive but moderately destructive inflammation of the lungs characterized by the recruit-

ment and formation of large Mikulicz cells filling alveoli. By contrast, mice infected with

2.107 KR cps- showed localized dense inflammatory lesions with signs of hemorrhages and

recruitment of monocytic and polymorphonuclear cells. No classical Mikulicz cells could be

observed. This phenotype reflects the inflammatory response that was required to eradicate

the bacteria. Interestingly, when mice were challenged with 4.108 or 109 KR cps-, many alveoli

were filled almost exclusively with Mikulicz cells, similarly to what is observed with KR WT,

although the alveolar lining was more often disrupted. Regions with dense and localized

inflammatory regions, characterized by infiltration of numerous polymorphonuclear cells,

were also observed (Fig 3A, highlighted zone). Of note, all mice infected with 4.108 or 109 KR

cps- out of 9 examined histologically presented Mikulicz cells. Altogether, these observations
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Fig 2. Bioluminescence imaging and bacterial loads quantification in mice infected by wild-type K. rhinoscleromatis and KR cps-. (A) BALB/c mice

were infected with bioluminescent 2.107 KR WT, 2.107 KR cps-, 4.108 KR cps-, and 109 KR cps-. The bioluminescent signal in lungs was measured 6, 24, 48,

72, and 96 hours post-infection using the IVIS Imaging System. All images are shown using the same bioluminescence signal intensity scale (in photons/

sec/cm2/sr). (B) Quantification of bioluminescent signal detected from six mice per group. Means are indicated as line. The dotted line indicates

background level, and the dashed line shows the minimal signal shown in (A). (C) Bacterial load in lungs of mice infected with 2.107 KR WT (left), 2.107

KR cps- (centre) or 4.108 KR cps- (right). Data for bacterial loads are shown as log CFU per organ from 6 to 12 mice from two to five independent

experiments. Means are indicated as line.

https://doi.org/10.1371/journal.pntd.0006201.g002
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Fig 3. Histology of BALB/c lungs infected by wild-type K. rhinoscleromatis and KR cps-. (A) Lungs of mice infected with 2.107 KR WT, 2.107 KR cps-, 4.108 KR cps-,
and 109 KR cps- were resected 4 days post-infection and examined by histology. Lungs infected with 2.107 KR WT (left) presented the classical pattern characterized by

many alveoli, with an intact epithelial layer, filled with Mikulicz cells. On the contrary, lungs infected with 2.107 KR cps- (middle left) showed dense inflammatory

infiltrate containing numerous polymorphonuclear cells and absence of Mikulicz cells. Lungs of mice infected with 4.108 KR cps- (middle right) or 109 KR (right)

showed the presence of Mikulicz cells similarly to wild-type infection. Insets show magnification of representative zones of the lungs. Scale bars are 1 mm (top), 200 μm

(middle row) and 50 μm (bottom). Images are representative of 4 (KR WT), 4 (2.107 KR cps-), 4 (4.108 KR cps-) or 5 (109 KR cps-) mice from 2 to 3 independent

experiments. (B) Correlation between the area covered by Mikulicz cells and number of bacteria spots in lungs sections of mice at 96 hours after infection with 2.107 KR

WT, 2.107 KR cps-, 4.108 KR cps-, 109 KR cps-.

https://doi.org/10.1371/journal.pntd.0006201.g003
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suggested that while capsule is a virulence factor in KR, it is not required to induce the forma-

tion of Mikulicz cells in KR pathogenesis.

As mice infected with the KR cps- strain showed variations in the intensity of the Mikulicz

cells infiltrate observed by histology, we wondered whether this variation was correlated to the

bacterial burden. Because we cannot directly quantify total CFU and perform an histological

analysis on the same sample, we estimated the number of bacteria by fluorescence in situ

hybridization and quantified the Mikulicz cells infiltrate by manually segmenting regions con-

taining highly visible Mikulicz cells on adjacent lungs sections (S2 Fig). Mice infected with KR

cps- showed different number of bacteria spots and extend of Mikulicz cells infiltrate in the

lung section (Fig 3B). Both parameters were significantly correlated, suggesting that the local

bacterial load drives the intensity of recruitment of Mikulicz cells.

IL-10 production is capsule-independent

Cytokines are key mediators of immune responses and the anti-inflammatory cytokine IL-10

has been shown to be highly produced after K. rhinoscleromatis infection and to play a crucial

role in the establishment of a proper environment leading to Mikulicz cells maturation [9].

Therefore, we characterized the production of some major cytokines in mouse lung extracts

upon KR cps- infection. When BALB/c mice were infected with 2.107 KR WT or 4.108 KR cps-,

the pro-inflammatory cytokines IL-1β, IL-17 and TNF-α were produced in high amounts

from 6 hours post-infection onwards (Fig 4A and S3 Fig). However, although produced in

similar amounts at the beginning of the infection in mice infected with 2.107 KR cps-, the level

of these cytokines diminished overtime because bacteria were progressively cleared from the

organ. As previously shown, the anti-inflammatory cytokine IL-10 was highly produced upon

infection with 2.107 KR WT but not in mice infected with 2.107 KR cps-. IL-10 was also pro-

duced in mice infected with 4.108 KR cps-, but to a lower extend and in more variable manner

as compared to KR WT (Fig 4B). These observations indicate that a high inoculum of KR cps-

allows recapitulating a high production of IL-10, thereby suggesting that capsule does not have

a direct role in IL-10 production upon KR infection.

Because we observed a high variability in the production of IL-10 in mice infected with

4.108 KR cps-, we wondered whether it was correlated with the burden of the infection. We

thus compared the production of IL-1β, IL-17, TNF-α and IL-10 to the number of CFU in the

lungs at 96 hours post-infection for each animal. While a high production of IL-1β (> 3.104

pg/ml) is indicative of the presence of bacteria in the lungs (mainly ranging from 105−109 bac-

teria), IL-1β is expressed at intermediate levels (500–3.000 pg/ml) when mice managed to clear

the infection (Fig 4C). Similar observation was made for IL-17 and TNF-α (S4 Fig). On the

other hand, this is different for IL-10 (Fig 4D). A first group of mice mildly colonized (between

5.105 and 2.107 CFU) showed intermediate level of IL-10 (between 70 and 200 pg/ml) while a

second group of mice that were unable to control the infection (> 2.107 CFU) were character-

ized by an intense production of IL-10 (> 103 pg/ml) suggesting that KR is able to induce an

intense production of IL-10 only above a certain threshold of KR bacteria in the lungs.

To establish that the occurrence of Mikulicz cells observed with 4.108 and 109 KR cps- was

not due to the higher inoculum of KR cps- as compared to KR, we measured bacterial loads

and cytokines expression in animals inoculated with the same high inoculum (109 bacteria) of

Kp52Δwzc 4 days post-instillation. The Kp52Δwzc strain is a similar capsule mutant from K.

pneumoniae strain Kp52145 obtained after deletion of the wzc gene showing a drastic reduc-

tion of capsule expression from 256±22 ng uronic acid / 106 bacteria for Kp52145 to 34±13 ng

uronic acid / 106 bacteria (S5 Fig). We observed that the bacterial load of mice infected with

109 Kp52Δwzc was around 105 bacteria per organ and was lower than the bacterial load of

Capsule in Klebsiella rhinoscleromatis infection
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mice infected with 109 KR cps- indicating that a wzc mutant in Kp52145 is less virulent that its

counterpart in KR (Fig 5A).

We then measured the cytokines levels in lungs of infected animals (Fig 5B and S6 Fig).

Pro-inflammatory cytokines IL-1β, IL-17 and TNF-α were expressed in similar amounts in

mice infected with Kp52Δwzc or KR cps-. However, IL-10 was expressed at low level after

109 Kp52Δwzc infection (53–63 pg/ml), contrasting the higher amount observed after 109

KR cps- infection in some mice. By histology, we observed an intense and dense inflamma-

tion characterized by a strong recruitment of monocytes and polymorphonuclear cells and

an absence of Mikulicz cells formation (Fig 5C). Altogether, and combined with the histo-

logical data, these observations suggest that when present in high concentration in the

lungs from 3 days of infection without being lethal, KR or its capsule mutant are able to

induce the recruitment and maturation of Mikulicz cells and drive a strong production of

IL-10.

Fig 4. Production of IL-1β and IL-10 in lungs of BALB/c mice infected by wild-type K. rhinoscleromatis, KR cps-, Kp52Δwzc or Kp52145. BALB/c

mice were infected with 2.107 KR WT, 2.107 KR cps- or 4.108 KR cps- or saline-injected for 6, 24, 48, 72 or 96 hours. Lungs were then homogenized and the

pro-inflammatory IL-1β (A) and the anti-inflammatory IL-10 (B) cytokines were measured by ELISA. Data are mean from 6 to 10 mice from three

independent experiments. Correlation between production of IL-1β (C) or IL-10 (D) and the amount of bacteria recovered from lungs of mice at 96 hours

after injection with saline (control) or infection with 2.107 KR WT, 2.107 KR cps-, 4.108 KR cps-, 109 KR cps-, 109 Kp52Δwzc or 2.104 Kp52145.

https://doi.org/10.1371/journal.pntd.0006201.g004
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Discussion

The diversity of capsule types in Klebsiella pneumoniae species is strikingly very large, as 134

different capsule loci have been identified up to now [21]. This tends to indicate that K. pneu-
moniae species is under strong selection pressure to diversify its capsule. However, and strik-

ingly, all K. rhinoscleromatis strains isolated so far are of the KL3 (K3) serotype despite having

been isolated from diverse geographical locations [6]. Because of this homogeneity, we specu-

lated that this specific K3 serotype could be an important factor driving the rhinoscleroma dis-

ease. By creating a capsule mutant in K. rhinoscleromatis, we showed that if capsule is an

important virulence factor for this species, it is not necessary to induce the formation of Miku-

licz cells, the hallmark of rhinoscleroma, as these cells have been observed when using high

inocula of this mutant.

The saccharide composition of the capsule has been linked to some extent to K. pneumoniae
virulence. K1 and K2 serotypes have been suggested to be major determinants in liver abscess-

causing K. pneumoniae [35,36]. Strains from other serotypes, including K5, K16, K20, K54 and

K57, have also been described as highly virulent [37]. In addition, switching the capsular

Fig 5. The capsule mutant Kp52Δwzc is not able to induce the formation of Mikulicz cells. (A) Bacterial load in lungs of BALB/c mice after infection

with 2.107 KR WT, 109 KR cps- or 109 Kp52Δwzc. Data show CFU in whole lungs after 96 hours post-infection from 5 to 11 mice from one to five

independent experiments. Means are indicated as line. (B) Production of IL-1β and IL-10 in the lungs of BALB/c mice infected with 2.107 KR WT, 109 KR

cps- or 109 Kp52Δwzc. Cytokines were measured 96 hours post-infection by ELISA. Data are mean from 5 to 9 mice from two independent experiments.

(C) Histology, representative example of lung from mice infected with 109 Kp52Δwzc. Zones of dense inflammation can be observed with absence of

Mikulicz cells. Scale bars are 1 mm (left), 200 μm (middle) and 50 μm (right).

https://doi.org/10.1371/journal.pntd.0006201.g005
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serotype of a highly virulent K2 strain to a weakly virulent K21a strain has been shown to lead

to a decrease in virulence in mouse and in survival in blood and to an increased binding to

macrophages. Conversely, switching the capsule serotype of the K21a strain to virulent K2

resulted in an increased virulence in mouse and in survival in blood and to a lower binding to

macrophages [38,39]. In addition, switching highly conserved genes of the capsule cluster

involved in capsule export from K1 into K20 hypervirulent strain strongly reduced its bacterial

virulence in mice while increasing its neutrophil phagocytosis and survival in macrophages,

although it is still not known whether this is due to a change in capsule expression[40]. How-

ever, a recent pan-genomic analysis did not reveal any correlation between capsule serotype

and strains responsible of invasive community-acquired infection but rather suggested that

the presence of one or several siderophores explains bacterial virulence [41]. Thus the exact

role of capsule composition in virulence still remains to be clearly determined.

Capsule plays an important role in immune cells evasion by preventing binding of comple-

ment and antibodies to the bacteria thereby decreasing opsono-phagocytosis and comple-

ment-mediated killing [10–13,42–45]. Moreover, Klebsiella capsule composition has been

shown to influence the binding of the bacteria to macrophages. K3, K46 and K64 K. pneumo-
niae capsule are binding more to the mannose receptor, which is highly expressed on macro-

phages, than other serotypes, in a mannose-dependent manner, while other serotypes

presented no binding [23]. A common feature of these three different serotypes is that they

have two or three mannose residues in their repeated unit. Though, other K serotypes that

present also two mannose residues did not show any binding to the mannose receptor, sug-

gesting that binding of mannose-bearing capsule to the mannose receptor is influenced by

other factors than its mannose composition. However, as all K. rhinoscleromatis strains are of

the K3 serotype, and even though K3 capsule interacts with mannose receptor, our results

obtained with a high infection dose of KR cps- suggest that this step is not important in driving

the development of Mikulicz cells.

Some results obtained with the high inocula of KR cps- were heterogeneous: the bacterial

load 4 days post-infection was spread over 4 logs, IL-10 levels in the lungs were quite variable

and some mice showed some bacteria in the digestive tract by bioluminescence. This variabil-

ity is a consequence of the use of higher inocula, which are thicker and more viscous than

lower inocula used for the KR WT and of KR cps- strains that are more fluid. As a consequence,

part of the inoculum is swallowed by mice and passes into the digestive tract. This is also sug-

gesting that above a certain threshold of cps- bacteria delivered to the lungs, the animal cannot

control the infection and the bacteria are able to multiply and maintain themselves in high

number, although to a lower burden than WT bacteria. We wondered whether there was a cor-

relation between the number of bacteria in the lungs and the level of IL-10 produced. Indeed

we observed that IL-10 was produced in high amount when the bacterial load was high, raising

the possibility that high IL-10 expression was the result of a high bacterial burden and not spe-

cific to K. rhinoscleromatis. To verify this one needs to compare IL-10 production upon similar

bacterial burdens, greater than 108 bacteria, at 4 days post-infection with different bacteria.

We first thought to use a high dose of a K. pneumoniae mutant inactivated in the same gene as

the KR cps- strain, but showed that the bacterial load was lower (104−105 bacteria) than the

lowest ones obtained with high KR cps- (106 to 108 bacteria) and that IL-10 levels were also

quite low. This showed that this Kp52Δwzc mutant was actually more attenuated than KR cps-

and suggested that K. rhinoscleromatis is better adapted to surviving in lungs. Some virulent K.

pneumoniae strains can cause intense and severe and acute pneumonia in mice with high bur-

den. We had previously observed that a variable bacterial load can be achieved 3 and 5 days

post-infection with a low dose of the virulent strain Kp52145 [9] and that about 30% of mice

were presenting a high bacteria burden 3 and 5 days post-infection. By measuring CFU loads
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and cytokines in mice infected with Kp52145 we observed that mice that had a high bacterial

load were producing IL-10 in amount similar to those that were less colonized. Comparable

high bacterial burden were obtained with the widely used K. pneumoniae strain 43816

[18,19,46] and IL-10 was produced in similar low amounts 3 days post-infection [18]. Hence

these observations indicate that the intense IL-10 production observed upon infection with KR

WT or KR cps- is specific of K. rhinoscleromatis and does not result from a global high bacterial

load.

Moreover, all high dose KR cps—infected mice out of 9 observed by histology show the pres-

ence of Mikulicz cells in their lungs, although to various extent. We also observed that the den-

sity of the Mikulicz cells infiltrate is correlated to the number of bacteria. We also tried to see

whether there was a similar correlation with the amount of IL-10 on a mouse to mouse basis,

but were unable to detect directly this cytokine by immunohistochemistry. Nevertheless, the

variation in the host response to KR cps- infection is likely correlated to the amount of IL-10

produced: lower number of bacteria lead to fewer Mikulicz cells and low amounts of IL-10

whereas an intense IL-10 production is accompanied by high number of bacteria and Mikulicz

cells and less destructive inflammation.

Recently, IL-10 has been shown to regulate metabolic processes in activated macrophages

and thus control the inflammatory response. IL-10 impedes glycolysis and promotes oxidative

phosphorylation maintaining mitochondrial fitness. This metabolic reprogramming of macro-

phages is controlled by IL-10 through inhibition of mechanistic target of rapamycin (mTOR)

signaling pathway [47]. Interestingly, deregulation of mTOR signaling, such as prolonged

mTORC1 activation, leads to metabolic changes, hyperproliferation of macrophages and gran-

uloma formation, contributing to disease progression in human granulomatous sarcoidosis

[48]. These mechanisms might be associated with formation of granulomas in rhinoscleroma,

where Mikulicz cells could undergo similar metabolic remodeling mediated by IL-10.

The fact that the capsule is not required for Mikulicz cells recruitment and formation

indicates that the factors responsible of this process are still unknown and remain to be identi-

fied. Current in vivo screening approaches, such as signature tagged mutagenesis, cannot be

used as they identify mutants unable to grow in specific experimental conditions, but not

those that are required for the expression of a particular phenotype, such as the appearance of

Mikulicz cells. Therefore an in vitro screening assay has to be developed. However, in vivo
phagocytosis assays can often be difficult to set up and standardize due to the high expression

of capsule in K pneumoniae species and its strong anti-phagocytic effect. Our results show that

capsule is not required for the formation of Mikulicz cells, opening the way to in vitro assays of

Mikulicz cells formation and to in vitro screening of factors that are driving this maturation in
vivo.

Supporting information

S1 Fig. Bioluminescence signal and CFU correlation. Bioluminescence signal after back-

ground subtraction was correlated with the CFU number for mice infected with 2.107 KR WT,

4.108 KR cps- and 109 KR cps-.
(EPS)

S2 Fig. Quantification of bacteria spots by FISH. Bacteria were detected in lungs section by

FISH using pan bacteria probe. Bacteria spots were quantified using the plugin Trackmate in

Fiji. (A) shows a representative image of a lung section from a mouse infected with 2.107 KR

(top left) with the bacteria labelled in orange, a high resolution zoom showing individual bac-

terial spots (middle left) and the corresponding spots detected by TrackMate (middle right). A

corresponding HE image with the manually segmented area containing Mikulicz cells is
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shown (top right). (B) Representative image from a mouse infected with 2.107 KR cps-. Bottom

images in A and B are 140 μm wide.

(EPS)

S3 Fig. Production of IL-17 and TNF-α in lungs of BALB/c mice infected by wild-type K.

rhinoscleromatis or KR cps-. BALB/c mice were infected with 2.107 KR WT, 2.107 KR cps- or

4.108 KR cps- or saline-injected for 6, 24, 48, 72 or 96 hours. Lungs were homogenized and the

pro-inflammatory cytokines IL-17 (A) and TNF-α (B) were measured by ELISA. Data are

mean from 6 to 10 mice from three independent experiments.

(EPS)

S4 Fig. Cytokines production and CFU correlation. Correlation between production of IL-

17 (A) or TNF-α (B) and the amount of bacteria recovered from lungs of mice at 96 hours

after injection with saline or infection with 2.107 KR WT, 2.107 KR cps-, 4.108 KR cps-, 109 KR

cps-, 109 Kp52Δwzc or 2.104 Kp52145.

(EPS)

S5 Fig. Quantification of capsule in Kp52145 and mutant Kp52Δwzc. Data are expressed as

ng of uronic acid / 106 bacteria.

(EPS)

S6 Fig. Production of IL-17 (A) and TNF-α (B) in lungs of BALB/c mice infected by wild-

type K. rhinoscleromatis, KR cps- or Kp52Δwzc. BALB/c mice were infected with 2.107 KR

WT, 109 KR cps- or 109 Kp52Δwzc. Cytokines were measured 96 hours post-infection by

ELISA. Data are mean from 5 to 9 mice from two independent experiments.

(EPS)

Acknowledgments

We thank Claude Parsot for his constant interest and advice during this work, Céline Mulet
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Llobet E, Pérez-Gutiérrez C, Tomás JM, et al., editors. PLoS ONE. 2013; 8: e56847. https://doi.org/10.

1371/journal.pone.0056847 PMID: 23457627
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48. Linke M, Pham HTT, Katholnig K, Schnöller T, Miller A, Demel F, et al. Chronic signaling via the meta-

bolic checkpoint kinase mTORC1 induces macrophage granuloma formation and marks sarcoidosis

progression. Nat Immunol. 2017; 18: 293–302. https://doi.org/10.1038/ni.3655 PMID: 28092373

Capsule in Klebsiella rhinoscleromatis infection

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006201 January 30, 2018 19 / 19

https://doi.org/10.1073/pnas.1501049112
https://doi.org/10.1073/pnas.1501049112
http://www.ncbi.nlm.nih.gov/pubmed/26100894
http://www.ncbi.nlm.nih.gov/pubmed/7927714
https://doi.org/10.1128/IAI.00864-09
http://www.ncbi.nlm.nih.gov/pubmed/19841082
https://doi.org/10.1371/journal.pone.0056847
https://doi.org/10.1371/journal.pone.0056847
http://www.ncbi.nlm.nih.gov/pubmed/23457627
https://doi.org/10.1128/IAI.05114-11
http://www.ncbi.nlm.nih.gov/pubmed/21576334
https://doi.org/10.1126/science.aal3535
https://doi.org/10.1126/science.aal3535
http://www.ncbi.nlm.nih.gov/pubmed/28473584
https://doi.org/10.1038/ni.3655
http://www.ncbi.nlm.nih.gov/pubmed/28092373
https://doi.org/10.1371/journal.pntd.0006201

