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Abstract. As a common degenerative disease, osteoporosis (OS) 
is characterized by reduced bone mass and microarchitectural 
deterioration of bone tissue. Both genetic and environmental 
factors are involved in OS development. To date, ~300 genes 
have been confirmed to be involved in the pathogenesis of OS, a 
large majority of which have been independently investigated. As 
OS is a polygenetic disease, a comprehensive analysis focusing 
on the biological functions and interactions of OS‑related genes 
would provide valuable information. In this study, OS related 
research deposited in PubMed was retrieved and genes related to 
OS were catalogued. Pathways with an enriched biological func-
tion for these genes were extracted, and the crosstalk between 
the enriched pathways was analyzed. A comprehensive network 
was constructed, and a minimal network was extracted using 
the Steiner minimal network algorithm. In this study, a total of 
294 genes in were retrieved from PubMed. Biological processes 
found to be enriched included those related to bone metabolism 
and the immune system. In total, 58 pathways were enriched. 
Furthermore, the comprehensive network consisting of 3,943 
nodes and 7,976 edges was constructed, among which 631 nodes 
and 2,581 edges contributed to the OS‑specific molecular 
network. In this network, in excess of 300 potential genes associ-
ated with OS and two modules were identified. Thus, this study 
provides a mechanistic insight into OS and suggests more than 
300 potential OS‑related genes for future research.

Introduction

As a common degenerative disease, osteoporosis (OS) is 
characterized by reduced bone mass and microarchitectural 
deterioration of bone tissue (1), which often means patients 

with OS suffer from back pain and bone fractures (2). It is 
estimated that ~50% of women and 30% of men >50 years old 
will suffer a fracture due to osteoporosis globally (3).

The development of OS can be influenced by genetic and 
environmental factors  (4,5). Genetic factors play a greater 
role than environmental factors. It is estimated that the heri-
tability of vertebral volumetric bone mineral density ranges 
from 0.27 to 0.51 (6). To date, animal models, gene expres-
sion, genome‑wide association studies (GWAS) and systems 
biology approaches have identified hundreds of genes found to 
contribute to the process of OS (7‑9). This suggests that OS is 
a polygenetic disease; that is, numerous genes exerts an effect 
on the development of OS, and multiple genes contribute to the 
pathophysiology of OS (10). Thus far, the function and role of 
these genes in the process of OS have only been investigated 
independently. However, a systematic strategy to collectively 
analyze the function and connection of these potential 
OS‑related genes is preferable.

Recently, Qin et al  (11) applied multiple computational 
approaches to analyze OS‑associated single nucleotide poly-
morphisms (SNPs) and genes identified in GWAS. This study 
focused on gene regulatory networks, and retrieved some 
transcription factors (including NFATC2 and MEF2C) and 
microRNAS (miRNAs; including miR‑3658 and miR‑345‑5p) 
that bind to loci of SNPs. However, the use of SNPs alone 
to identify genes involved in OS could lead to some genes 
known to be involved in OS being unaccounted for in such an 
analysis. To overcome this, genes known to be associated with 
OS were collected from PubMed and biological enrichment 
analyses was conducted to detect any significant functional 
themes within these genes. The biochemical pathways associ-
ated with these genes were analyzed for interactions among 
the enriched pathways. Finally, an OS‑specific network 
based on the human protein‑protein interaction network was 
constructed. The current study aimed to promote an under-
standing of the molecular mechanism of OS and to identify 
potential OS‑related genes for future research.

Materials and methods

Identification of OS‑related genes. OS‑related gene candi-
dates were curated by retrieving human genetic association 
studies deposited in PubMed (http://www.ncbi.nlm.nih.gov/
pubmed/). Referring to published studies  (12,13), reports 
related to OS were queried using the terms ‘osteoporosis, 
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postmenopausal’ (MeSH Terms) OR ‘osteoporosis’ (MeSH 
Terms) AND ‘polymorphism, genetic’ (MeSH Terms) OR 
‘genotype’ (MeSH Terms) OR ‘alleles’ (MeSH Terms) NOT 
‘neoplasms’ (MeSH Terms). Up to June 1st 2018, a total of 
1,335 publications were retrieved using these search terms. At 
this point, every reference was reviewed to guarantee that the 
conclusion was consistent with its contents. Studies reporting 
a significant association of gene(s) with OS were included in 
the present study. Thus, any gene involved in the pathogenesis 
or drug response to OS was incorporated, including research 
from GWAS and biochemical studies.

Functional enrichment analysis of OS‑related genes. Pathway 
and process enrichment analysis was carried out using the 
following ontology sources: Kyoto Encyclopedia of Genes 
and Genomes (KEGG; Release 87.0; https://www.genome.
jp/kegg), Gene Ontology (GO) Biological Processes (Version 
2018‑08‑09; http://geneontology.org/), Reactome Gene Sets 
(Version 64; https://reactome.org), Molecular Signatures 
Database (Version 6.2; http://software.broadinstitute.org/
gsea/msigdb/index.jsp) and CORUM (Version 3.0; http://
mips.gsf.de/genre/proj/corum/index.html) (14). All genes in 
the genome were used as the enrichment background. In the 
gene set enrichment analysis, P‑values were calculated based 
on cumulative hypergeometric distribution (15) and Q‑values 
were calculated using the Benjamini‑Hochberg procedure for 
multiple testing (16). The term was regarded as over‑repre-
sented when P<0.05. To reduce redundancy in the ontology 
terms, the terms with P<0.01, a minimum count of 3 and an 
enrichment factor >2.0 were collected and grouped into clus-
ters based on their membership similarities. In the process of 
hierarchical clustering of the enriched terms, k scores were 
used as the similarity metric, and sub‑trees with similarity 
>0.3 were considered to be a cluster. The most statistically 
significant term within a cluster was chosen to represent the 
cluster. All of these results were obtained using the web‑based 
tool, Metascape (Version 3.0, http://metascape.org) (14,17).

Functional enrichment analysis of OS‑related genes and 
pathway crosstalk analysis. After enriching for biological 
process, the biochemical pathways of OS‑related genes were 
further enriched using the web‑based tool ToppGene (https://
toppgene.cchmc.org/). In brief, the UniProt ID (https://www.
uniprot.org/) list corresponding to the retrieved genes was 
uploaded into the server of ToppGene. Then, the list was auto-
matically matched to canonical pathways using the KEGG and 
BioCarta (www.biocarta.com) pathway databases. A pathway 
was catalogued when it overlapped with one or more of the 
genes in the list. The overlap significance between the pathway 
and the input genes was analyzed using Fisher's exact test and 
the Bonferroni correction. The pathways were considered to 
be significantly enriched when the false discovery rate value 
was <0.05.

Pathway crosstalk was evaluated using the Jaccard 
coefficient (JC) and overlap coefficient (OC). Both of these 
describe the overlap between any given pair of pathways, and 
are defined as follows:  where A and B are the 
number of genes included in the two tested pathways. 

As pathways with too few genes may have insufficient 
biological information, only enriched pathways containing 

more than three candidate genes were included and pathway 
pairs with fewer than two overlapping genes were removed. 
All pathway pairs were ranked according to the average of the 
JC and OC coefficients. For clarity, crosstalk between path-
ways was also shown in the Cytoscape software (version 3.7.1; 
https://cytoscape.org).

Construction of the human interactome and an OS‑specific 
subnetwork. To further investigate the interaction and correla-
tion between these genes, a comprehensive human interactome 
was constructed based on the InnateDB database (http://
www.innatedb.com). In this process, a novel web‑based tool, 
OmicsNet (https://www.omicsnet.ca), was used. OmicsNet 
allows users to create molecular interaction networks and 
visually explore them in a three‑dimensional space (18). The 
list of retrieved genes was uploaded to OmicsNet. Under the 
guidance of OmicsNet, an interactome was constructed based 
on the InnateDB database and the topological characteristics of 
potential molecular networks were analyzed using OmicsNet.

Next, an OS‑specific network was extracted. The process 
was similar to the Steiner Tree problem, where the algorithm 
identifies a minimal sub‑network containing all the terminal 
nodes from the complete network. OmicsNet was used for 
extraction, which implemented a heuristic approach that 
provides an approximate answer to this problem in order to 
reduce computation time.

To assess the non‑randomness of the constructed network, 
1000 random networks with the same number of vertices and 
interactions as the OS‑specific network were generated using 
the Erdos‑Renyi model (19) in the igraph R package (Version 
0.7.1; https://igraph.org/) (20). The arithmetic average values 
of the shortest path distance and clustering coefficient were 
calculated. The number of random networks whose average 
shortest distance was less than that of the OS specific network 
was calculated and defined as ND. In a similar manner, the 
number of random networks whose average clustering coef-
ficients was higher than that of the OS specific network was 
calculated and defined as NC. At last, the empirical P‑values 
were calculated separately using ND/1000 and NC/1000. 
When both P‑values were <0.05, the OS specific network was 
regarded as non‑random.

Finally, potential modules were attained using the Infomap 
algorithm embedded in OmicsNet (https://www.omicsnet.
ca) (18). Based on the principles of information theory, the 
Infomap algorithm transforms the problem of finding the 
potential modules into the problem of finding a description 
of minimum information for a random walk on the network 
graph (21). Using this strategy, the InfoMap algorithm joins 
neighboring nodes into modules.

Results

Identification of genes reported to be associated with OS. Up 
to June 1st 2018, a total of 1,335 publications were retrieved 
for OS. A total of 294 genes were retrieved (Table SI) and 
curated into a gene set (OS‑related genes gene set, OSgset). 
Referring to a previously published article (9), this gene set 
can be divided into four subgroups: Calciotropic hormones 
and receptors (including CASR, CRHR and CTR), cytokines, 
growth factors and receptors (including BMP2, FGFR1 and 
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IL‑23), bone matrix proteins (including COL1A1, COL1A2 
and ITGA1) and miscellaneous (including ADCY10, ALOX15 
and ALOX5). The diversity of the genes significantly associ-
ated with OS clearly demonstrates that OS is a polygenetic 
disease.

Biological functions enriched in the OSgset. Functional 
enrichment analysis can reveal a more specific function of 
these genes. In total, >2,000 GO terms were significantly 
enriched in the genes analyzed. Considering the heavy overlap 
between ontology terms and the need to reduce redundancy, 
terms were collected with P‑values <0.01, a minimum count 
of 3 and an enrichment factor >2.0, and grouped into clusters 
based on their membership similarity. The top 20 ranked 
clusters are shown as a heatmap (Fig. 1 and Table SII). Among 
these clusters, some biological processes can be discerned: 
These include the bone forming process (including ‘ossifica-
tion’, ‘skeletal system development’, ‘tissue remodeling’, ‘tissue 
morphogenesis’, ‘heart development’, ‘negative regulation of 
cell differentiation’, ‘vasculature development’ and ‘regulation 
of secretion’), the bone regulation process (including ‘response 
to nutrient levels’, ‘response to steroid hormone’, ‘response to 
peptide’, ‘inflammatory response’, ‘cellular response to organic 
cyclic compound regulation of animal organ morphogenesis’ 
and ‘response to growth factor’), and signaling pathways in 
bone cells (including ‘regulation of MAPK cascade’, ‘GPCR 
ligand binding’, ‘transmembrane receptor protein tyrosine 
kinase signaling pathway’, ‘regulation of signaling receptor 
activity’ and ‘negative regulation of cell proliferation’). These 
results indicated that the candidate genes collected were reli-
able for follow‑up bioinformatics analysis.

Pathway enrichment analysis in OSgset. Enriching the 
biochemical pathways in which candidate genes are involved 

and analyzing their cross‑talk can promote our understanding 
of the molecular mechanisms underlying OS. As shown in 
Table I (further details are provided in Table SIII), 58 signifi-
cant enrichment pathways for OS were identified. Among 
them, the pathway ‘ensemble of genes encoding extracellular 
matrix and extracellular matrix‑associated proteins’ was the 
most significantly enriched (P=3.60x10‑18). In addition, some 
extracellular matrix‑related pathways were also enriched, 
including ‘ensemble of genes encoding ECM‑associated 
proteins including ECM‑affiliated proteins, ECM regulators 
and secreted factors’, ‘genes encoding structural ECM glyco-
proteins’, ‘extracellular matrix organization’ and ‘ensemble 
of genes encoding core extracellular matrix including ECM 
glycoproteins, collagens and proteoglycans’. These findings 
confirmed a role for metabolism of the extracellular matrix in 
the development of OS.

The second enriched pathway was ‘Wnt signaling pathway’. 
Moreover, the number of Wnt‑related pathways was the highest, 
including ‘Wnt signaling pathway’, ‘canonical Wnt signaling’, 
‘genes related to Wnt‑mediated signal transduction’, ‘Wnt 
signaling network’, ‘negative regulation of TCF‑dependent 
signaling by WNT ligand antagonists’, ‘signaling by Wnt’, 
‘signaling by WNT in cancer’, ‘WNT ligand biogenesis and 
trafficking’, ‘TCF dependent signaling in response to WNT’, 
‘Wnt/beta‑catenin Pathway’ and ‘RNF mutants show enhanced 
WNT signaling and proliferation’. These results suggested that 
Wnt‑related pathways play an important role in the develop-
ment of OS.

The third enriched pathway was ‘breast cancer’, which 
suggested that OS is closely related to breast cancer. In addition, 
immune‑associated biological processes, including ‘cytokines 
and inflammatory response’ and ‘cytokine network’, were also 
significantly enriched, suggesting that the immune system may 
be involved in the etiology and pathological process of OS.

Figure 1. Enriched biological processes. Biological enrichment was carried out with the following ontology resources: KEGG Pathway, GO Biological 
Processes, Reactome Gene Sets, Canonical Pathways and CORUM. Terms with P<0.01, a minimum count of 3 and an enrichment factor >2 were collected and 
grouped into clusters based on their membership similarities. Sub‑trees with similarities >0.3 were considered to be a cluster. The most statistically significant 
term within a cluster was chosen to represent the cluster. Analysis was carried out Metascape. The x‑axis denotes ‑log10(P) values based on the cumulative 
hypergeometric distribution. The colors denote the relative value of ‑log10(P): darker colors indicate a greater value of ‑log10(P). 
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Table I. Pathways enriched in the OSgset. 

Pathway	 P‑valuea	 pBH valueb

Ensemble of genes encoding extracellular matrix	 3.60x10‑18	 6.05x10‑15

and extracellular matrix‑associated proteins
Wnt signaling pathway	 3.71x10‑13	 6.23x10‑10

Breast cancer	 4.29x10‑13	 7.21x10‑10

Genes encoding secreted soluble factors	 4.63x10‑13	 7.78x10‑10

Cytokine‑cytokine receptor interaction	 7.86x10‑13	 1.32x10‑9

Ensemble of genes encoding ECM‑associated	 7.91x10‑12	 1.33x10‑8

proteins including ECM‑affiliated proteins, 
ECM regulators and secreted factors
Canonical Wnt signaling	 8.61x10‑12	 1.45x10‑8

Class B/2 (Secretin family receptors)	 1.10x10‑11	 1.85x10‑8

GPCR ligand binding	 1.14x10‑11	 1.91x10‑8

Interleukin‑4 and 13 signaling	 3.51x10‑11	 5.90x10‑8

Genes related to Wnt‑mediated	 5.88x10‑11	 9.88x10‑8

signal transduction
Proteoglycans in cancer	 7.02x10‑11	 1.18x10‑7

Cytokine Signaling in Immune system	 1.52x10‑10	 2.56x10‑7

Wnt signaling network	 1.69x10‑10	 2.83x10‑7

Cytokine Network	 2.04x10‑10	 3.42x10‑7

Negative regulation of TCF‑dependent	 2.35x10‑10	 3.95x10‑7

signaling by WNT ligand antagonists
Rheumatoid arthritis	 7.22x10‑10	 1.21x10‑6

Signaling by Wnt	 1.07x10‑9	 1.80x10‑6

Fluid shear stress and atherosclerosis	 1.43x10‑9	 2.40x10‑6

Basal cell carcinoma	 1.49x10‑9	 2.51x10‑6

Pathways in cancer	 1.81x10‑9	 3.05x10‑6

Alzheimer disease‑presenilin pathway	 1.83x10‑8	 3.08x10‑5

Validated transcriptional targets of AP1	 2.84x10‑8	 4.78x10‑5

family members Fra1 and Fra2
Signaling pathways regulating	 4.81x10‑8	 8.09x10‑5

pluripotency of stem cells
ALK in cardiac myocytes	 6.37x10‑8	 1.07x10‑4

Malaria	 7.09x10‑8	 1.19x10‑4

Cytokines and Inflammatory Response	 1.21x10‑7	 2.03x10‑4

Neuroactive ligand‑receptor interaction	 1.45x10‑7	 2.44x10‑4

HTLV‑I infection	 1.54x10‑7	 2.59x10‑4

Genes encoding structural ECM glycoproteins	 2.30x10‑7	 3.86x10‑4

Metabolism of steroid hormones	 2.79x10‑7	 4.69x10‑4

Signaling by Interleukins	 4.17x10‑7	 7.02x10‑4

Extracellular matrix organization	 4.82x10‑7	 8.11x10‑4

Ensemble of genes encoding core	 5.09x10‑7	 8.56x10‑4

extracellular matrix including ECM 
glycoproteins, collagens and proteoglycans
Signaling by WNT in cancer	 5.91x10‑7	 9.93x10‑4

Wnt signaling pathway	 7.16x10‑7	 1.20x10‑3

Angiogenesis	 8.07x10‑7	 1.36x10‑3

Ovarian steroidogenesis	 1.00x10‑6	 1.69x10‑3

Hippo signaling pathway	 1.13x10‑6	 1.90x10‑3

Inflammatory bowel disease (IBD)	 1.14x10‑6	 1.92x10‑3

WNT ligand biogenesis and trafficking	 1.22x10‑6	 2.05x10‑3

AGE‑RAGE signaling pathway in	 1.36x10‑6	 2.28x10‑3

diabetic complications
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Crosstalk among significantly enriched pathways. To under-
stand how these enriched pathways interact with each other, 
we performed a pathway crosstalk analysis for the 58 enriched 
pathways. All 58 pathways contained three or more members 
in OSgset. Among the pathways, 706 pairs of pathways met 
the criterion for crosstalk analysis, that is, each pathway pair 
shared at least two genes with one or more other pathways.

In Fig. 2, the crosstalk network is arranged based on the 
closeness centrality of every pathway. The maximum value of 
0.84 was for the pathway ‘ensemble of genes encoding extra-
cellular matrix and extracellular matrix‑associated proteins’. 
The second and third largest were for ‘genes encoding 
secreted soluble factors’ and ‘ensemble of genes encoding 
ECM‑associated proteins including ECM‑affiliated proteins, 

Figure 2. Crosstalk map of enriched pathways. Pathway crosstalk was evaluated using the Jaccard coefficient and overlap coefficient and was displayed in the 
Cytoscape software. The network map was displayed according the closeness centrality in an ascending order. The minimum value was from the ‘metabolism 
of steroid hormones’ pathway. The maximum value was from the ‘ensemble of genes encoding extracellular matrix and extracellular matrix‑associated 
proteins’ pathway.

Table I. Continued.

Pathway	 P‑valuea	 pBH valueb

G alpha (s) signaling events	 3.12x10‑6	 5.24x10‑3

Disassembly of the destruction complex	 4.21x10‑6	 7.07x10‑3

and recruitment of AXIN to the membrane
Osteoclast differentiation	 4.42x10‑6	 7.44x10‑3

mTOR signaling pathway	 4.64x10‑6	 7.80x10‑3

PI3K‑Akt signaling pathway	 4.74x10‑6	 7.98x10‑3

TCF dependent signaling in response to WNT	 4.92x10‑6	 8.27x10‑3

Wnt/beta‑catenin Pathway	 6.48x10‑6	 1.09x10‑2

Interleukin‑10 signaling	 8.72x10‑6	 1.47x10‑2

Glucocorticoid receptor regulatory network	 9.88x10‑6	 1.66x10‑2

HIF‑1 signaling pathway	 1.07x10‑5	 1.80x10‑2

The IGF‑1 Receptor and Longevity	 1.12x10‑5	 1.88x10‑2

IL23‑mediated signaling events	 1.17x10‑5	 1.97x10‑2

Detoxification of Reactive Oxygen Species	 1.41x10‑5	 2.37x10‑2

Allograft rejection	 1.41x10‑5	 2.37x10‑2

Circadian Clock	 2.01x10‑5	 3.38x10‑2

RNF mutants show enhanced WNT	 2.43x10‑5	 4.08x10‑2 

signaling and proliferation

aP‑values were calculated by Fisher's exact test; bpBH values were adjusted by the Benjamini and Hochberg method. OSgset, osteoporosis‑related 
genes gene set.
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Table II. List of genes in different functional groups.

A, Genes in OSgset serving as seeds

ADRA2A, JAG1, AGTR2, AKR1B1, ALOX5, ALOX15, ALPL, ANXA6, APC, ARHGAP1, ATP5E, AVP, B2M, BDNF, BGLAP, 
BLVRB, BMP2, BMP7, BMPR1B, CA8, CALCR, CASR, CAT, RUNX2, CCNE1, CD40, CD40LG, CFTR, CHD2, CLCN7, 
CNR1, COL1A1, COL6A1, COL9A1, COMT, CPB2, CRHR1, CSTA, CTNNB1, CTSZ, CYLD, CYP1A1, CYP1B1, CYP17A1, 
CYP19A1, CYP24A1, DBP, DLX5, DMP1, ESR1, ESR2, ESRRA, MECOM, FABP3, FDPS, FGFR1, FGFR2, FOXC2, FLNB, 
FLT1, FRZB, GC, MSTN, GHR, GIP, GIPR, GLA, NR3C1, GSR, GSTM3, GSTP1, HIF1A, HSD11B1, HSD17B2, HTR2B, 
IBSP, IRF8, ID4, IFNG, IGF1, IGFBP2, IL1A, IL6, IL6R, IL7, IL10, IL15, IL16, IL17A, ITGA1, JUND, LCT, LEPR, LHCGR, 
LRP1, LRP4, LRP6, LRP5, LTA, LTBP2, MARK3, MECP2, MEF2C, MGP, CIITA, MID1, MMP2, CD200, MSX1, MYO5A, 
NELL1, NF1, NFATC1, NFKB2, NOS3, NPY, ROR2, TNFRSF11B, P2RX1, P2RX4, P2RX7, PCSK6, SERPINE1, REG3A, 
PAPPA, PBX1, ENPP1, PGR, ABCB1, PLAUR, PLOD1, PLS3, PON1, PPARG, PRL, PTCH1, PTH, PTHLH, PTH1R, PTH2R, 
PTMA, PTN, RAC1, RAC2, RB1, BRD2, RPL29, SAA1, ATXN1, CCL2, SFRP1, SFRP2, SFRP4, SHBG, SLC6A4, SNCA, 
SOD1, SOD2, SOX4, SOX9, SPARC, SPP2, SPP1, SPTBN1, SREBF1, TERT, TGFBR3, TIMP1, TIMP2, TLR4, TNFRSF1B, 
TRPS1, TSHR, TWIST1, TYROBP, VDR, VEGFA, WNT1, WNT7B, WNT10B, PRDM2, CSDE1, CXCR4, SHFM1, HMGA2, 
GDF5, FZD1, FZD6, SPOP, PIR, TNFSF11, NCOA1, TNFRSF11A, PER3, NOG, MAP4K4, ATP6V1G1, TRAM2, ZBTB40, 
NR1I3, HDAC5, GPC6, SLC25A13, SPRY1, ZMPSTE24, AKR1A1, TUBA1B, FAM3C, GPNMB, CRTAP, NCOA2, NMU, 
AKAP13, AKAP11, MMRN1, DKK1, CLEC16A, SATB2, DICER1, DCAF13, FGF20, DKK2, TMEM14A, CNOT7, NOX4, 
ARHGEF3, SOST, SLMO2, ADIPOR1, WNT16, IL23A, ATP6V1H, SOX6, ITLN1, ADCY10, MEPE, RGMA, SQRDL, 
TRPV4, SMOC1, IFIH1, TMEM135, WNK4, VKORC1, FTO, WLS, CCDC170, WNT5B, STARD3NL, NLRC5, WNT3A, 
SP7, FAM210A, IL23R, VPS13B, ZNF384, THSD7A, NCF1, CCR2

B, Genes included in OS‑specific network but not in OSgest

UBC, HNF4A, SP1, ELAVL1, EP300, SUMO2, CXR4, RELA, CREBBP, SUMO1, STAT3, HSP90AA1, TP53, SMAD3, SRC, 
HDAC1, APP, SIRT1, JUN, EGR1, COPS5, TRAF6, SMAD2, GRB2, PIK3R1, YWHAZ, SMARCA4, MYC, HSP90AB1, 
NFKB1, STAT1, CALM1, HDAC3, HSPA8, HDAC4, E2F1, STUB1, CEBPB, YWHAQ, FOS, CUL3, HDAC2, RXRA, CAV1, 
CREB1, NCOR1, CEBPA, MDM2, KAT2B, GSK3B, SMAD4, CEBPD, IRF1, POU2F1, YY1, FN1, HSPA4. ATF2, A2M, 
KPNB1, HNF1A, UBE2I, XRCC5, NOS2, MAPK1, SUMO4, NCOA6, ZBTB16, VCP, KIAA0101, NCK1, TCF3, PLCG1, 
FYN, H2AFX, HDAC6, EPAS1, ACTB, CANX, HSPA5, EEF1A1, TUBB, TUBA1A, FLNA, SPI1, ETS1, NEDD4, AKT1, 
CCND1, PRKDC, EZH2, XRCC6, TBP, PPP2CA, XPO1, BCL6, PIAS1, REL, CRK, HNRNPA1, DNMT1, UBE3A, CBL, 
TRAF3, PRKCA, IL7R, TFAP2A, TRAF2, PSMC5, USF1, TNF, PPP1CA, HIST1H4E, MYOD1, STAT5A, VDAC1, PSMC4, 
MED24, BIRC2, NPM1, STAT5B, UBQLN1, CDK1, ITGB1, SLC9A3R1, FBXO6, SMAD1, PLK1, EIF3F, BCL3, ONECUT1, 
CAND1, PSMD1, PSMA7, AHR, DHX9, BAG6, ABL1, SQSTM1, DDB1, PHB, THBS1, SMAD9, PAK2., STAT6, NME1, 
RPL5, NPEPPS, CRYAB, DDIT3, PPP1CC, P4HB, NR2F1, APEX1, HSP90B1, GNAI1, CD4, CSNK2A1, UBQLN4, PCMT1, 
DNMT3B, RBX1, USF2, FOSL1, MCM3, POLR2F, PSMD11, LDHA, SKIL, ITGA5, BMPR1A, PITX3, NR5A1, DNAJB11, 
YWHAH, PSMC3, CBX5, CCND3, BCL2, CGA, LRIF1, KHDRBS1, CACNA1A, CDC73, NFKBIA, SNTA1, ARHGDIA, 
SRPK1, ENG, CCL7, RAD21, NR2F6, MPG, HAX1, TAB2, CALR, PCNA, STAU1. GATA1, BCCIP, CLU, SGTA, SKP2, TF, 
RELB, NFYA, RORA, FTH1, PSMA6, VDAC2, POLR2A, ERBB2IP, MYD88, PEPD, JAK1, PPP2R4, ATF1, GATA2, CHD3, 
ARRB1, TBK1, ELF1, PLG, NR1H3, GNB1, CTCF, YBX1, MAP3K7, ACVR2B, ETS2, IGFBP1, FZD8, SORD, CHEK2, 
LNX1, ATP5F1, ZAP70, ACTA1, MAG, PNO1, TGFB1, ACTR2, PPIB, FIS1, ERG, TGFBR2, GIPC1, ATP5A1, TERF2IP, 
TOLLIP, ACTA2, TRAM1, SGK1, MMP14, PRKCB, PROCR, IGFBP5, MSN, CEBPE, CSNK1E, KDM5B, RANBP1, STK39, 
CTTN, BARD1, ARRB2, APPL1, FLOT1, JAK3, CD14, FASLG, WNT4, RIPK2, CLNS1A, SRPK2, PITX2, MCM2, EGFR, 
CSNK2B, ATF7IP, EIF2C3, APOA1, RBM23, GEMIN4, BATF3, SLC25A1, CCR5, TXN, LYN, GNAI2, ALB, RNF4, SOX2, 
CDC37, TCEB1, INSR, FTL, CSNK1D, SYK, TBCA, CD63, BABAM1, NR1H2, TIMP3, IGFBP3, UGGT1, COL2A1, PSAT1, 
EIF4A2, UCHL1, SPEN, STAM, IGF2R, SGSM2, GNAS, IRAK4, ECH1, IL1R1, CD9, KLRD1, LIG4, SERPINA1, MSMO1, 
LRP2, CAMP, IL4R, GPRASP2, SHARPIN, REST, COL1A2, PPP1R16A, TLN1, AHSG, RAB3A, CUBN, IGSF1, SFTPD, 
SDC2, DCN, GNAQ, HERPUD1, APOB, HOXA1, IGFBP7, ITSN2, TANK, DDX39B, BBS10, GATA4, IDE, ITGB3, SNCG, 
CDH5, CREM, BMI1, DSTN, BCL2A1, CDKN2A, CTSA, CD36, CASK, MMP3, EGR2, NOTCH2, PRKACB, SURF2, DES, 
MYBPC2, IKZF3, RBPJ, SH3GL2, GLI1, APCDD1

C, Genes in the main module extracted from the OS specific network

A2M, AHR, AKT1, APC, BIRC2, ARRB1, ATF1, B2M, CCND1, BCL3, BCL6, CALM1, CAV1, RUNX2, CCNE1, CD14, 
CD40, CDK1, CEBPA, CEBPB, CEBPD, CFTR, CLU, CCR5, CREB1, ATF2, CREBBP, CREM, CSNK2A1, CTNNB1, 
CYP19A1, CYP24A1, DDB1, DHX9, E2F1, EEF1A1, EGFR, EGR1, ELF1, EP300, EPAS1, NR2F6, ESR1, ESR2, ESRRA, 
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ECM regulators and secreted factors’. The results suggested 
that these three pathways lie in the central loci of the crosstalk 
network, and that abnormalities in the extracellular matrix 
plays an important role in the development of OS.

Among this network, the minimum value was from the 
pathway of ‘metabolism of steroid hormones’ (including 
CYP17A1, CYP19A1, SRD5A2, HSD11B1, HSD17B2, 
AKR1B1, LHB and STARD3NL). Moreover, this pathway 
had only one connection with the ‘ovarian steroidogenesis’ 
pathway, while the other nodes have more edges with other 
pathway nodes. These findings suggest that steroid hormones 
affect the formation of OS in an indirect manner.

Network topological characteristics of OSgset. Analyzing 
the topological properties of nodes and interactions between 
nodes via protein‑protein interaction‑based analysis can help 
to reveal any key biologically related mechanisms associated 
with the network. The interactome constructed in this present 
study comprised 3,943 genes/proteins and 7,976 interactions, 
with a mean degree of 8.23. As specified, 259 of the 294 genes 
were included in the analysis and accounted for 88.1% of the 
genes in OSgset, serving as seeds (Table II).

OS‑specific molecular network inference. An OS‑specific 
minimal subnetwork was extracted. As shown in Fig. 3, this 
extracted minimal subnetwork shares 631 nodes and 2,581 
edges with the 259 seeds. The average shortest path distance 
was 3.12, which was significantly smaller than the mean 
shortest‑path distance (5.13; empirical P<0.01). Similarly, the 
average clustering coefficient of the OS specific network was 
significantly higher than that of the random networks (0.052 
vs. 0.013; empirical P<0.001). These results indicate that the 
extracted OS‑specific network is a non‑random network. 
Therefore, it is proposed that the remaining 372 genes (listed 
in Table II) are un‑identified genes that may be in involved in 
the OS process. 

The functional modules in the minimal subnetwork were 
also investigated, and two modules were identified. The first 

shares 219 genes (listed in the Table II). For this module, the first 
three annotations were for the positive regulation of cellular 
metabolic processes (P=1.69x10‑70), the positive regulation of 
metabolic processes (P= 6.23x10‑68) and the positive regula-
tion of transcription from the RNA polymerase II promoter 
(P=1.51x10‑65). The second consisted of 9 genes (AGTR2, 
GIP, GIPR, HTR2B, SNTA1, TIMP3, NMU, ERBB2IP and 
LNX1). This third gene annotations were for the regulation 
of secretion (P=5.43x10‑4), the positive regulation of secretion 
(P=6.15x10‑4) and regulation of transport (P=9.79x10‑4), which 
indicated that the modules functions in the regulation of secre-
tion.

Discussion 

In this study, genes associated with the development of OS were 
collected and their biochemical pathway functions enriched. 
Using this, a gene‑interacting network was constructed. In 
doing this, a gene‑interacting framework was developed and 
>300 potential OS‑related genes were identified for further 
research.

Identifying the biochemical pathways that the OS‑related 
genes are involved in will provide an insight to promote the 
understanding of OS. In the 58 pathways identified, the top 
three pathways are involved in extracellular matrix metabo-
lism, the cytokine and cytokine receptor network, and in Wnt 
signaling. Further to this, it was found that all 58 pathways are 
involved in cross‑talk and constitute a module. These findings 
suggest that pathways function in a concerted manner and not 
independently, which is supported by other studies (22‑24). For 
instance, Zhang et al (25) reported that lipopolysaccharide acti-
vates the mitogen‑activated protein kinase/Wnt/NF‑κB pathway 
in cultured chondrocytes, and subsequently induces apoptosis. 
This process can be rescued by treatment with calcitonin.

When the networks with cross‑talk were arranged based 
on the closeness centrality of every pathway, it was found 
that the maximum closeness value was from the ‘ensemble 
of genes encoding extracellular matrix and extracellular 

Table II. Continued.

C, Genes in the main module extracted from the OS specific network

ETS1, ETS2, MECOM, FLNA, FOS, FTH1, NR5A1, XRCC6, GATA2, NR3C1, GSK3B, HDAC1, HDAC2, HIF1A, HNRNPA1, 
HSPA4, HSPA5, HSPA8, HSP90AA1, HSP90AB1, IRF8, IFNG, RBPJ, IL6, IL10, IL16, IRF1, JUN, JUND, KPNB1, LRP4, 
LTA, SMAD2, SMAD3, SMAD4, MARK3, MCM3, MDM2, MECP2, MEF2C, CIITA, MID1, MMP2, CD200, MYC, 
MYO5A, MYOD1, NF1, NFATC1, NFKB1, NFKB2, NME1, NOS2, NOS3, NPM1, P2RX1, P4HB, SERPINE1, PBX1, PCNA, 
PGR, PHB, POLR2A, POU2F1, PPARG, PPP2CA, PRKDC, MAPK1, PRL, PSMA6, PSMA7, PSMC3, PSMC4, PSMC5, 
PSMD1, PSMD11, PTHLH, PTH1R, PTMA, RB1, REL, RELA, RNF4, RXRA, ATXN1, CCL2, CCL7, SFTPD, SGK1, SKP2, 
SMARCA4, SUMO2, SNCA, SOD1, SOD2, SOX4, SOX9, SP1, SPI1, SPTBN1, SRC, SREBF1, STAT1, STAT5A, STAT6, 
TBP, TCF3, TERT, TFAP2A, TLR4, TNF, TNFRSF1B, TP53, HSP90B1, TRPS1, TWIST1, UBE2I, UBE3A, SUMO1, USF1, 
USF2, VCP, VDAC1, VDAC2, VDR, VEGFA, XPO1, XRCC5, YY1, YWHAH, YWHAZ, ZBTB16, PRDM2, TUBA1A, 
CXCR4, SHFM1, FOSL1, HIST1H4E, PIAS1, NCOA1, EIF3F, RIPK2, HDAC3, KAT2B, SLC9A3R1, NCOR1, HDAC4, 
MED24, NR1I3, RBX1, HDAC6, HDAC5, NR1H3, STUB1, TUBA1B, HAX1, NCOA2, CTCF, YWHAQ, COPS5, NCOA6, 
TAB2, SIRT1, FGF20, TBK1, NOX4, WNT16. SOX6, CAND1, UGGT1, UBQLN4, SQRDL. WNK4, TUBB 

OS, osteoporosis; OSgset, OS‑related genes gene set.
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matrix‑associated proteins’ pathway. Thus, it is suggested 
that the aforementioned pathway lies in the central locus 
of the network. On the contrary, the minimum value was from 
the ‘metabolism of steroid hormones’ pathway. Thus, it was 
proposed that abnormalities in the extracellular matrix plays 
an important role in the development of OS and that steroid 
hormones affect OS development in an indirect manner.

In the 58 pathways identified, the pathway enriched as 
‘breast cancer’ is of interest as it shares 22 genes with the 
OSgset. It has been noticed that survivors of breast cancer 
often suffer from OS (26). One explanation for this is that 
many survivors of breast cancer experience a loss of ovarian 
function and a drop in estrogen levels due to chemotherapy or 
surgery, which promotes the development of OS (27). Another 
explanation is that breast cancer cells can secrete γ‑secretase, 

cyclooxygenase‑2 and interleukin‑8, promoting the process 
of osteoclastogenesis (28,29). Based on the results presented 
here, it is suggested that OS and breast cancer may share a 
similar genetic background.

Notably, >300 potential genes were found in the OS‑specific 
network presented here. It is predicted that these genes are 
potential candidates for further research into the molecular 
mechanism of OS. For instance, the receptor tyrosine‑protein 
kinase ERBB2 interacting protein (ERBB2IP) binds to 
unphosphorylated ERBB2 protein and regulates ERBB2 func-
tion and localization (30). In addition, it can also disrupt the 
Ras‑Raf interaction and affect the Ras signaling pathway (31). 
As the Ras‑Raf signaling pathway participates in bone 
metabolism (32), it is possible that ERBB2IP is involved in 
the development of OS. Thus, the extracted network outlines 

Figure 3. Osteoporosis (OS)‑specific network map. The OS‑specific network was extracted from the listed comprehensive human interactome network by 
solving the Steiner minimal tree problem using OmicsNet with 631 nodes and 2,581 edges. The network map was displayed according to the closeness 
centrality in an ascending order. The minimum closeness value was that of NMU and the maximum closeness value was that of UBC. OS, osteoporosis; NMU, 
neuromedin U; UBC, ubiquitin C.
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a portrait of OS, and additionally identified a number of genes 
for future study.

A module is defined as having more connections 
within than the average number of connections across the 
entire network, which indicates that the genes involved in 
a module share the same biological function. In this study, 
two modules were extracted from the OS‑specific network. 
The first consisted of 219 genes directly involved in bone 
metabolism. However, the second module, which includes 
nine genes and is annotated as ‘regulation of secretion’, is 
more attractive. Among these genes, neuromedin U (NMU), 
gastric inhibitory polypeptide (GIP), GIPR, AGTR2 and 
HTR2B have been confirmed to be involved in the process of 
OS. It has been reported that GIP (a gut hormone) promotes 
bone anabolism as an entero‑osseous hormone by stimu-
lating osteoblast differentiation and increasing osteoblast 
longevity  (33). In addition, GIP attenuates the activity of 
osteoclastic cells, leading to a net increase in bone deposi-
tion and ultimately increasing bone mass (33). NMU is an 
anorexigenic neuropeptide that acts independently of leptin 
through poorly defined mechanisms. Physiological and 
cell‑based assays indicate that NMU acts in the central 
nervous system, rather than directly on bone cells, to regulate 
bone remodeling (34). It has also been reported that NMU 
promotes small intestinal transit, and that NMU deficiency 
results in a lowered intestinal motility rate and diminishes 
the effect of serotonin‑induced defecation and diarrhea (35). 
Based on these facts, a ‘neuro‑entero‑osseous’ model is 
proposed: The proteins α1‑syntrophin, 5‑TH2B and ANGII 
affect the activity of neurons in the gastro‑interstitial tissue, 
alter the secretion of GIP, and influence bone metabolism. 
Due to a lack of experimental and clinical data supporting 
the role of other genes in this extracted module, a detailed 
mode of action cannot yet be given. Therefore, more experi-
mental studies are required in the future.

It is difficult to diagnose or treat OS based on the analysis 
of all these potential genes. However, it is hypothesized that 
further studies examining these genes would be of valuable. It 
is further hypothesized that these genes may serve as a diag-
nostic test for OS and as drug targets in the future. 

At least two studies have applied bioinformatic and 
computational methods to study OS. Qin et al (11) investi-
gated OS‑associated SNPs and genes identified by GWAS, 
and found a number of SNPs that may influence the binding 
affinity of transcription factors (NFATC2, MEF2C, SOX9, 
RUNX2, ESR2, FOXA1 and STAT3) and miRNAs. In 2018, 
Sheng  et  al  (36) proposed a computational workflow to 
curate and evaluate OS related genes, and they emphasized 
the important role of OS‑related genes, including TGFB1, 
IL6, IL1B, TNF, ESR2, IGF1, HIF1A, COL1A1 and IFENG. 
In comparison with these studies, the work presented here 
focuses on the relationship between known genes and suggests 
a number of unknown genes that may be involved in the 
process of OS.

In summary, this study revealed the pathways of all 
currently known genes in OS and the crosstalk between these 
pathways. Based on this analysis, a mechanism of OS for 
proposed. Additionally, in excess of 300 genes not currently 
associated with the development of OS have been identified. 
Therefore, this study increases the understanding of the 

contribution of genetic factors to OS and identifies genes for 
further investigation.
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