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Abstract: The optimization of metabolic reaction modifications for the production of target com-
pounds is a complex computational problem whose execution time increases exponentially with the
number of metabolic reactions. Therefore, practical technologies are needed to identify reaction dele-
tion combinations to minimize computing times and promote the production of target compounds
by modifying intracellular metabolism. In this paper, a practical metabolic design technology named
AERITH is proposed for high-throughput target compound production. This method can optimize
the production of compounds of interest while maximizing cell growth. With this approach, an
appropriate combination of metabolic reaction deletions can be identified by solving a simple linear
programming problem. Using a standard CPU, the computation time could be as low as 1 min per
compound, and the system can even handle large metabolic models. AERITH was implemented in
MATLAB and is freely available for non-profit use.

Keywords: FBA; metabolic model; optimization; AERITH

1. Introduction

Microorganism synthetic biology has been exploited to produce a variety of useful
compounds [1–3]. In synthetic biology, genome-scale metabolic models (GEMs) are among
the most powerful tools for the modification of intracellular metabolism with the aim of pro-
ducing high amounts of useful chemicals. GEMs have been developed in several species [4],
and they are available in public databases such as BiGG Models [5] and BioModels [6].

Flux balance analysis (FBA) is often used to modify cellular metabolism for the pro-
duction of target compounds based on a GEM [7]. Concretely, FBA constrains metabolic
networks based on the stoichiometry of metabolic reactions, and it does not require kinetic
information. Using this approach, target compound yields are optimized by linking cell
growth to the production of the target compound, thus maximizing both cell growth and
target compound production. To achieve this, genetic modification of cells, including gene
knockout and gene upregulation and downregulation, is necessary. The FBA is commonly
combined with in silico screening to narrow down the candidate genes for genetic mod-
ification and decrease computation times, and various algorithms have been proposed
for this purpose [8–13]. Among these approaches, OptKnock [14] is the most commonly
used screening algorithm in both academia and industry, and it has been used to optimize
the metabolism of various useful compounds produced by microorganisms [15–18]. This
method is based on a bi-level linear programming approach and involves discrete decisions
on reaction knockouts with binary variables, resulting in mixed integer linear programming
problems (MILPs). This method can theoretically identify the most promising reaction
knockout to achieve the highest target production yield among all possible sets of reaction
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knockouts. However, the number of reaction combinations increases exponentially as the
total number of reaction knockouts increases, resulting in prohibitively long computation
times. Therefore, the maximum number of reaction knockout candidates must be selected
in advance to effectively implement this strategy. Realistically, several knockouts and
approximately 100 candidates must be screened in advance for reaction defects. To achieve
this, the FastPros algorithm, which introduces the concept of shadow pricing, excludes
metabolic reactions that are not expected to affect the production of the target compound
from the search using the iAF1260 model of Escherichia coli [19] paired with the OptKnock
algorithm [20]. This enables the identification of effective combinations of more than
10 metabolic reaction deletions. Additionally, genetic design through branch and bound
(GDBB), a heuristic approach that applies a branch-and-bound algorithm, is incorporated
into the bi-level optimization framework used in OptKnock to identify near-optimal solu-
tions in a matter of seconds or minutes instead of days or even longer [21]. Nevertheless,
the bi-level optimization of the FBA model must be converted into a single-level MILP
problem by introducing a dual problem to solve the complex MILPs. To perform these
complex calculations and obtain accurate solutions, dedicated and commercial solvers
are often required (CPLEX, ILOG Inc. [22], Gurobi Optimization [23]). In any given envi-
ronment, cells are constantly adapting to maximize their growth; however, this does not
necessarily maximize the production of target compounds. In fact, it is often the case that
the production of the target compound and growth maximization cannot be confirmed
using a combination of reaction defects obtained by executing OptKnock. Therefore, a
combination of reaction defects that render the desired compound should be proposed
using only growth maximization as the objective function.

In this study, we developed an algorithm to identify candidate reaction deletions that
can potentially result in the production of large amounts of a target compound by simply
iterating single-level linear programming problems. Furthermore, the proposed algorithm
can be easily implemented using freely licensed solvers such as glpkmex. The iJO1366 GEM
(i.e., a representative Escherichia coli GEM) was used to evaluate the effectiveness of the
proposed algorithm for the production of various useful compounds.

2. Materials and Methods
2.1. Genome-Scale Metabolic Model (GEM)

The iJO1366 GEM [24] of E. coli was used as a metabolic model to validate and evaluate
the algorithm developed in this study. Before executing the proposed algorithm, the
reactions that were not deletion candidates, according to in silico screening, were removed.
See Sections 2.2 and 2.3 for more details on the computational calculation methods used here.
Reactions associated with intracellular cytosol exchange and periplasmic space for transport
were excluded as candidates for deletion. In contrast, the ABC system-based transport
reaction, which was identified as a gene–protein reaction (GPR), and the phosphotransferase
system (PTS) reaction were identified as candidates for deletion. The reactions that were
not identified as deletion candidates are summarized in Supplementary Table S1. Of a total
of 2583 reactions in the iJO1366 model, 1688 reactions, excluding 895 reactions related to
transport, were considered deletion candidates for in silico screening.

2.2. Flux Balance Analysis

Metabolic design was conducted using constraint-based FBA in this study. Con-
structing a mathematical model for metabolic networks enabled the prediction of various
functional metabolic states. Assuming that intracellular metabolism is in a pseudo-steady
state, the rate of production and consumption of each intermediate metabolite was con-
sidered to be equal and therefore intermediate metabolites were not accumulated. Model
constraints were then established, including specifying the range of possible solutions for
each metabolic reaction flux.
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M
∑

j=1
Sijvj = 0 ∀i ∈ N

vglc_uptake ≤ GURmax

vo2_uptake ≥ OURmin

vatp ≥ NGAM

vgrowth ≥ µmin

vupperbound ≥ vj ≥ 0 ∀j ∈ Mirrev

vupperbound ≥ vj ≥ vlowerbound ∀j∈Mrev

(1)

where S represents a stoichiometric matrix in which Sij corresponds to the stoichiometric
coefficient of metabolite i in reaction j; vj represents the flux of reaction j; and M and N are
the reaction and metabolite sets, respectively; vglc_uptake, vo2_uptake, vatp, and vgrowth are the
glucose uptake rate, oxygen uptake rate, ATP requirement for cell vitality, and growth rate,
respectively; Rirrev and Rrev are the irreversible and reversible reaction sets in the metabolic
model, respectively; and GURmax and OURmin are the maximum glucose uptake and oxygen
uptake rates, respectively. GURmax was set to 10 mmol/gDCW/h to compare the results
calculated in this study with those in other studies. OURmin was set to the OUR value
obtained by executing the FBA with the target compound as the objective function. NGAM
represents non-growth-associated ATP maintenance, and was set at 3.15 mmol/gDCW/h
as described in a previous study [24]. µmin is the minimum value of the specific growth rate,
which was set to 0.05 h, as described by Ohno et al. [20]. Using these constraint equations,
an objective function was established to conduct linear programming problem calculations
and obtain the solution for each metabolic flux.

2.3. In Silico Screening

The following evaluation equation was introduced to rapidly screen for candidate
deletions in metabolic reactions:

chgj =

∣∣∣vTmax
j

∣∣∣− ∣∣∣vGmax
j

∣∣∣∣∣∣vGmax
j

∣∣∣ (2)

where vj
Tmax is the flux value when the objective function is set to the target compound and

FBA is executed; vj
Gmax is the respective flux value when the objective function is set to the

biomass growth rate and FBA is executed. To avoid alternative production fluxes acting as
indeterminate solutions, the production flux of the target compound was maximized with
the biomass growth rate, which was fixed at its maximum value. Specifically, the element
corresponding to the production of the target compound in a column array containing the
objective function coefficients was set to 10−5. chgj can be defined as the rate of change in
the flux value of reaction j when the target compound is used as the objective function, as
compared with that when the biomass growth rate is used as the objective function. chgj
can take the following values, with −1 being the minimum value:

chgj = −1 : vTmax
j = 0∧ vGmax

j 6= 0

−1 < chgj < 0: vTmax
j 6= 0∧ vGmax

j 6= 0,
∣∣∣vTmax

j

∣∣∣ < ∣∣∣vGmax
j

∣∣∣
chgj = 0: vTmax

j = vGmax
j

chgj > 0: vTmax
j > vGmax

j

when vj
Gmax is zero, vj

Gmax is set to 10−6 to prevent zero division.
As chg approaches its minimum value of −1, the corresponding metabolic reaction

is more likely to be a candidate for deletion. However, for reactions that are used for cell
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synthesis, the value of chg is always greater than −1 because vj
Tmax can never be zero. To

allow for the deletion of reactions that are preferentially used for cell synthesis but are not
essential for cell growth, the following index was introduced:

kor = r× chgmin, 0 < r ≤ 1

From the above equation,

chgmin ≤ chgj ≤ kor

A reaction j with the minimum value of chgj satisfying this condition was selected as
a candidate for the deletion reaction. When the chg values were the same, the one with
the highest vj

Gmax was selected as the deletion candidate. In this study, all calculations
were conducted using an r value of 0.95. The constraint condition expressed by vj = 0
was added to the constraint equation in Equation (1) and FBA was performed with the
objective function set to the target compound and biomass growth rate. On the basis of
the calculation results, a new chg was calculated using Equation (2), after which the next
candidate for the deletion reaction was selected. A set of deletion reactions in which the
production flux of the target compound increased and approached the theoretical maximum
value (vTmax) was thus obtained by repeating the simple linear program described above.
The above-described iterative algorithm using single-level LP is shown in Figure 1. The
proposed algorithm was named AERITH: algorithm of efficient reaction identification
for target compounds with high productivity. The Cobra toolbox [25] was used to load
the GEM before running AERITH, and all calculations, including linear programming
problems, were performed using the GNU Linear Programming Kit [26] and MATLAB
2020a (MathWorks, Inc., Natick, MA, USA).
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Figure 1. AERITH algorithm for target compound production. The objective function was set to
maximize biomass growth and target compound, and two types of FBAs were performed. The value
of chg was calculated for each calculated flux, after which the next deletion candidate was selected.
vj

k represents the kth deletion reaction and was added as a constraint to the FBA. yob j represents the
minimum production flux of the allowed target compound.



Biomolecules 2022, 12, 620 5 of 11

3. Results and Discussion

To evaluate the AERITH algorithm proposed herein, calculations were performed for
each of the 81 compounds whose production could be confirmed using the iJO1366 model.
These compounds were those for which FBA was performed using the compounds de-
scribed as exchange fluxes in the model as the objective function, after which positive
values were confirmed. The 81 compounds, their theoretical maximum production flux
values, and the OURmin values are summarized in Supplementary Table S2. In this study,
the upper bound of the exchange flux other than the targeted compound was set to zero.
When AERITH was run without this condition, for example, 1,2-propanediol, hexanoate,
or L-alanine were mainly produced, and sometimes no reaction-deficient combinations
were proposed for the production of the target compounds. These compounds are not
naturally produced by E. coli, i.e., they can only be produced by artificially enhancing genes
related to their biosynthetic pathways [27–31]. Therefore, it is logical not to consider the
conditions under which these compounds are produced naturally in the course of calcula-
tions to maximize growth. On the contrary, for the compounds known to be produced by
E. coli, such as succinate, ethanol, formate, acetate, D-lactate [32–34], urea [35], hydrogen
sulfide [36], and citrate [37], the upper bound of the exchange flux was set to 1000 (colored
red in Table S2). The upper bound of the exchange flux of carbon dioxide was also set to
1000 for all calculations. Reaction deletions were not explored for 18 of the 81 compounds.
Furthermore, for five of these eighteen compounds, a set of deletions that promoted target
compound production could be identified when the r value was decreased from 0.95 to
0.90 (Supplementary Table S3). The more reaction deletions accumulated, the narrower
the solution space of FBA became. By changing the parameter of r, one of the factors that
determines the parameter chg, other varieties of combinations of reaction deletions for a
target production can be found. There is no relationship between varying the r value and
the set of reaction deletions obtained, but by setting the appropriate r value, a combination
of fewer reaction deletions for high production of a target compound can be found. A set
of proposed reaction deletions was summarized for each of the 68 compounds that sponta-
neously produced the target compound while maintaining growth maximization conditions
(Supplementary Table S4). Effective combinations of reaction deletions for a metabolic
model with more than 2000 reactions (such as iJO1366) were successfully obtained. The
computation time required to identify the deletion combinations for a target compound was
approximately 1 min, which was considerably shorter than that of the OptKnock method.
Additionally, we were able to easily search for combinations of deletions in more than
20 reactions, which is more than the number of combinations that can be searched using
OptKnock alone. The yield of each compound obtained by the combination of reaction
deletions from AERITH execution was then determined by calculating the ratio of the
maximum production flux of the target compound during AERITH execution to the flux of
the target compound according to FBA, when the objective function was set to the target
compound (maximum theoretical yield; Figure 2). The maximum number of compounds
that could achieve more than 90% of the theoretical yield was 22. Furthermore, the number
of compounds for which a set of deletions achieved more than 50% of the theoretical yield
exceeded 80% of all target compounds (52/63 compounds), as demonstrated via piling
curve analysis. The reactions of the required deletions were analyzed for the production
of these 52 compounds. The number of reactions to be deleted for the production of these
compounds was only 189, compared to 1688 for all candidate reactions (Supplementary
Table S5). Additionally, the frequency of selection of 32 reactions of 189 reactions accounted
for more than 50% of the total likelihood of being selected as deletion candidates. The top
32 types are illustrated in Figure 3. Deletion of the reactions involved in the synthesis of lac-
tic acid (LDH_D, PYK, POR5), ethanol (PFL, PDH, ALCD2x, ALDD2x, ALDD2y), acetic acid
(PFL, ACKr, ACALD, PDH), and succinic acid (FRD2, MDH, ASPT, FRD3) promoted the
production of various compounds in E. coli. These compounds were byproducts produced
specifically in oxygen-limited E. coli cultures. The reactions involved in the degradation
and regeneration of ATP (PPK, RNTR1c2, ADK1) and those involved in redox reactions
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(NADTRHD, NADH17pp, NADH16pp, NADH18pp, and FLDR2) were also frequently
selected as candidates for deletion, indicating that these reactions contribute to the supply
of ATP and reducing power (NADH and NADPH), the latter of which acts as a cofactor
for the production of target compounds. Although the OptKnock-based metabolic design
method requires narrowing down the candidate reactions to be deleted [14], the inclusion
of the 189 candidate reactions identified in this study may facilitate the identification of
effective candidates for deletion when executing OptKnock.
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Figure 2. Distribution of the number of compounds that achieved production yield (left axis) and
piling frequency (right axis) upon executing the AERITH algorithm. The percentage of yields that can
be achieved with the combination of the deletion reactions is represented in units of 10% with respect
to the theoretical production yields of each compound (Supplementary Table S2). The frequencies of
the number of compounds satisfying these yields and the frequencies by accumulation from high
productivity are also shown.
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Figure 3. Top 32 reactions that were most frequently identified as candidates for deletion in the
production of target compounds and their respective frequencies. A total of 32 reactions were selected
in order of frequency of selection of 189 reactions that could have potentially been deleted for the
production of 52 compounds. For example, the deletion of pyruvate-formate lyase (PFL), which
was observed at the highest frequency, was required for 40 of the 52 compounds. The abbreviations,
descriptions, and reactions are the same as in the iJO1366 model [24].

The effectiveness of this algorithm was compared with that of other similar tools.
Specifically, the results for acetate and succinate production using the iAF1260 model of
E. coli were compared with those of GDBB (Table 1), a method developed by Egen and
Lun [21], which can be used to rapidly search for many combinations of reaction defects
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in combination with OptKnock. In terms of acetate production, the method proposed in
this study successfully identified highly productive reaction combinations by implement-
ing three reaction deletions, and a higher yield could also be achieved with 17 reaction
deletions than that of the GDBB method. The production yield of acetic acid was 88%
(23.87/27.08). Furthermore, compared with the GDBB method, our proposed method
successfully identified combinations of reaction deletions that were more productive under
conditions of high growth rate. Therefore, the use of the proposed reaction-deficient strain
in this method is expected to result in higher production per culture volume. Succinate
production could not be confirmed with one or two reaction deletions using the proposed
method in this study. In contrast, the GDBB method predicted instances with relatively
high production yields based on one reaction deletion. This is because the GDBB approach
uses bi-level optimization to maximize not only growth but also succinate production,
while the method proposed in this study only maximizes growth. The byproducts ethanol
and D-lactic acid were produced by deleting one and two reactions, while succinic acid
production was observed only after deleting the three reactions involved in the synthesis of
these two byproducts (Supplementary Table S6). Furthermore, the method proposed in this
study is effective when the number of deletions is large, whereas OptKnock-based in silico
screening is only effective for a small number of deletion combinations. For example, by
removing five reactions, it was expected that both growth rate and production yield would
be higher than those with GDBB. Additionally, the deletion of seven reactions enabled this
method to achieve a succinic acid theoretical yield of 98% (14.14/14.49). Moreover, the
results obtained with the method proposed herein were comparable with the results ob-
tained by combining FastPros and OptKnock, as described by Ohno et al. [20]. A metabolic
design with 10 reaction deletions was proposed for the optimization of L-Phe production.
In this study, a metabolic design that favored L-Phe production was obtained by combining
deletions in eight reactions (Table 2). The FastPros/OptKnock-based method achieved a
L-Phe productivity of 58% of the theoretical yield, whereas our proposed method reached
86%. Additionally, the FastPros method required several hours to complete the necessary
calculations, whereas our method successfully identified deletion combinations in less than
a minute. To rule out the algorithm in this study being effective for the iJO1366 model of
E. coli by chance, we further confirmed its effectiveness by implementing it for the following
compound production models and comparing the results with those of Optknock [16,38,39].
The results for the E. coli model iJR904 with an additional 1,4-butanediol synthetic pathway
are shown in Table S7, the results for the Synechocystis sp. PCC 6803 model iJN678 with
a butanol biosynthesis pathway are shown in Table S8, and the results for 2,3-butanediol
production using Saccharomyces cerevisiae model iMM904 are summarized in Table S9.

It is important to state both the reduction in computation time and the validity of the
deletion sets obtained from the execution of the algorithms in this study for real production.
In the production of succinic acid in E. coli, the algorithm used in this study predicts high
production with five deletions in PFL, PDH, LDH_D, G6PDH2r, POX (11.647/14.489 of
ideal yield) (see Table S6). This prediction is similar to the combination of six reaction
deletions (ldhA, adhE, ackA, pflB, mgsA, and poxB) in succinate-producing strains shown
in real experiments [40]. PFL corresponds to pflB, LDH_D to ldhA, and POX to poxB,
respectively. PDH deletion stops the supply of pyruvate to acetyl-CoA, which is considered
to be equivalent to a defect in acetic acid (ackA) and ethanol (adhE), which are synthesized
from acetyl-CoA. Although the algorithm did not predict the possibility of lactic acid
production bypassed by the mgsA reaction, it could be said that the algorithm was able
to propose a combination of reaction deletions similar to an actual high-producing strain.
A comparison of the deletion reactions performed for the construction of 2,3-butanediol-
producing yeast [39] with the candidate deletions obtained with this algorithm showed
interesting results. Ng et al. [39] constructed strains based on a combination of reaction
deletions derived in Optknock and subsequently performed the corresponding reaction
deletion because glycerol by-production was observed experimentally. This algorithm
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was able to predict the phenotype by accumulating the reaction deletions, and was able to
propose the need for the reaction deletion (G3PD1ir, see Table S9).

Table 1. Comparison between the results obtained using the method proposed in this study and the
method described by Egen and Lun [21] for the production of acetate and succinate. The number of
knockouts and the growth and production fluxes of the target compounds are described below. See
Supplementary Table S6 for details of the deletion reactions.

Target Number of
Knockouts This Study Egen and Lun [21]

Biomass Flux (/h) Target Flux
(mmol/gDCW/h) Biomass Flux (/h) Target Flux

(mmol/gDCW/h)

Acetate 1 0.34 11.14 0.12 12.10
2 0.31 7.42 0.13 13.79
3 0.26 16.14 0.05 15.12
8 0.26 16.58 0.05 19.23

17 0.11 23.87 - -
Succinate 1 0.47 0.00 0.12 9.04

2 0.36 0.00 0.10 9.26
3 0.23 7.31 0.10 9.36
4 0.22 6.68 0.06 9.60
5 0.12 11.65 0.07 10.49
6 0.12 11.65 0.09 10.61
7 0.07 14.14 0.06 11.26
8 0.07 14.22 0.07 11.53
9 0.06 14.40 0.06 11.66

10 0.06 14.40 0.06 11.74
11 0.06 14.41 0.06 12.00
12 0.05 14.43 0.06 11.91
13 0.05 14.43 0.05 12.01
14 0.05 14.43 0.05 12.01
15 0.05 14.43 0.05 12.02
16 0.05 14.43 0.05 12.04

Compared with the OptKnock-based method, the method described in this study
showed a stepwise decrease in growth by selecting one deletion reaction. Moreover, target
compound yields could also be improved. Therefore, researchers can select the appropriate
combination of reaction deletions that satisfy the desired growth and productivity, after
which bacterial strains can be developed for downstream experimental phases. This
method tends to have a relatively large number of candidate deletion reactions because it is
a stepwise method to increase the production of the target compound. When constructing
the strain, the number of reaction deletions required may be reduced by evaluating relevant
phenotypes via gene expression analysis [41,42], protein expression analysis [43,44], or flux
analysis [45,46]. In recent years, an increasing number of studies have focused on designing,
building, and testing microbial cells based on synthetic biology for the systematic and
high-throughput production of desired compounds. Additionally, biofoundries have been
established worldwide to make these efforts possible [47]. Given the importance of in silico
design for the accurate development of useful microorganisms, the methods proposed in
this study are expected to contribute greatly to the field of synthetic metabolic design.
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Table 2. List of reaction deletions proposed by Ohno et al. [20] and those proposed in this study
for the production of L-Phe. Both methods proposed three reaction deletion candidates in common.
In addition to these three reactions, a minimum of four reactions required deletion in this study to
confirm the production of L-Phe, with a production flux of 1.54 mmol/gDCW/h and a productivity
of 36% of the maximum theoretical yield. Further deletion of transketolase (TKT1) was found to
result in a production flux of 3.67 mmol/gDCW/h with an 86% yield.

This Study Ohno et al. [18]

Knockout Reaction Target Flux
(mmol/gDCW/h) Knockout Reaction Target Flux

(mmol/gDCW/h)

Common 3 reactions

3 reactions

ALCD2x Alcohol
dehydrogenase

PPC Phosphoenolpyruvate
carboxylase

PYK Pyruvate
kinase

Different 5 reactions 7 reactions

PFL Pyruvate-formate
lyase F6PA

Fructose
6-phosphate

aldolase

LDH_D D-lactate
dehydrogenase G6PDH

Glucose
6-phosphate

dehydrogenase

ADK1 Adenylate
kinase PGCD Phosphoglycerate

dehydrogenase

PPK Polyphosphate
kinase

1.54 (36 %) GLYCD Glycerol
dehydrogenase

TKT1 Transketolase 3.67 (86 %) PTA Phospho-
transacetylase

NDH NADH
dehydrogenase

GLCNt Gluconate
transporter

2.46 (58 %)

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom12050620/s1, Table S1: Reactions not identified as deletion
candidates; Table S2: Eighty-one compounds, their theoretical maximum production flux values,
and their minimum oxygen uptake rate values; Table S3: A set of deletions that promoted target
compound production were identified when the r value was decreased from 0.95 to 0.90; Table S4: A
set of proposed reaction deletions for each of the 68 compounds that spontaneously produced
the target compound while maintaining growth maximization conditions; Table S5: A list of the
number of reactions to be deleted for the production of compounds; Table S6: Results of running
AERITH for acetic acid and succinic acid production, respectively; Table S7: Comparison of the
results of implementing AERITH and Optknock for the E. coli model iJR904 with an additional
1,4-butanediol synthetic pathway; Table S8: Comparison of the results of implementing AERITH and
Optknock for the Synechocystis sp. PCC 6803 model iJN678 with a butanol biosynthesis pathway;
Table S9: Comparison of the results of implementing AERITH and Optknock for 2,3-butanediol
production using Saccharomyces cerevisiae model iMM904.

https://www.mdpi.com/article/10.3390/biom12050620/s1
https://www.mdpi.com/article/10.3390/biom12050620/s1
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