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Abstract
Sand production and blockage are common during the drilling and production of horizontal

oil and gas wells as a result of formation breakdown. The use of high-pressure rotating jets

and annular helical flow is an effective way to enhance horizontal wellbore cleanout. In this

paper, we propose the idea of using supercritical CO2 (SC-CO2) as washing fluid in water-

sensitive formation. SC-CO2 is manifested to be effective in preventing formation damage

and enhancing production rate as drilling fluid, which justifies tis potential in wellbore clean-

out. In order to investigate the effectiveness of SC-CO2 helical flow cleanout, we perform

the numerical study on the annular flow field, which significantly affects sand cleanout effi-

ciency, of SC-CO2 jets in horizontal wellbore. Based on the field data, the geometry model

and mathematical models were built. Then a numerical simulation of the annular helical flow

field by SC-CO2 jets was accomplished. The influences of several key parameters were

investigated, and SC-CO2 jets were compared to conventional water jets. The results show

that flow rate, ambient temperature, jet temperature, and nozzle assemblies play the most

important roles on wellbore flow field. Once the difference between ambient temperatures

and jet temperatures is kept constant, the wellbore velocity distributions will not change.

With increasing lateral nozzle size or decreasing rear/forward nozzle size, suspending abil-

ity of SC-CO2 flow improves obviously. A back-propagation artificial neural network (BP-

ANN) was successfully employed to match the operation parameters and SC-CO2 flow

velocities. A comprehensive model was achieved to optimize the operation parameters

according to two strategies: cost-saving strategy and local optimal strategy. This paper can

help to understand the distinct characteristics of SC-CO2 flow. And it is the first time that the

BP-ANN is introduced to analyze the flow field during wellbore cleanout in horizontal wells.
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1. Introduction
Sand production is the result of formation breakdown. In horizontal wells, unexpected forma-
tion breakdown occurs when 1) the drilling fluid pressure exceeds the fracture pressure of for-
mation; 2) the flowing bottom hole pressure is too low (or equivalently, the flow rate is too
high) during production. Well cleanout shall be done when sand production is severe. Water
jets are used extensively in conventional horizontal wellbore cleanouts to break up consolidated
sand deposits and sweep away solids. In horizontal wells, the flow direction is perpendicular to
the gravity, so the sands have a tendency to settle down, resulting in low cleanout efficiency or
even worse troubles such as stuck-pipe [1]. Over the past years, several improved cleanout
techniques, such as wiper tripping and sand vacuuming [2], have been developed. Among
these techniques, the helical flow approach, which applies partial high-pressure jets to generate
spiral flow in annulus, has been verified to be efficient by simulations and field applications [3–
6]. Compared to the conventional method, the annular helical flow approach has better perfor-
mance at suspending and transporting solids [7–8]. Experiments have been conducted to illus-
trate the influences of operational parameters, including fluid properties, pumping rate, and
borehole diameter, on cleanout efficiency in inclined wells [9–12]. Song et al. analyzed the
mechanism and characteristics of helical flow in horizontal well cleanout with water-based flu-
ids [2].

Since the last decade, SC-CO2 has been regarded as a promising new drilling fluid in the oil
and gas industry [13,14,16,17]. It has some preeminent properties, including a liquid-like den-
sity, a low viscosity close to gas and a good diffusion coefficient [13–18], which enables it to
outperform traditional foam and nitrogen fluid in underbalanced drilling. Several models were
developed to calculate the density and viscosity of SC-CO2 both in drilling strings and annuls
based on ambient pressure, temperature and depth, as well as friction loss and jet impact
[13,19]. Field application was also studied to justify the feasibility of SO-CO2 drilling [20].

Although there is few applications of SC-CO2 cleanout thus far, SC-CO2 is considered to be
more suitable than conventional flushing fluid in water-sensitive, low-permeability, and
unconventional reservoirs owing to the advantages of minor damage to the hydrocarbon for-
mations [21]. When performing cleanout, wellbore pressure is the decisive factor of formation
damage. If the wellbore pressure is lower than formation pressure, formation damage due to
flushing fluid invasion shall never happen. In this paper the over-pressure situation is postu-
lated. The advantage of using SC-CO2 under over-pressure condition is that carbon dioxide
will cause less damage compared with water. The general mechanism of formation damage in
water-sensitive, water-wet formation goes like this: firstly, water-based flushing fluid is filtered
into formation next to the wellbore as a result of the positive pressure gradient from wellbore
to formation. Then water induces damage by: 1) causing the expansion, dispersion and trans-
portation of clay (if any), which can block throats or pores; 2) blocking microchannel due to
capillary effect. Both phenomena will increase the skin factor and decrease permeability. On
the other hand, in SC-CO2 washing, the only thing that can filter into formation is carbon diox-
ide, which does not interact with clay and is miscible with oil. Thus, there will be no blocking
and consequently much less damage.

Computational fluid dynamic (CFD) simulation is a reliable method to investigate a com-
plex flow field comprehensively [22,23]. In this paper, the CFD method was used to simulate
the helical flow field in a horizontal wellbore created by directional high-pressure jets. How-
ever, only one set of parameters can be analyzed in a single CFD simulation. In order to opti-
mize the cleanout operation parameters, the complex relationship between parameters and
flow field velocities need to be displayed in such a way that velocities can be output directly
from input parameters. In other words, data analysis and fitting should be carried out.
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There are many intelligence methods that can be applied in data fitting: Genetic Algorithm
(GA) that simulates natural selection and heredity process, Simulated Annealing Algorithm
(SAA) that simulates the stochastic state of solid particles cooling from high temperature, Arti-
ficial Immune Algorithm (AIA) that is based on the biological immunity theory, Artificial Neu-
ral Network (ANN) that simulates the signal transition between neurons, Support Vector
Machine (SVM) et al. Each method has its strength and weakness. For example, ANN is very
efficient at data fitting but over-fit may happen. SVM is a simple but robust tool for data fitting,
especially for small sample and non-linear problems. But it becomes less efficient with large
data size [24,25].

There are some recent progresses in fluid flow analysis using complex network that need to
be addressed. Complex network has enjoyed a noteworthy development in the last decade and
it provides a useful framework to investigate complex systems (in this case, complex fluid
flows) from different perspectives [26–30]. To build a complex network from a complex sys-
tem, system components (flow signals) are represented as nodes while the interactions between
nodes are regarded as edges. In a real complex network, there are ‘community’ structures that
incorporate certain group of nudes. Nodes are compactly interconnected within a community
and the links between communities are sparse. Community detection is of great significance
for clarifying the structure of complex networks. A reliable method for constructing directed
weighted complex network from time series data was established in [26]. The method intro-
duced was a faithful tool to extract the dynamical information from experimental signals in
complex systems. In order to uncover the transitional behavior of slug flow, Gao et al. [27] cal-
culated multivariate pseudo Wigner distribution (MPWD) and the multivariate multiscale
sample entropy (MMSE) for different flow conditions. The results indicated combining the
MPWD and MMSE enabled to reveal the transient and multiscale flow behavior from slug flow
to churn flow. What’s more, charactering the dynamic behavior and flow structure of two-
phase flow, which is a challenging problem of significant industrial importance, can be accom-
plished using complex network. Complex networks with various properties corresponding to
different situations have been successfully built to investigate this issue. In experimental hori-
zontal oil-water two-phase flow, a complex network-based method was proposed to distinguish
complex flow patterns [28]. The results suggested that the community detection in two-phase
flow complex network enabled to objectively distinguish intricate horizontal oil-water flow pat-
terns, while the conventional method based on adaptive optimal kernel time-frequency repre-
sentation (AOK TFR) was invalid. Studies on similar problems have been accomplished with
methods based on complex network: the transitions and nonlinear dynamic behaviors of gas-
liquid flow patterns were quantitatively uncovered based on the distinct topological structures
of multivariate complex networks derived from different flow conditions [29]. A new approach
based on multi-frequency complex network was proposed to uncover the horizontal oil-water
flow structures from experimental multivariate measurements [30]. It was revealed that the
community structures could robustly represent the structural features of different flow pat-
terns. In [31], the vertical upward oil-water two-phase flow, which was a multiscale, unstable
and non-homogenous complex system, was analyzed using a multivariate multiscale complex
network. The results suggested that the clustering coefficient entropy from complex network
could not only indicate the oil-in-water flow pattern transition but also show the dynamic
behavior of vertical two-phase flow. Based on these applications, the ability of complex network
on data analysis of two-phase flow has been fully manifested and it is believed complex network
is highly potential to be applied in other fluid flow analysis.

To effectively analyze and fit the data, the BP-ANN was employed in this paper. BP-ANN
has been applied with great adaptation and generalization to many other applications in petro-
leum engineering. Yu et al. [32] combined an ANN with the genetic algorithm and simulated
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annealing to predict oil reserve quantities based on geological data. Wang et al. built a mathe-
matical model of the main dimensions for self-elevating drilling units by means of BP-ANN
[33]. Kaydani et al. and Irani et al. applied an improved ANN to fit core permeability with well
logging and geological data [34,35]. The prediction of permeability in a homogeneous area can
also be achieved by an ANN with other intelligence algorithms [36]. The bottom hole pressure
was predicted precisely without flow pattern determination in underbalanced drilling by apply-
ing an ANN [37]. Wang et al. made a 9-variable model based on an ANN to select appropriate
deepwater floating platforms [38]. Peng et al. predicted the working life of coiled tubing based
on the BP algorithm of an ANN [39]. El-Abbasy et al. developed an experience-based neural
network model to predict the rate of failure and working conditions for oil and gas pipelines
[40].

Previous cases proved that an ANN shows excellent accuracy when disposing of fitting,
regression and prediction problems. Thus, it can be a feasible method for analyzing simulation
data and predicting flow field features. On the other hand, SVM also seems to be a qualified
method and there have been many comparison studies between ANN and SVM. Though it
seems that in most cases SVM has better performance than ANN [41–47], there are some
cases vice versa [48]. Besides, they can also have similar accuracy under certain circumstance
[49,50]. Thus, in this paper SVM (more specifically, Support Vector Regression, SVR) was also
applied to be compared with BP-ANN in terms of efficiency and accuracy.

The objectives of this paper include are as follows: 1) simulating the SC-CO2 helical flow
field during cleanout; 2) investigating the influence of operation parameters on the SC-CO2

helical flow field; 3) comparing the differences between SC-CO2 helical flow and water flow; 4)
and optimizing the operation parameters employing BP-ANN approach based on the cost-sav-
ing strategy (CSS) and local optimal strategy (LOS).

2. Material and Methods

2.1 Simulation of SO-CO2 helical flow cleanout
2.1.1 Wellbore model. Fig 1 shows a wellbore model with a typical helical flow cleanout

tool [2], with 130 mm (inner diameter) casing and 50.8 mm (outer diameter) coiled tubing. As
shown in Fig 2, nine nozzles are assembled on the jetter, grouped as forward nozzles, lateral

Fig 1. The wellbore model of helical flow cleanout in horizontal wells.

doi:10.1371/journal.pone.0156358.g001
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nozzles and rear nozzles. Each group of nozzles can produce high-pressure SC-CO2 jets during
circulation and has specific functions. Impinging forward, the forward jets are designed to
break up encountered consolidated deposits into floating particles. The lateral jets are not
orthogonal to the casing. Instead, they impact the casing at predefined angles, thus generating
a strong helical flow in the annulus. The rear jets can improve the sweeping efficiency by push-
ing floating solids backward.

The concentric annulus and well bottom are regular geometries where flow field is relatively
stable, so they were meshed by structural grids. In contrast, the flow field is much chaotic near
the exit regions of nozzles. Based on this fact, the whole model was divided and meshed in
three sections, as displayed in Fig 3. Particularly, to characterize the flow field precisely and
accelerate convergence, nine infill frustum grids were added along the initial jet paths. Corre-
sponding boundary types of walls, velocity inlet, pressure outlet and interfaces were defined.

2.1.2 Mathematical models. Governing equations.
Continuity equation

@r
@t

þ @rvx
@x

þ @rvy
@y

þ @rvz
@z

¼ 0 ð1Þ

where vi (i = x, y, z) is the velocity component in the i direction; ρ is fluid density; t is time.

Fig 2. Nozzle assembly and jet orientations of the cleanout bit.

doi:10.1371/journal.pone.0156358.g002

Fig 3. Themeshed wellbore model. The mesh near the nozzle exits are deliberately refined so that
convergence can be accelerated and more precise simulation of the flow field can be achieved.

doi:10.1371/journal.pone.0156358.g003
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Momentum equation
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where gi is the component of gravity acceleration in i direction; @xi is the partial differential in i
direction; μe is effective viscosity; Ri is distributed resistance in i direction; Ti is viscous loss
term in i direction.

Energy equation
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where Cp is specific heat; T0 is total (or stagnation) temperature; K is thermal conductivity;Wv

is the viscous work term; Qv is the volumetric heat source; F is the viscous heat generation
term; Ek is kinetic energy;

Turbulence model. According to the helical characteristics of the flow field, the RNG k−ε
model was chosen to describe the flow field for better performance [6,51], which has a similar
form to the standard k−εmodel:
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where Gk is the generation of turbulence kinetic energy due to the mean velocity gradients; Gb

is the generation of turbulence kinetic energy due to buoyancy; YM is the contribution of the
fluctuating dilatation in compressible turbulence to the overall dissipation rate; αk and αε are
the inverse effective Prandtl numbers for k and ε; Sk and Sε are source terms.

Sate equations. When flowing in annulus, the properties of SC-CO2 are controlled by tem-
perature and pressure. Thus, the state equations of carbon dioxide should also be considered.
In the numerical simulation, the state equation developed by Span and Wagner [52], which is
recommended by NIST, was used to calculate the density and isobaric heat capacity of SC-
CO2. Based on Helmholtz energy, Span-Wagner state equation is a highly accurate reference
equation for the thermodynamic properties of pure carbon dioxide. It can be applied with tem-
perature ranging from the triple-point temperature to 1000 K and a maximum pressure of
2200 MPa.

The Helmholtz energy (A) is the function of two independent variables: density (ρ) and
temperature (T), namely, A = A(ρ, T). Span-Wagner state equation is a function of dimension-
less Helmholtz energy (α), which is given as follows [52]:

aðd; tÞ ¼ Aðr;TÞ
RT

ð6Þ

where δ is dimensionless density (δ = ρ/ρc); τ is inverse dimensionless temperature (τ = Tc/T); ρ
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is the density of CO2, kg/m
3; T is temperature, K; R is the gas constant, kJ/ (kg�K); Tc is the crit-

ical temperature of CO2, K; ρc is the critical density of CO2, kg/m
3.

The dimensionless Helmholtz energy is composed of two parts:

aðd; tÞ ¼ aoðd; tÞ þ arðd; tÞ ð7Þ

where αo is the ideal part of dimensionless Helmholtz energy; αr is the residual part.
The density and isobaric heat capacity (Cp) of CO2 are calculated by equations as follows:
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where p is pressure, kPa.
In addition, the viscosity and thermal conductivity of CO2 are calculated using the model

presented by Fenghour et al, recommended by NIST [53,54]. In this model, viscosity (η) is
divided into two different terms as in Eq 10:

Zðr;TÞ ¼ Z0ðTÞ þ ZRðt; dÞ ð10Þ

where η is the viscosity of CO2, Pa�s; η0 is the viscosity of dilute gas, Pa�s; ηR is the residual part
of viscosity, Pa�s.

The thermal conductivity (λ) is calculated in a similar manner:

lðr;TÞ ¼ l0ðTÞ þ lRðt; dÞ þ lcðt; dÞ ð11Þ

where λ is the thermal conductivity of CO2, W/ (m�K); λ0 is the thermal conductivity of dilute
gas, W/ (m�K); λR is the residual part of thermal conductivity, W/(m�K); λc is the critical
enhancement of thermal conductivity, W/ (m�K).

2.1.3 Simulation parameters. Five main factors influencing the helical flow field were
investigated: nozzle assembly, flow rate, ambient pressure, ambient temperature and jet tem-
perature, as shown in Tables 1 and 2. Ten possible assemblies were applied in the simulation
with flow rates ranging from 10 L/s to 20 L/s. The ambient pressure/temperature indicates the
true vertical depth (TVD) of the well. In this paper, the ambient pressure changes from 10 MPa
to 50 MPa, roughly corresponding to a TVD variation from 1000 m to 5000 m. The jet temper-
ature changes from 353 K to 433 K, and the ambient temperature changes from 333 K to 433
K. Both temperature and pressure are determinants of the physical properties of SC-CO2. The
leakage of CO2 into the formation is ignored.

Table 1. Orifice Diameters of Ten Nozzle Assemblies.

Nozzle diameters, mm No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10

Rear nozzles 3 4 4 4 4 4 4 4 5 6

Lateral nozzles 4 3 4 4 4 4 5 6 4 4

Forward nozzles 4 4 3 4 5 6 4 4 4 4

Forward middle nozzle 5 5 5 5 5 5 5 5 5 5

The total area of nozzles decides the exit velocity of fluid, larger area means smaller exit velocity. The enlargement of a specific type of nozzle will

increase its share of total flow rate but decrease the exit velocity for all nozzles since total nozzle area is increased.

doi:10.1371/journal.pone.0156358.t001
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2.1.4 Simulation setup. The steady flow situation was defined in all simulations. Govern-
ing equations were discretized using second order upwind scheme. The SIMPLE coupling
method was used to solve the equations. To improve computation accuracy, the criterion of
convergence was set as that all residuals fell blew 1×10−5 instead of default value 1×10−3. The
simulations were accomplished using commercial CFD software ANSYS Fluent 14.5. A dia-
gram depicting the whole simulation process is provided as Fig 4. It should be pointed out that
when computation is not converged refining mesh and/or changing numerical method will be
helpful to improve convergence.

2.2 BP-ANNModel
A sophisticated artificial intelligence algorithm, a BP-ANN, is basically a large class of parallel
processing structures that are able to simulate vague and complicated connections between
inputs and target data through the application of many nonlinear processing units called ‘neu-
rons’ [55,56]. The connection between inputs and target data can be ‘learned’ by the neural net-
work after adequate training [57,58]. A three-layer feed-forward neural network with a back-
propagation algorithm can map any nonlinear relationship [59]. A potential problem that
should be noted when using this powerful nonlinear regression method is over-fit. It is possible
that there are some unqualified samples in the data. Over-fit is the match between the errone-
ous inputs and target data that introduces wrong relationships into the model. It will misunder-
stand ‘noise data’ as correct ones, thus impairing the certainty and precision of the connections
between inputs and targets.

In this paper, the tangential velocity (Vt) and the annular velocity (Va) of a SC-CO2 helical
flow field are set to be functions of flow rate, nozzle assembly, ambient pressure, ambient tem-
perature, jet temperature, cleaning distance and radial position (dimensionless radius). A
three-layer BP-ANN (Fig 5) is developed to match the operation parameters with Vt and Va, in
which the transfer functions in the hidden layer are sigmoid, whereas those in the output layer
are linear functions. The input layer consists of 7 neurons that represent the 7 operation
parameters affecting the helical flow field, whereas the output layer has 2 neurons that

Fig 4. Numerical simulation process.

doi:10.1371/journal.pone.0156358.g004

Table 2. Data Set: Simulation Conditions.

Parameter Nozzle assembly Flow rate Ambient pressure Ambient temperature Jet temperature

Upper boundary No.10 20 L/s 50 MPa 433 K 433 K

Lower boundary No.1 10 L/s 10 MPa 333 K 353 K

The simulations cover all the ten potential nozzle assemblies and a large range of parameters in practice.

doi:10.1371/journal.pone.0156358.t002
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represent Vt and Va. The number of neurons in the hidden layer determines how well a prob-
lem can be learned. If there are too few neurons, the network will be more generalized than
necessary and fail to learn the specific patterns very well. Otherwise, if there are too many neu-
rons, the network will have the tendency to memorize the specific problem and not be general-
ized enough for application [51]. In other words, the number of neurons in the hidden layer
relies on the nature of the problem and available data. Neither too many nor too few neurons
in the hidden layer should be used. The neuron number in hidden layer was set as 10 as the
result of considerations of accuracy, training time and the risk of over-fit. To determine the
optimal number of neurons in hidden layer, firstly we found a rough range of reasonable num-
ber of neurons based on references where the problems are nonlinear and have similar data
structures (5~8 inputs, 1~2 outputs compared with 7 inputs and 2 outputs in this paper)
[32,34–36,38,40]. Thus, the test range of neuron number was decided as 3 to 14. Then we tried
each number and obtained corresponding training time and accuracy. When neuron number
was small (3 to 6), convergence was fast but the accuracy was not satisfactory (R2 were below
0.96). With the increase of neuron number (7 to 11), BP-ANN became more accurate (R2 were
above 0.98) but need more training time. An interesting phenomenon is that after neuron
number was raised to 12, the times for iteration and single convergence dramatically increased.
In this case over-fit was assumed to occur. So we narrowed down the range of neuron number
as 7 to 11. In these range 10-neurons was chosen because it had the second highest accuracy
and 11-neurons case with the highest accuracy was right at the edge of over-fit. There may be
some deviation of the optimal neuron number. However it is revealed in the figure that the
accuracy of BP-ANNmodel will only have tiny changes if the number of neurons varies a little.

Therefore, after several trials, we found that the best number of neurons in the hidden layer
is found to be 10. In this way, a BP-ANN with a 7-10-2 topology is established (Fig 5).

During the training process of BP-ANN, the error is subsequently backward propagated
through the network to modify the model parameters, such as the weights of different layers
and neuron thresholds, by means of the gradient descent method. The purpose is to minimize
the sum of the mean squared error (MSE) between network outputs and the target data. In this
case, the target data are the real values of Vt and Va from CFD simulations.

Fig 5. The topology of three-layer BP-ANN. This three-layer BP-ANN has 7 inputs (operation parameters)
and 2 outputs (characteristic velocity Vt and Va). The transfer functions in the hidden layer are sigmoid. And
the number of neurons in the hidden layer is 10.

doi:10.1371/journal.pone.0156358.g005
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The MSE is given by:

U ¼ 1

2

XM
i

XN
j

½TjðiÞ � YjðiÞ�2 ð12Þ

where U is the sum of the MSE between the target data and the network outputs, N is the num-
ber of input samples,M is the number of output neurons, Tj(i) is the ith component target
value corresponding to the jth input, and Yj(i) is the network output that approximates the tar-
get value Tj(i).

In this model, to avoid over-fit, all data are divided into three sets: training dataset, valida-
tion dataset and test dataset. During the learning process, the model is only fed the training
data. The testing dataset is used to test the network during training and also to correct it con-
tinuously by adjusting the parameters (weights, thresholds, etc.). The validation dataset, which
is not presented to the network during training, is used to validate the model. The model will
be retrained if the validation performance is poor. To perform data classification, each dataset
is randomly selected from the entire database according to the classification percentages. In
this paper, the percentages of training, validation, and test datasets are fixed to be 70%, 15%,
and 15%, respectively.

The model framework is shown in Fig 6. Training iteration will end if a certain number
of training epochs are conducted without a further decrease of absolute error between out-
puts and target data. When this criterion is met, training is stopped. If the validation perfor-
mance is bad, the transfer functions or the number of neurons in the hidden layer should be
changed.

3. Results and Discussion

3.1 Characteristics of the SC-CO2 helical flow field
In this part, the outcomes of the CFD simulation are analyzed mainly in terms of two major
parameters of the SC-CO2 helical flow field—i.e., both tangential velocity (Vt) and axial veloc-
ity (Va). In horizontal well cleanout, Vt and Va play a significant role in suspending and trans-
porting sands. Vt implies the shear force applied to solid particles in the helical flow field,
which helps suspend the particle. In general, a large Vt will effectively prevent sands from set-
tling down. Similarly, Va implies the normal stress (pushing force) applied to solid particles.
The higher Va is, the faster sands move back into the flow field.

3.1.1 General features of the SC-CO2 helical flow field. During the cleanout operation,
high-speed SC-CO2 jets constantly impact the wellbore, forming the annular helical flow field.
Pathlines near the cleaning bit and of separate jets are displayed in Fig 6. The lateral jets
impinge on the casing slantingly and generate an asymmetry overflow near the casing, which is
heterogeneous and evolves to a swirling flow. Then, the initial helical flow mingles with the for-
ward and rear jets in annulus. Based on flow pattern, the whole flow field can be divided into
two zones: transition zone and laminar zone. As already mentioned, the flow field is quite cha-
otic and unsteady near the exit regions of the nozzles, with high turbulence (Fig 7(a)) caused by
the impact of rear and forward jets on the casing and the mixing of three jets. We define the
zone extending from the cleanout bit to the place where the velocity becomes annularly sym-
metrical as the transition zone or turbulent zone. After a certain distance from the bit, the flow
field stabilizes and finally becomes uniformly helical (Fig 8(b)), which is referred as the laminar
zone. Despite the different simulation parameters, we generally find that the length of the tran-
sition zone is approximately 0.6 m (Fig 8).
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Technically, the SC-CO2 helical flow field is more turbulent than the water helical flow field
in transition zone. With the same pumping rate, temperature and ambient pressure, the veloc-
ity and density of SC-CO2 and water are comparable (for example, the average density of
SC-CO2 under the condition of Fig 9 is 665 kg/m3, while water is about 1000 kg/m3). On the
other hand, the viscosity of water is over one magnitude larger than that of SC-CO2 (the viscos-
ity of water is 0.2838 mPa�s while that of SC-CO2 is only 0.0278 mPa�s under the condition of

Fig 6. Framework of BP-ANNmodel. This process is accomplished in MATLAB.

doi:10.1371/journal.pone.0156358.g006

Optimization of SC-CO2 Cleanout Using BP-ANN

PLOSONE | DOI:10.1371/journal.pone.0156358 June 1, 2016 11 / 29



Fig 9). So from Re = ρvd/μ we can conclude that the SC-CO2 flow has higher Reynolds number
(turbulence level) than water flow (In the same wellbore model, the characteristic length d is
the same for water and SC-CO2 flow). Higher turbulence in transition zone is welcomed
because it means there is more energy to stir up consolidated sands.

In laminar zone, the low viscosity of SC-CO2 leads to an obvious decrease of Vt (Fig 9) and
a more uniform distribution of Va (Fig 10) in cross sections. The attenuation of Vt is a disad-
vantage in terms of suspending sands, but the uniform distribution of Va means SC-CO2 is
better at sweeping sands. The uniform Va in cross sections can induce a uniform backward
movement of sands, which is highly preferred in practice.

Fig 7. Pathlines of SC-CO2 helical flow field and separate jets. (A) Pathlines are colored by turbulent
kinetic energy. The turbulent kinetic reaches maximum near the nozzle exits and attenuates as SC-CO2 flow
spreads further into the annulus. The flow is from right to left at the left side of the cleaning bit, while it is left to
right at the right side of the bit. (B) Pathlines are colored by particle groups. The left figure shows the process
that lateral jets reach the casing wall and turn into rotational flow. The right figure displays the tracks of other
three jets.

doi:10.1371/journal.pone.0156358.g007

Fig 8. Velocity contours at different axial cross sections. (A) The flow field featured by velocity is still
heterogeneous and unsteady at 0.1 m from the right side of the bit. (B) The velocity contour is annularly
symmetric and thus the flow field is steady and uniformly helical.

doi:10.1371/journal.pone.0156358.g008
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Both Vt and Va are close to zero near the casing and cubing, so an effective flow zone is
defined as the radial ring-like region whose dimensionless radius is between 0.1 and 0.95. Then,
Vt,avg and Va,avg can be calculated as the circular-area averaged tangential/axial velocities (Fig 11)
that represent Vt and Va in different cross sections. The cleaning distance is defined as the axial
distance from a certain cross section to the cleanout bit. With regard to Va,avg, there is little dif-
ference between the SC-CO2 helical flow field and the water helical flow field, whereas the Vt,avg

of SC-CO2 flow is significantly smaller than that of water flow. Again, this is because SC-CO2

has a much smaller viscosity than water, while the densities of SC-CO2 and water are similar.
3.1.2 Effect of different nozzle assemblies on Va and Vt. The nozzle assembly, meaning

the orifice diameters of each nozzle group, affects the hydraulic power of each high pressure
SC-CO2 jet, which consequently influences the strength of annular SC-CO2 helical flow.

Lateral nozzle size. Fig 12 exhibits the Vt and Vt,avg distributions with the same simulation
parameters except lateral nozzle size. There is no monotonic relation between Vt/Vt,avg and the
lateral nozzle size. The No.4 nozzle assembly, with 4 mm lateral nozzles, has almost the same
Vt,avg distribution as the No.8 nozzle assembly, whose lateral nozzles are 6 mm. Lateral jets are
the main source power of rotational flow and thus determine Vt. With larger lateral nozzles,
lateral jets will have larger flow rate, which means that the flow field will be more rotational,

Fig 9. The radial distribution of Vt for SC-CO2/water flow at different cross sections. No.8 nozzle
assembly; flow rate 15 L/s; ambient pressure 30 MPa; ambient temperature = jet temperature = 373 K. In
cross sections, dimensionless radius is the distance from the inner wall to the measure point divided by the
total length between inner and outer wall. The tangential velocity has large gradients near both sides of inner
and outer walls.

doi:10.1371/journal.pone.0156358.g009

Fig 10. The radial distribution of Va for SC-CO2/water flow at different cross sections. No.8 nozzle
assembly; flow rate 15 L/s; ambient pressure 30 MPa; ambient temperature = jet temperature = 373 K.

doi:10.1371/journal.pone.0156358.g010
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and larger Vt will be achieved. Nevertheless, at the same time the nozzle equivalent diameter
will be larger, leading to a reduction of lateral jets exit velocity. In this way, Vt is the outcome of
the balance between larger lateral jets flow rate and lower exit velocity. In other words, there
should be an optimal size of the lateral nozzle.

Rear nozzle size. In contrast with the lateral nozzle, the rear nozzle size has an evident
monotonic relation with Vt. Fig 13 presents the radial distribution of Vt and axial distribution

Fig 11. The distributions of Va,avg and Vt,avg for SC-CO2/water flow along the wellbore. No.8 nozzle
assembly; flow rate 15 L/s; ambient pressure 30 MPa; ambient temperature = jet temperature = 373 K.

doi:10.1371/journal.pone.0156358.g011

Fig 12. The distribution of Vt and Vt,avg with respect to different lateral nozzle sizes. Lateral nozzle
diameter 3mm~5mm; flow rate 15 L/s; ambient pressure 30 MPa; ambient temperature = jet
temperature = 373 K. Cleaning distance is 0.6m in the left figure.

doi:10.1371/journal.pone.0156358.g012
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of Vt,avg varying with rear nozzle size. As the rear nozzle size increases, lateral jets have less
flow rate, and Vt decreases significantly, reflecting the decreased helical flow strength. This
decrease of Vt is most obvious when the rear nozzle size increases from 5 mm to 6 mm. Addi-
tionally, as the cleaning distance increases, the influence of the rear nozzle size on the helical
flow strength weakens. The largest difference in Vt,avg occurs between the No.1 and No.10
assemblies at a cleaning distance of 0.6 m. Vt,avg of the No.1 assembly is 1.81 m/s, whereas that
of the No.10 assembly is 1.05 m/s. This can lead to a distinct difference in cleanout efficiency.
Minimizing the rear nozzle size seems a possible way to improve the suspending ability of the
helical flow field. However, if this is the case, the sweeping efficiency will be damped as the dis-
tributed flow rate for rear nozzles decreases. Actually, the rear jets can weaken Vt but enhance
Va in the annular helical flow.

Forward nozzle size. Compared to the rear nozzle, the forward nozzle size has less influence
on Vt distributions (Fig 14). As forward nozzle size increases, Vt,avg has a much lower tendency
to decrease. Likely, minimizing forward nozzle size for the purpose of larger Vt is not the best
way because the forward jets require enough flow rate and energy to break up solid sediments
in the front of the cleaning bit.

Fig 13. The distribution of Vt and Vt,avg with respect to different rear nozzle sizes. Rear nozzle diameter
3mm~5mm; flow rate 15 L/s; ambient pressure 30 MPa; ambient temperature = jet temperature = 373 K.
Cleaning distance is 0.6m in the left figure.

doi:10.1371/journal.pone.0156358.g013

Fig 14. The distribution of Vt and Vt,avg with respect to different forward nozzle sizes. Forward nozzle
diameter 3mm~5mm; flow rate 15 L/s; ambient pressure 30 MPa; ambient temperature = jet
temperature = 373 K. Cleaning distance is 0.6m in the left figure.

doi:10.1371/journal.pone.0156358.g014
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In conclusion, reducing the rear/forward nozzle size or increasing the lateral nozzle size can
enhance the strength of annular helical flow by increasing Vt. However, the jets for penetration
and sweeping will be reduced. Thus, there exists an optimal nozzle assembly that can provide
the best combination of Vt and Va. This issue will be addressed later in the BP-ANN optimiza-
tion model.

3.1.3 Effect of flow rate on Va and Vt. Naturally, a higher flow rate will induce larger Vt

and Va. We find that during the simulation, both Vt and Va are almost directly proportional to
the flow rate, as are Vt,avg and Va,avg (Fig 15). In this sense it seems that the flow rate should be
as high as possible. However, a high flow rate requires greater pump and increases energy
costs. To strike an economical balance between velocities and flow rate cost, BP-ANN optimi-
zation model can be applied; this will be discussed in section 3.2.

3.1.4 Effect of ambient pressure on Va and Vt. Ambient pressure is found to be the least
influential factor. In fact, Vt,avg and Va,avg hardly change with different ambient pressures (Fig
16). Considering the relationship between ambient pressure and TVD, this means that the
SC-CO2 helical flow cleanout can be performed in horizontal wells whose vertical depth is no
more than 5000 m, assuming that the pressure gradient is 1 MPa/100 m.

3.1.5 Effect of jet and ambient temperature on Va and Vt. Temperature is a minor factor
in water helical flow cleanout because the properties of water hardly change with temperature.
In contrast, the physical properties of SC-CO2 are sensitive to temperature. Ambient tempera-
ture is defined as the temperature of the formation, casing and tubing, and jet temperature is
the temperature of jets when they squirt from the nozzles.

Ambient temperature has an approximately linear relationship with Vt,avg (Fig 17) and
Va,avg at a certain cleaning distance. Vt,avg increases with higher ambient temperature. At clean-
ing distances of 0.6 m and 2.0 m, the percentages of Vt,avg with ambient temperature increasing
from 333 K to 433 K, increase by 16.8% and 25.7%. Furthermore, the percentages of Va,avg

increase by 26.9% and 32.0%. The increased ambient temperature has a greater influence on
Va,avg than Vt,avg. Moreover, at larger cleaning distances, the influence of ambient temperature
is enhanced.

Analogously, Vt,avg and Va,avg also have proportional relationships with jet temperature (Fig
18). However, the difference is that Va,avg and Vt,avg decrease with increasing jet temperature.
At a cleaning distance of 0.6 m, with the jet temperature increasing from 353 K to 433 K, the
percentages of Vt,avg and Va,avg decrease by 13.6% and 20.1%. At a cleaning distance 2.0 m, the
percentages of Vt,avg and Va,avg decrease by 21.1% and 24.1%. Again, Va,avg is more sensitive to

Fig 15. The distribution of Va and Vt,avg with respect to different flow rates. Nozzle assembly No.1; flow
rate 10 L/s~20 L/s; ambient pressure 30 MPa; ambient temperature = jet temperature = 373 K.

doi:10.1371/journal.pone.0156358.g015
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jet temperature than Vt,avg, and the velocities are influenced more by jet temperature at larger
cleaning distances.

Actually, ambient temperature and jet temperature share more common properties. The
change of ambient/jet temperature is, substantially, no more than the change in the difference
between these two temperatures. We picked cases that had the same difference between the
ambient and jet temperatures and then compared the distributions of Vt and Va. In the two
simulation cases where the ambient/jet temperatures are 373 K/413 K and 333 K/373 K—i.e.,
the difference between the ambient and jet temperatures is -40K—the distributions of Va, Vt,
Vt,avg and Va,avg are nearly identical (Fig 19). The same phenomenon occurs in all other cases
with the same temperature difference. We can conclude that Vt and Va depend on the differ-
ence between the ambient and jet temperatures, not on these two variables independently.

In SC-CO2 drilling, liquid CO2 is pumped into the drilling string. It is heated and pressur-
ized as CO2 goes deep underground. When the critical temperature and pressure are reached,
CO2 achieves a supercritical state. The relationship between the surface temperature of liquid
CO2 and the temperature of SC-CO2 jets can be clarified by wellbore heat transfer models
[60,61]. Thus, it is feasible to modify the surface temperature based on the design of the jet
temperature.

In this section, the features of SC-CO2 helical flow are investigated and compared with
water helical flow. SC-CO2 helical flow is feasible in specific cleanout cases such as water-sensi-
tive and low-permeability formations. In terms of nozzle assembly, there is an optimal size for
the lateral nozzle to produce the best Vt. Though a smaller rear/forward nozzle size is beneficial

Fig 16. The distribution of Vt,avg with respect to different ambient pressures. No.1 nozzle assembly; flow
rate 15 L/s; ambient pressure 10 MPa~30 MPa; ambient temperature = jet temperature = 373 K.

doi:10.1371/journal.pone.0156358.g016
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to improve Vt, it may not guarantee the ultimate performance of cleanout. Better flow rate is
able to boost Vt and Va but requires extra pump and energy costs. Ambient pressure has little
influence on SC-CO2 helical flow. Vt,avg and Va,avg improve with higher ambient temperature
or lower jet temperature. Vt and Va depend on the difference between the ambient and jet tem-
peratures, not on these two variables independently.

3.2 Performance of the BP-ANNmodel
3.2.1 BP-ANN data fitting. In total, 4563 samples covering 28 cases were inputted to the

BP-ANN. The training, test and validation processes were performed successfully with suffi-
cient accuracy. There were 212 iterations in all, with a decent rate of convergence, and the best
validation performance of MSE was 0.0059 (Fig 20). The error histogram (Fig 21) shows that
most absolute errors are within a small range near zero, which is a sign of good performance
for the BP-ANN. Moreover, the R2 values of the training, test, validation and combination
thereof are quite close to 1 (Fig 22), indicating perfect regression between the outputs and tar-
gets. It should be noted that in regression plots, there are several points that are far away from
the diagonal (regression line). These points are abovementioned ‘noise’ points resulting from
either improper sampling position or perturbance of the helical flow field. In this model, these
‘noise data’ are not included, thus avoiding the over-fit problem.

3.2.2 Comparison between SVM and ANN. SVR (Support Vector Regression) based on
SVMmethod was applied to fit the operation parameters with Vt and Va. RBF (Radial Basis
Function) was chosen as the kernel function. Since one E-SVR can only have one output, two

Fig 17. The distribution of Vt,avg with respect to different ambient temperatures. No.1 nozzle assembly;
flow rate 15 L/s; ambient pressure 30 MPa; jet temperature 373 K; ambient temperature 333 K~433 K.

doi:10.1371/journal.pone.0156358.g017
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independent E-SVRs were trained to match Vt and Va, respectively. Similarly as training
BP-ANN, total data was divided into two parts: 70% was used for training while 30% was used
for validation.

BP-ANN and E-SVR were compared in terms of time consumption and accuracy. The
training time for two E-SVRs combined was 8.5s while that for BP-ANN was 23s. Although it
seemed that E-SVRs required less time to train, it was finding the best values of g (gamma) for
RBF kernel function and c for loss function that costed massive time. Two methods were used
to find the best g and c based on cross validation: Grid Method (GM) which consumed nearly
an hour; PSO (Particle Swarm Optimization) method which consumed more than 16 hours in
total. The sets of ‘best’ g and c were found to be 256 and 16 for both Vt and Va by GM. By PSO,
best gs were found to be 100 for Vt and Va while cs were 31.8885 for Vt and 36.0296 for Va.
E-SVR trained with PSO parameters had better accuracy (total R2 was 0.9530 for PSO-trained
E-SVR while that was 0.9439 for GM-trained E-SVR). So E-SVR with parameters by PSO
seemed to be the best SVR model for this problem, which had R2 of 0.9480 and 0.9580 for
training and validation. The best MSE of E-SVR was 0.1039 while that of BP-ANN was 0.0059.
The R2 for BP-ANN training, validation and test were 0.9871, 0.9886 and 0.9874 with total R2

equal to 0.9874. Thus it can be concluded BP-ANN had better performance for this problem
than SVMmethod, both in terms of time (23s vs 16 hours plus) and accuracy (0.9530 vs 0.9874
of R2). And that’s why we used BP-ANN instead of SVM.

3.2.3 Optimization strategies. Once the best match of BP-ANNmodel is achieved, it can
produce predicted Vt and Va based on input operation parameters. Combined with corre-
sponding requirements and strategies, optimization of operation parameters can be achieved.

Fig 18. The distribution of Vt,avg with respect to different jet temperatures. No.1 nozzle assembly; flow
rate 15 L/s; ambient pressure 30 MPa; ambient temperature 373 K; jet temperature 353 K~433 K.

doi:10.1371/journal.pone.0156358.g018
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Thus, the trained BP-ANNmodel embedded with strategies is called BP-ANN optimization
model. Following are two important strategies for the BP-ANN optimization model.

Cost-Saving Strategy (CSS). Flow rate is one of the main factors that determine the cost of
cleanout. Maintaining a large flow rate requires heavy-duty pumps and excessive energy,
which are often expensive. To fulfill the cleanout task, it is only necessary to make sure that the
intensity of flow field within a critical cleaning distance is big enough to carry sands. In this
way, the essence of CSS is to find the minimal flow rate (pumping rate) that keeps Vt,min and
Va,min (the minimum tangential and axial velocity) within the effective flow zone of critical
cleaning distance above critical values (Vtc and Vac, below which sands cannot be carried suffi-
ciently), so that sands can be suspended and carried by the helical flow field. The critical values
for cleaning distance, Vt and Va are functions of wellbore geometry, flushing fluid property
and sand size, which is beyond the scope of present study. Vac sets the upper boundary of the
cleanout time and should be decided according to the design requirement. After determining
Vtc and Vac, we can increase the input flow rate from 10 L/s gradually and get the output
increasing Vt,min and Va,min from BP-ANNmodel with other input parameters fixed. The mini-
mal flow rate required is obtained when Vt,min and Va,min reach Vtc and Vac. The process of
parameters optimization using CSS is illustrated in Fig 23(a).

Local Optimal Strategy (LOS). Practically, it is conceivable that only limited types of tools
and equipment are available in well sites. In this situation, although the optimal operation
parameter set that can have the largest Vt and Va cannot be obtained, it is still beneficial if a
local optimal set of parameters can be decided. One example is to determine the optimal nozzle
assembly when there are only limited types of pumps and cooling equipment available, that is,

Fig 19. Vt, Va, Vt,avg and Va,avg with the same ambient/jet temperature difference. No.1 nozzle assembly;
flow rate 15 L/s; ambient pressure 30 MPa; AT is ambient temperature; JT is jet temperature.

doi:10.1371/journal.pone.0156358.g019
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Fig 21. Error histogram.

doi:10.1371/journal.pone.0156358.g021

Fig 20. MSE vs. iteration number. The plots of train, validation and test process are quite close, indicating
good performance of ANN. The smallest MSE during validation is 0.0059 at epoch 206. Validation stops
when MSE keeps invariable for some epochs.

doi:10.1371/journal.pone.0156358.g020
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when the flow rate and jet temperature have limited options. On the one hand, there is the
requirement that Vtc and Va,c should be satisfied in the first place; on the other hand, a stronger
helical flow field will definitely result in better cleanout performance. In other words, the aims
of LOS are: 1) find nozzle assemblies that can meet the requirement of Vtc and Vac; 2) find the
best nozzle assembly by which Vt,avg and Va,avg in the effective zone can be maximized. The
process of parameters optimization using CSS is illustrated in Fig 23(b).

3.2.4 Optimization cases. Case 1. CSS. Assume that there is a horizontal well that requires
SC-CO2 helical flow cleanout. The TVD of the well is 3500 m; the geothermal gradient is 2°C/
100 m; the surface temperature is 20°C; the pressure gradient is 1 MPa/100 m; the No.3 nozzle
assembly is used; the jet temperature is 373 K; the critical cleaning distance is 2.5 m; and Vtc

and Vac are 0.3 m/s and 0.9 m/s, respectively. Recall the BP-ANNmodel; it is easy to find the
minimum flow rate that meets the requirement of the critical velocities is 15.4 L/s. The corre-
sponding minimum pump rate can thus be selected after other hydraulic losses are considered.
In the end, the cleanout can be performed economically with the lowest pump and energy cost.

The Vt,avg, Va,avg, Vt,max and Va,max distributions along the wellbore are shown in Fig 24.
Va,max decreases from the cleaning distance of 0.6 m to 2.0 m, which agrees with the simulation

Fig 22. Regression plots. R is coefficient of determination. Target is the true velocities of the simulated flow
field while output is the results of the ANNmodel that should approach target. Points far away from the
diagonal are ‘noise’ points.

doi:10.1371/journal.pone.0156358.g022
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results. However, Va,max has a slight increase when the cleaning distance is larger than 2.0 m.
This may be because no sample data have a cleaning distance larger than 2.0 m. The velocities
beyond 2.0 m are derived only through interpolation. Nevertheless, apart from Va,max, the
other three curves have reasonable good decreasing shapes. The outcome may well be inaccu-
rate if the input has some variables that are far from the simulation ranges. So it is suggested to
use the model with inputs whose variables are within the simulation ranges or, less restrictively,
not too far from the simulation ranges.

In addition, the other operation parameters such as nozzle assembly and jet temperature, if
not fixed, can be optimized as well. The outcome will be the optimal set of operation parame-
ters based on CSS. In the same case, the best nozzle assembly is No.1, and the best jet tempera-
ture is 353 K, with a minimal flow rate equal to 14.3 L/s. Compared to the previous result, the
optimization of the nozzle assembly and jet temperature successfully reduces the minimum
requirement of the flow rate from 15.4 L/s to 14.3 L/s, which can further reduce the cost of the
pump and energy. It is proven that the BP-ANN optimization model is valid for optimizing
single and multiple operation parameters based on CSS.

Case 2. LOS. Suppose that for a horizontal well that requires a SC-CO2 helical cleanout, the
TVD is 2300 m; the geothermal gradient is 1.6°C/100 m; the surface temperature is 27°C; the
pressure gradient is 1.1 MPa/100 m; the jet temperature is 360 K; the cleaning distance is 1.7 m;
a 12 L/s pump is the only pump available; all 10 nozzle assemblies are available; Vtc is 0.3 m/s;
and Vac is 0.8 m/s. Hydraulic losses are ignored for simplification. By recalling the BP-ANN
model and programming, the Vt,min, Va,min, Vt,avg and Va,avg of each nozzle assembly at a

Fig 23. Shematic diagram of BP-ANN optimization strategies.

doi:10.1371/journal.pone.0156358.g023
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critical cleaning distance of 1.7 m are acquired, as shown in Fig 25. The No.1–No.6 nozzle
assemblies have Vt,min values that are larger than Vtc, so they are the suitable nozzle assemblies
that can satisfy the critical velocity requirement. Furthermore, it can be confirmed that the best
nozzle assembly is the No.1 assembly.

Fig 24. Distributions of Vt,avg, Va,avg, Vt,max and Va,max along the horizontal wellbore. No.3 nozzle
assembly; flow rate 15.4 L/s; ambient pressure 35MPa; ambient temperature is 363 K; jet temperature is 373 K.

doi:10.1371/journal.pone.0156358.g024

Fig 25. Vt,avg and Va,avg with respect to different nozzle assemblies. Flow rate 12 L/s; ambient pressure
25.2 MPa; ambient temperature is 336.8 K; jet temperature is 360 K; cleaning distance 1.7 m.

doi:10.1371/journal.pone.0156358.g025
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Parameter optimizations using the BP-ANNmodel based on CSS and LOS are successfully
performed. The constraint of Vtc and Vac plays a key role in determining applicable operation
parameters. The two strategies discussed are important but are not the only applications of the
BP-ANNmodel. Another potential application of the BP-ANNmodel is to find the optimal
traveling speed of the tool when performing wiper tripping in cleanout. The application can be
further extended to cleanouts in inclined and vertical wells with various flushing fluids if cases
that consider deviation angle are provided.

4. Conclusion
In this paper, CFD simulation is successfully applied to analyze the characteristics of SC-CO2

helical flow and sand sweeping efficiency in terms of Vt and Va. Comparisons are made
between SC-CO2 helical flow and water helical flow. The influences of nozzle assembly, flow
rate, ambient pressure, ambient temperature and jet temperature are obtained. The simulation
data are then processed by BP-ANN, and the outcome model is able to optimize operation
parameters in different situations. In all, the following conclusions can be drawn.

1. Compared to water helical flow cleanout, SC-CO2 helical flow cleanout, which can stimulate
production, is more suitable to be applied in water-sensitive, low-permeability and conven-
tional reservoirs.

2. In a horizontal annulus, the SC-CO2 helical flow field has more evenly radial distributions
of Va and smaller Vt due to its low viscosity. The nozzle assembly plays a major role in
determining the characteristics of SC-CO2 helical flow. If other operation parameters are
fixed, the suspending ability of SC-CO2 helical flow obviously improves with increasing lat-
eral nozzle size and decreasing rear and forward nozzle size. For the simulated situations in
this paper, the optimal nozzle assembly is identified as the No.1 assembly, whose rear, lateral
and forward nozzles are 3 mm, 4 mm and 4 mm, respectively.

3. At certain cleaning distances, Vt and Va improve linearly with higher ambient temperature
or lower jet temperature. A significant discovery on the influence of temperature is that Vt

and Va depend on the difference between the ambient and jet temperatures, not on these
two variables independently.

4. BP-ANN is successfully applied to match the operation parameters with Vt and Va at vari-
ous axial and radial positions. The outcome model is quite accurate, with R2 almost equal to
1. SVM is less efficient and accurate than BP-ANN for this problem. It is able to predict Vt

and Va precisely even if new combinations of operation parameters are provided. However,
it is suggested that the model be used with input parameters that are within the simulation
ranges, or at least not too far from the simulation ranges, for the purpose of veracity.

5. It is found that the BP-ANN optimization model is valid for optimizing single and multiple
operation parameters. Two strategies are presented: the cost-saving strategy and the local
optimal strategy. For the two hypothetical cases, optimizations based on the CSS and LOS
strategies are performed successfully, which indicates the robustness of the BP-ANN opti-
mization model. There is enough evidence to claim that the BP-ANN optimization model
will work very well with field data.
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