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Abstract

Background: Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris, a main threat to global chickpea production, is
managed mainly by resistant cultivars whose efficiency is curtailed by Fusarium oxysporum f. sp. ciceris races.

Methodology: We characterized compatible and incompatible interactions by assessing the spatial-temporal pattern of
infection and colonization of chickpea cvs. P-2245, JG-62 and WR-315 by Fusarium oxysporum f. sp. ciceris races 0 and 5
labeled with ZsGreen fluorescent protein using confocal laser scanning microscopy.

Findings: The two races colonized the host root surface in both interactions with preferential colonization of the root apex
and subapical root zone. In compatible interactions, the pathogen grew intercellularly in the root cortex, reached the xylem,
and progressed upwards in the stem xylem, being the rate and intensity of stem colonization directly related with the
degree of compatibility among Fusarium oxysporum f. sp. ciceris races and chickpea cultivars. In incompatible interactions,
race 0 invaded and colonized ‘JG-62’ xylem vessels of root and stem but in ‘WR-315’, it remained in the intercellular spaces
of the root cortex failing to reach the xylem, whereas race 5 progressed up to the hypocotyl. However, all incompatible
interactions were asymptomatic.

Conclusions: The differential patterns of colonization of chickpea cultivars by Fusarium oxysporum f. sp. ciceris races may be
related to the operation of multiple resistance mechanisms.
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Introduction

Chickpea (Cicer arietinum L.) is a major source of human food and

animal feed, and one of the world’s most important pulse crops

after dry beans (Phaseolus vulgaris L.) and dry peas (Pisum sativum L.)

[1]. Chickpeas are grown throughout tropical, subtropical and

temperate regions of the world [1]. Fusarium wilt, caused by the

soilborne fungus Fusarium oxysporum Schlechtend.: Fr. f. sp. ciceris

(Padwick) Matuo & K. Sato, is one of the most important diseases

limiting chickpea production worldwide. Annual yield losses from

this disease have been estimated to range from 10 to 15%.

However, locally Fusarium wilt epidemics can cause 100% loss

under disease-favorable conditions [2,3,4].

Fusarium wilt in chickpea is best managed using resistant

cultivars [5]. However, the effectiveness of this management

strategy can be curtailed by the high pathogenic variability in F.

oxysporum f. sp. ciceris populations [6]. Two pathotypes (yellowing

and wilting) and eight pathogenic races (races 0, 1A, 1B/C, 2, 3, 4,

5, and 6) have been described to date [7,8,9]. The yellowing

pathotype induces progressive foliar yellowing with vascular

discoloration and late plant death, while the wilting pathotype

causes fast and severe chlorosis, flaccidity, vascular discoloration,

and early plant death. For both syndromes, the subterranean

tissues of affected plants show no external symptoms.

Pathogenic races of F. oxysporum f. sp. ciceris differ in geographic

distribution. Races 0, 1B/C, 5, and 6 are found in the

Mediterranean Basin and California (USA) [3,6,9,10]. Race 1A

has been reported in the Indian subcontinent [2], California, and

the Mediterranean Basin [6,9,10], whereas races 2 and 3 have

been reported in Ethiopia, India, and Turkey [2,11,12] and race 4

has only been reported in Ethiopia and India [2,12]. Races 0 and

1B/C induce the yellowing syndrome, whereas races 1A through 6

cause the wilting syndrome [6,9]. Knowledge of the geographical

distribution of F. oxysporum f. sp. ciceris-races is critical to disease

management, because individual races vary in their interaction
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with differential chickpea lines as well as in the amount of

inoculum needed to induce a given amount of disease in

susceptible chickpeas [13,14].

Our understanding of the cellular basis of host-pathogen

interactions underlying vascular wilt diseases has been much

improved due to the use of confocal laser scanning microscopy

(CLSM) and fluorescent protein-tagged pathogen isolates. This

approach has allowed ‘in situ’ time-lapse imaging of plant-

pathogen interactions, thus avoiding concerns associated with

fixing plant tissues for light and electron microscopy observations

[15,16]. Thus, use of CLSM has provided better understanding of

the infection process of F. oxysporum in multiple hosts: i) the ability

of F. oxysporum f. sp. cubense race 4 to directly penetrate epidermal

cells of banana roots, and the role of the epidermal cells of root

caps and elongation zone as potential sites of ingress [17]; ii) the

root meristem of emerging lateral roots and primary root tips of

Arabidopsis thaliana are infection courts for a wilting F. oxysporum

isolate, regardless the level of resistance of the host ecotypes [18];

iii) the pattern of Medicago trunculata colonization by F. oxysporum f.

sp. medicaginis is similar between susceptible and tolerant lines [19];

iv) differential virulence of F. oxysporum f. sp. phaseoli isolates on

bean is directly correlated with the speed of xylem vessels

colonization [20]; vi) resistant and susceptible melon lines are

differentially colonized by F. oxysporum f. sp. melonis race 1.2 [21]; or

vii) the infection of tomato plants by F. oxysporum f. sp. lycopersici is

initiated by development of a hyphal network on the upper part of

taproot, followed by the growth of hyphae towards the elongation

zone, lateral roots and root apices [22].

Pathogenic races of F. oxysporum f. sp. ciceris differ significantly in

the amount of inoculum needed to induce a given amount of

disease in susceptible chickpeas [13,14]. For example, the

inoculum density of the least virulent race 0 needs to be ,100

times greater than that of the highly virulent race 5 in order to

cause the same amount of disease [13,14]. Characterization of the

underlying cause of differential virulence by different races will

help understand how different chickpea genotypes interact with

pathogenic races of F. oxysporum f. sp. ciceris. However, a few studies

that have characterized the Fusarium wilt/chickpea pathosystem

focused mainly on compatible interactions [23,24,25]. Therefore,

additional studies are needed for better understanding the

mechanisms underlying incompatible interactions.

In this present research, we hypothesized that the nature of F.

oxysporum f. sp. ciceris races influences the processes of infection and

colonization of resistant chickpeas by the pathogen, and addressed

this hypothesis by determining the preferential infection court and

quantitatively assessing the spatial-temporal patterns of coloniza-

tion in both compatible and incompatible interactions with host

cultivars differing in the level of resistance to F. oxysporum f. sp,

ciceris races. To support this objective, isolates of two races (0 and

5) were first transformed with a ZsGreen fluorescent protein [18].

Then, one transformant of each race was selected based on growth

characteristics, pathogenicity, and virulence phenotypes in com-

parison with the corresponding wild parent isolates. Finally, three

cultivars that differentially respond to these races were inoculated

to describe and quantify the pattern and dynamics of colonization.

Materials and Methods

Growth, Storage, and Genetic Transformation of F.
oxysporum f. sp. ciceris Isolates

Two F. oxysporum f. sp. ciceris isolates (Foc-7802, race 0 and

yellowing pathotype and Foc-W6-1, race 5 and wilting pathotype)

were transformed with a construct encoding the ZsGreen

fluorescent protein using the procedures described by Khang

et al. [26]. Coding ZsGreen protein fragment was cloned in XbaI-

HindIII sites of pBHt2 [27] to produce the binary vector SK2241.

Agrobacterium tumefaciens strain EHA105 [28] was used to transform

the isolates. Six and 11 transformants were obtained from Foc-

7802 and Foc-W6-1, respectively. All transformants were grown

on Fusarium minimal medium [29] amended with hygromycin B

(50 mg ml21). To check for the successful expression of ZsGreen,

single-spored cultures of transformants were examined with

a confocal laser microscope (Nikon TE 2000-S, Melville, NY,

USA). Four transformants of each race were then chosen for

subsequent phenotypic characterization.

The wild-type strains and their transformants were deposited in

the culture collection of the Department of Crop Protection,

Institute for Sustainable Agriculture (IAS-CSIC), Córdoba, Spain.

All cultures were single-spored before long-term storage in sterile

soil tubes at 4uC and in 35% sterile glycerol in water at 280uC.

Active cultures were started by placing small aliquots of soil

cultures onto a plate containing fresh potato dextrose agar (PDA;

Difco Laboratories, Detroit, MI) and incubating for 4 days at 25uC
and a 12-h photoperiod of a mixture of fluorescent white and near-

UV light at 36 mE m–2 s–1.

Phenotypic Characterization of Transformants
Colony morphology, mycelial growth rate, pathogenicity, and

race phenotype of the selected transformants were compared with

those of the corresponding wild-type strains. To compare for

colony morphology and mycelial growth rate, a PDA plug of

actively growing culture was placed onto PDA plates and

incubated at 2561uC and a 12-h photoperiod (fluorescent white

and near-UV light at 36 mE m–2 s–1). Three replicates (plates) for

each of the transformants and wild-type strains were arranged in

a completely randomized design. The radial mycelial growth

(RMG) was determined daily by measuring the length of four

radii. The radial growth rate (RGR) was calculated by the slope of

the linear regression of the mean colony radius over time. Mycelial

pigmentation, the shape of colony margin, and any feature that

looked different from wild-type strains were recorded.

Pathogenicity and race phenotypes of the transformants were

assessed by inoculating chickpea cultivars that differ in their

reaction to races 0 and 5, including cvs. P-2245 (susceptible to

both races), PV-1 (susceptible to race 0 and resistant to race 5), JG-

62 (resistant to race 0 and susceptible to race 5), and WR-315

(resistant to both races). Inocula were prepared in Erlenmeyer

flasks containing 400 g of a cornmeal-sand mixture (CMS) infested

by the fungus, and mixed with a sterile potting mix as described

before [14]. Plants were grown and infected at 105 cfu g soil mix21

in 15-cm diameter clay pots (four plants per pot) in a walk-in

growth chamber adjusted to 2562uC and a 14-h photoperiod

(fluorescent white light at 360 mE m–2 s–1) for 42 days. There were

four replicated pots per isolate arranged in a completely random-

ized design. Incidence (I, 0 to 1 scale), and severity of foliar

symptoms [S, rated on a 0 to 4 scale according to the percentage of

affected foliage (0 = 0%, 1 = 1233%, 2 = 34266%, 3 = 672100%,

4 = dead plant)] were assessed on individual plants at 2- to 3-day

intervals. Disease intensity index (DII) was obtained using the

following: DII = (I 6 S)/4 [14]. Disease progress curves were

obtained from the accumulated DII over time from the date of

inoculation.

Cytological Characterization of Compatible and
Incompatible Interactions via Confocal Laser Microscopy

Two ZsGreen-tagged transformants of races 0 and 5, named as

F11 and F93, respectively, were used to infect chickpea cvs. P-

2245, JG-62, and WR-315, which differ in disease reaction to

Fusarium Oxysporum - Chickpea Interactactions
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races 0 and 5. Inocula were mostly microconidia obtained from

cultures grown in Erlenmeyer flasks containing 100 ml of potato

dextrose broth (PDB) (250 g of potato, 20 g of D-glucose,

1,000 ml of deionized water) as described before [30]. The liquid

cultures were filtered through eight layers of sterile cheesecloth,

and the conidia suspensions were adjusted with sterile deionized

water to a concentration of 105 conidia ml21. Chickpea seeds were

germinated at 2561uC in sterile sand for 24 h and seedlings with

about 1-cm-long radicle were transferred into sterile plastic pots (6-

cm diameter, 100-ml volume) containing 80 ml of the conidial

suspension. Seedlings serving as control were transferred to sterile

distilled water in the same pots. There were two seedlings per pot

for each of transformant/chickpea cultivar/sampling time combi-

nations (see below). Pots with plants were placed in an orbital

shaker adjusted at 120 rpm located in a walk-in growth chamber

adjusted to same conditions described above for 18 days. The

hydroponic cultures were supplemented daily with a complete

Hoagland nutrient solution [31] as required to maintain nutrient

availability and compensate for water loss. Disease reactions were

assessed daily for the severity of foliar symptoms (S) as described

above. The experiment was arranged in a completely randomized

design, and it was repeated twice.

Inoculated and control seedlings were sampled daily from day 1

to 4 after inoculation and at a 2-day interval thereafter, up to

18 days after inoculation. At each sampling date, four plants (two

pots, two plants each) were collected from each treatment. The

entire surface of the tap and lateral roots of each plant was

observed under epifluorescence light and confocal laser microsco-

py. Images were acquired by excitation with 488 nm argon laser

and using a ZsGreen specific filter (515–530 nm) for detection of

fluorescence emitted by the pathogen and plant autofluorescence

at wavelength of 550–590 nm. Transverse sections from each of

the sampled seedlings, ca. 400 mm thick, were used for analyses of

seedling colonization. Sections were made using a hand micro-

tome from fragments of each of the following tissues: tap root

zones (apex, intermediate, upper), hypocotyl (zone immediately

before the insertion of cotyledons), epicotyl (zone just above

insertion of cotyledons) and one to fifth stem internodes. Sections

were observed at 200x (Plan Fluor ELWD 20x objective), 400x

(Plan Fluor ELWD 40x objective), and 600x (Plan Ado VC 60x

objective) (Nikon Inc.). The extent of xylem vessel colonization was

assessed quantitatively using images obtained at 200x. Coloniza-

tion was estimated by the incidence of vascular colonization

(IcVC) estimated as the proportion of xylem cells with fungal

structures, and intensity of vascular colonization (ItVC) estimated

as the percentage of the xylem vessels lumina filled with fungal

structures. For each seedling and sampled area combination, the

vascular cylinder was divided into four identical portions (blocks)

and fungal colonization incidence and intensity were assessed in 20

vessels per block covering the full surface of the vascular cylinder.

Data Analyses
The final radius of the fungal colony after 9 days of incubation

(RMGfinal), and the radial growth rate (RGR) estimated by the

slope of the regression line of the radial growth over time, were

determined for each of the transformants and wild type strains.

Data were subjected to standard analysis of variance using the

GLM procedure of SAS 9.2 (SAS Institute Inc., Cary, NC, USA).

The estimated values of both parameters for each of the

transformants were compared with those of the wild-type strains

using the Dunnett’s contrast at P,0.05.

Disease reaction of chickpea plants were characterized by three

variables associated with the disease progress curve: i) Incubation

period (IP), established as the time in days to display initial

symptoms; ii) Disease intensity index (DIIfinal) = disease severity

observed at the final date of disease assessment; and iii)

SAUDIIPC = standardized area under the DII progress curve

calculated by trapezoidal integration standardized for the duration

of disease development in days [32]. The estimated values of these

parameters were statistically compared as described above. The

effects of experimental treatments on the IcVC and ItVC were

analysed by standard analysis of variance with the GLM

procedure of SAS. In addition, the effect of different combinations

of selected experimental treatments was assessed by single degree

of freedom contrasts at P,0.05.

Results

Generation and Characterization of Transformants of
Two Fusarium oxysporum f. sp. ciceris Races

Two F. oxysporum f. sp. ciceris strains (Foc-7802, race 0 and

yellowing pathotype and Foc-W6-1, race 5 and wilting pathotype)

were transformed with a gene encoding the ZsGreen fluorescent

protein. Mycelial growth rates of the wild-type strains and selected

transformants, and the disease reactions in chickpea cvs. JG-62, P-

2245, PV-13, and WR-315 are shown in Table 1. The four

transformants of F. oxysporum f. sp. ciceris race 0 and the wild-type

strain showed similar (P$0.05) mean final radial mycelial growth

(RMGfinal) and RGR values, and virulence as determined by the

IP, DIIfinal and SAUDIIPC, except for the followings: IP of disease

reactions induced by isolates F3 and F8 in cvs. P-2245 and PV-1,

and isolate F12 in cv. PV-1, were significantly lower (P,0.05) than

those induced by the wild type strains (Table 1). Moreover, of the

four transformants of race 5, F73 and F94 showed mean values of

RMGfinal and RGR significantly lower (P,0.05) than those of the

wild-type strain. Also, the IP of disease reaction induced by

transformants F83, F93, and F94 in cv. JG-62 was significantly

(P,0.05) lower compared with that induced by the wild-type

strain (Table 1). Based on the results described above, transfor-

mants F11 of F. oxysporum f. sp. ciceris race 0 and F93 of F. oxysporum

f. sp. ciceris race 5 were selected for further experiments in this

study as the transformed isolates showing overall pathogenic and

morphological characteristics closest to those of the wild type

strains.

Cytological Characterization of Compatible and
Incompatible Interactions via Confocal Laser Microscopy

No substantial differences were observed during the initial stages

of infection of the tap root and root hairs by races 0 and 5 (Fig. 1).

However, the spatial-temporal dynamics of subsequent infection

processes of chickpea plants varied considerably among the F.

oxysporum f. sp. ciceris race/chickpea cultivar combinations studied

here (Figs. 1, 2, 3, 4, Table 2).

For race 0, the earliest infection event consisted of the

development of a dense hyphal network without pattern on the

surface of the tap root, including the root cap, apical meristem and

subapical zones, which took place during the first 4 days after

inoculation (dai) (Figs. 1a,b, 2a–c, Table 2). The fungus also grew

on the surface of lateral roots in a manner similar to that observed

on the taproot with the apical zone being heavily colonized by

hyphae that grew along anticlinal wall junctures of epidermal cells

(Fig. 1c–e). Following the surface growth, the hyphae directly

penetrated epidermal cells without forming specialized penetration

structures (Figs. 1f,g, 2d–f). By 6 dai, the race 0 transformant was

found in the intercellular spaces of the outermost cell layers of the

root cortex of cvs. P-2245 (compatible interaction) and JG-62

(incompatible interaction) (Figs. 2g–h, 3a,b), but it remained

restricted within the root epidermis of cv. WR-315 (incompatible

Fusarium Oxysporum - Chickpea Interactactions
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interaction) (Fig. 3i, Table 2). Two days later, the intercellular

colonization of the root cortex was extensive in the susceptible cv.

P-2245, and the pathogen reached the central root cylinder and

entered into the xylem vessels of the upper root zone (Figs. 2j,

3c,d). Comparatively, the resistant reaction was characterized by

restricted pathogen growth within the root tissues, but the degree

of restriction varied between the two cultivars. By 8 dai the race

0 transformant remained restricted to intercellular spaces of the

root cortex of ‘WR315’ (Fig. 2l) or could reach a few individual

vessels in the lowermost root zone of ‘JG-62’ (Fig. 1k). Based on

those observations, the root apex was identified as the preferential

court of infection for the three chickpea cultivars by race 0,

regardless their resistance (Fig. 2a–c).

By 10 dai, the race 0 transformant progressed upward to reach

the hypocotyl, epicotyl, and lower stem zone of susceptible ‘P-

2245’ seedlings. The first disease symptoms (i.e. yellowing of

foliage at the stem base characteristic of the yellowing syndrome

caused by race 0) was observed at 10 dai. Thereafter, the pathogen

colonized the upper stem vascular tissue, reaching the fifth

internode by 12 dai (Figs. 2m, 3e,f). By 16 dai, all ‘P-2245’ plants

were severely affected, eventually resulting in plant senescence and

decay. At this stage, fungal hyphae erupted from the stem vascular

tissue into the surrounding cortical parenchyma.

In race 0-resistant ‘JG-62’ chickpea plants, the pathogen

progressed upwards along the stem axis at a rate slower than

that observed in the susceptible cv. P-2245. It took 12 dai for the

pathogen to reach the lower stem xylem vessels (Fig. 2n). The

pathogen grew up to reach the fourth stem internode, although no

symptoms were observed during the entire duration of the

experiment. Comparatively, in the race 0-resistant ‘WR-315’

plants, the pathogen remained restricted within the intercellular

spaces of the cortex in the intermediate root zone, but it was never

found in the vascular system (Fig. 2o). Infected plants remained

free of symptoms throughout the duration of the experiment.

Early infection events of susceptible cvs. P-2245 and JG-62 by

a transformant of the highly virulent F. oxysporum f. sp. ciceris race 5

were similar to those described for F. oxysporum f. sp. ciceris race

0 (Fig. 1, Table 2). From 1 to 4 dai, extensive growth of the fungus

on the root surface and the root meristem was observed (Fig. 4a–

c). Thereafter, growth of the race 5 transformant within plants of

these two cultivars progressed faster compared with that of race

0 in cv. P-2245 (Fig. 4d–f). Colonization of xylem vessels in the

apical root zone of cv. P-2245 by the race 5 transformant started

as early as 6 dai and was preceded by extensive intercellular

growth within the root cortex (Fig. 4g). Comparatively, no vascular

infection was noticed in roots of cvs. WR-315 (incompatible

interaction) and JG-62 (compatible interaction) at that same time,

and the pathogen appeared restricted within the epidermis and

root cortex of the apical root zone, respectively (Fig. 4h,i).

However, by 8 dai hyphae of the race 5 transformant reached the

stem xylem vessels and were located in the epicotyl and second

stem internode of susceptible cvs. JG-62 (Fig. 4k) and P-2245

(Fig. 4j), respectively, but no symptoms were observed. Symptoms

started to develop on day 9 dai, at which time the pathogen

hyphae within the xylem vessels had reached up to the fourth and

third stem internodes of ‘P-2245’ and ‘JG-62’ plants, respectively

Table 1. Characterization of two isolates of Fusarium oxysporum f. sp. ciceris (races 0 and 5) transformed with the ZsGreen
fluorescent protein.

Isolatesa Mycelial growthb Elements of the disease progress curvec

DIIfinal SAUDIIPC IP

RMGFinal

(mm) RGR (mm/h) P-2245 JG-62 PV-1 WR-315 P-2245 JG-62 PV-1 WR-315 P-2245 JG-62 PV-1 WR-315

F. oxysporum f. sp. ciceris race 0

F3 36.3 0.18 1 0.00 1 0.00 0.76 0.00 0.81 0.00 16.37* –d 16.50* –

F8 36.3 0.18 1 0.00 1 0.00 0.75 0.00 0.84 0.00 16.87* – 16.50* –

F11 35.8 0.18 1 0.00 1 0.00 0.71 0.00 0.81 0.00 20.12 – 18.87 –

F12 35.9 0.18 1 0.00 1 0.00 0.73 0.00 0.83 0.00 19.40 – 17.43* –

Foc-7802(wt) 36.2 0.18 1 0.00 1 0.00 0.71 0.00 0.84 0.00 20.00 – 20.30 –

F. oxysporum f. sp. ciceris race 5

F73 29.3* 0.14* 1 1 0.00 0.00 0.87 0.90 0.00 0.00 13.75 15.62 – –

F83 37.3 0.17 1 1 0.00 0.00 0.89 0.88 0.00 0.00 12.53 12.60* – –

F93 36.6 0.17 1 1 0.00 0.00 0.90 0.90 0.00 0.00 13.00 12.68* – –

F94 31.5* 0.15* 1 1 0.00 0.00 0.88 0.87 0.00 0.00 13.07 14.28* – –

Foc-W6-1(wt) 40.2 0.19 1 1 0.00 0.00 0.86 0.90 0.00 0.00 12.93 15.56 – –

aThese strains were genetically transformed with the ZsGreen fluorescent protein according to Khang et al. (2006); (wt) indicates wild-type strains.
bRMGF = Radial Mycelial Growth Final, assessed by the average value of the fungal colony radius reached after 9 days growing at 2561uC and a photoperiod of 12-h of
a mixture of fluorescent white and near-UV light at 36 mE m–2 s–1. RGR = Radial Growth Rate: slope of linear regression model that related the temporal increase of the
radial growth of the fungal colony. Each value is the mean of three replications (petri dishes). Means in a column followed by an asterisk are significantly different
(P,0.05) than the mean for the corresponding wild-type isolate according to Dunnett’s test.
cDisease was assessed on a 0 to 4 severity scale based on the percentage of affected foliar tissue (0 = 0%, 1 = 1 to 33%, 2 = 24 to 66%, 3 = 67 to 100%, and 4 = dead plant)
at 2–3 days intervals for 42 days growing inside a walk-in growth chamber adjusted at 2562uC, 60–90% of relative humidity and y a 14-h photoperiod of fluorescent
white light at 360 mE m–2 s–1. Incidence and severity data were used to calculate a Disease Intensity Index (DII). DIIfinal: DII at the final date of disease assessment;
SAUDIIPC = area under disease intensity index progress curve standardized by duration time in days of the epidemic; IP: Incubation period, estimated as the number of
days to initial symptoms. Data are the means of four replicated pots, each with four plants. Means in a column followed by an asterisk are significantly different (P,0.05)
than the mean for the corresponding wild-type isolate according to Dunnett’s test.
dNo disease symptoms observed.
doi:10.1371/journal.pone.0061360.t001
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(Fig. 4m,n). Symptoms on these two cultivars consisted of severe

leaf chlorosis and flaccidity characteristic of the wilting syndrome.

Growth of the pathogen within the stem xylem continued,

subsequently reaching the uppermost stem tissues in ‘P-2245’,

and the 3 to 4th internodes of ‘JG-62’ by 12 dai. Two days later,

the entire vascular system was colonized by the pathogen, and the

plants died. Conversely, plants of the resistant cv. WR-315

remained symptomless throughout the duration of the experiment,

though race 5 was able to invade the xylem vessels at the apical

root zone by 12 dai, and occasionally it was found in the hypocotyl

xylem vessels by 18 dai. F. oxysporum f. sp. ciceris race 5 was found

neither in epicotyl nor in stem tissues (Fig. 4o).

Colonization by the pathogen was quantitatively assessed using

the incidence (proportion of colonized vessels, IcVC) and intensity

(lumen area of the transverse section of an infected vessel occupied

by fungal hyphae, ItVC) parameters. These two variables were

highly and positively correlated (r = 0.7936, P,0.0001); therefore,

only results concerning data analysis of ItVC are shown. Overall,

the ItVC was significantly influenced (P,0.05) by the experimen-

tal treatment combinations and their interactions. However, most

ItVC variation was accounted by the main factors in the study, i.e.,

pathogenic race [F= 500.81, P,0.0001, 46.16% Mean Square

Error (MSE)] and chickpea cultivar (F= 279.16, P,0.0001,

25.73% MSE). Variation in ItVC was accounted to a much lesser

extent by sampling time (F= 75.13, P,0.0001, 6.93% MSE) and

Figure 1. Early stages of chickpea root infection by Fusarium oxysporum f. sp. ciceris races 0 and 5 in compatible and compatible
interactions. (a, b) germinated conidia on the root apex with primary mycelia at 1 dai; (c–d) primary mycelia and initial hyphal colonization on
lower root zone at 2 dai; (e) intermediate root zone showing hyphal colonization with mycelium extending from the epidermis into cortical tissues at
6 dai; (f) conidia on the root surface with germ tube(s) at 1 dai; (g) germinated conidia on the root surface with primary mycelia at 1 dai. The
Fusarium oxysporum f. sp. ciceris isolates were transformed with the ZsGreen fluorescent protein and imaged using confocal laser scanning
microscopy. dai: number of days after inoculation.
doi:10.1371/journal.pone.0061360.g001
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sampled plant zone (F= 16.88, P,0.0001, 1.56% MSE). Interac-

tions among main factors were statistically significant (P,0.05) in

some cases, but they explained a marginal proportion of the

variation in ItVC, which ranged from 5.59 to 0.67% of the MSE

(data not shown).

The ItVC level tended to increase over time, reaching the

highest value at 16 dai, except for the cv. JG-62/race 5

combination (Fig. 5). In this combination, ItVC decreased in

plants sampled at 16 dai probably due to tissue disintegration and

death of plant (i.e., disease severity rating 3 to 4 in the 0–4 scale)

(Fig. 5a–d). The mean level of ItVC was significantly higher

(F= 170.94, P,0.0001) at sampling times in which plants showed

disease symptoms. Moreover, ItVC values were positively and

significantly correlated with the disease severity ratings (r = 0.5777,

P= 0.0120) (data not shown).

At early stages of plant colonization, i.e., at sampling times in

which no disease symptoms develop in the compatible interac-

tions, ItCV was significantly higher (F= 185.21, P,0.0001) on

compatible interactions (Fig. 6a). Among them, ItVC was highest

(2.8160.17%; F= 169.04, P,0.0001) in the most conducive P-

2245/race 5 interaction, decreased significantly (1.6660.10%;

F= 56.69, P,0.0001) in cv. JG-62 infected by this same race 5,

and was lowest (0.5160.07%; F= 168.03, P,0.0001) in plants of

cv. P-2245 infected by race 0 (Fig. 6a). Among incompatible

interactions, ItVC was highest on the cv. WR-315/race 5

interaction (1.1760.16%; F= 65.18, P,0.0001) and decreased

to 0.1860.04% (F= 40.96, P,0.0001) in ‘JG-62’ plants infected

by race 0. There was no invasion of xylem vessels in the cv. WR-

315/race 0 interaction (Fig. 6a).

At advanced stages of plant colonization, i.e., in sampling times

in which disease symptoms develop in compatible interactions,

infection of xylem vessels only occurred in ‘JG-62’ plants infected

by race 0 that showed a mean ItCV of 0.5160.08% (Fig. 6b). In

compatible interactions, the mean ItVC was highest (F= 310.85,

P,0.0001) for the cv. P-2245/race 5 interaction with a mean

ItVC of 5.8760.26%, followed by that in cv. JG-62 infected by the

same race 5 (2.4860.15%; F= 286.34, P,0.0001) (Fig. 6b).

Comparatively, infection of those two cultivars by the less virulent

race 0 was associated with significantly lower ItVC values, i.e.,

1.6560.16% in cv. P-2245 (F= 185.40, P,0.0001) and

0.5160.08% in the incompatible cv. JG-62/race 0 interaction

(F= 20.82, P,0.0001) (Fig. 6b). It should be emphasized that, as it

was pointed out before, no symptoms developed in ‘JG-62’

infected by race 0.

Variation of mean ItVC along the main axis of a plant differed

considerably among chickpea cultivar-pathogenic race experimen-

tal combinations, sampling times and the severity of symptoms

(Fig. 5; Table 3). Thus, for asymptomatic plants in the in-

compatible cv. JG-62/race 0 interaction, the mean ItVC in root

and hypocotyl was significantly higher (F= 14.15, P= 0.0002) than

in epicotyl and stem (Fig. 5a–d), whereas the mean ItVC values in

the epicotyl were similar to those in the stem (F= 1.72, P= 0.1900)

(Fig. 5c,d; Table 3). Overall, the mean ItVC was similar (F,2.21,

P.0.1385) in subterranean and aerial plant parts of the

compatible cv. JG-62/race 5 interaction that were sampled at

the same time that those in the incompatible cv. JG-62/race

0 interaction that remained asymptomatic (Fig. 5a–d). However,

Figure 2. Temporal and spatial patterns of chickpea infection by Fusarium oxysporum f. sp. ciceris race 0. Colonization of three cultivars,
including P-2245 (susceptible, S), JG-62 (resistant, R), and WR-315 (R) was imaged using confocal laser scanning microscopy. ep: epidermis, c: cortex, x:
xylem, dai: number of days after inoculation. (a–c): root apex; (d–i): lower root zone; (j): upper root zone; (k): intermediate root zone; (l): lower root
zone; (m): stem fifth internode; (n): stem fourth internode; (o): half root zone. The Fusarium oxysporum f. sp. ciceris isolate was transformed with the
ZsGreen fluorescent protein.
doi:10.1371/journal.pone.0061360.g002

Figure 3. Advanced stages of chickpea infection by Fusarium
oxysporum f. sp. ciceris races 0 and 5 in compatible and
compatible interactions. Left panels: cross sections; Right panels:
longitudinal sections. (a,b) intercellular colonization of cortical root
tissue occurring in all compatible and incompatible interactions; (c–d)
intercellular colonization of cortical root tissue and fungal mycelia
through root xylem vessels occurring in all compatible interactions and
in the incompatible interactions of cv. JG-62/race 0 and cv. WR-315/race
5; (e–f) heavy colonization of xylem stem vessels occurring in all
compatible interactions and in the incompatible interaction of cv. JG-
62/race 0. The Fusarium oxysporum f. sp. ciceris isolates were
transformed with the ZsGreen fluorescent protein and imaged using
confocal laser scanning microscopy. c: cortex, x: xylem.
doi:10.1371/journal.pone.0061360.g003
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ItVC in the epicotyl was significantly higher (F= 18.05, P,0.0001)

when compared with that in the stem (Fig. 5c,d; Table 3).

Nevertheless, at later sampling times, with plants showing

Fusarium wilt symptoms, the mean ItVC increased from bottom

to top in a plant. Thus, the aerial plant tissues showed a higher

colonization intensity (F= 6.43, P= 0.0144) compared with that in

subterranean tissues, with ItVC being highest (F,11.70,

P,0.0007) in the epicotyl (Fig. 5a–d; Table 3). However, this

colonization pattern did not hold for plants sampled at 16 dai. At

this time, severe symptoms in a plant were associated with

extensive collapse and xylem degeneration, particularly in the

aerial tissues, which determined the occurrence of ItVC means

lower than those in previous sampling times (Fig. 5c,d).

In compatible interactions of the highly susceptible cv. P-2245

with the two races, the pattern of quantitative colonization during

the time period that plants were asymptomatic was similar for

races 0 and 5, with the mean ItVC being higher (F.10.06,

P,0.0017) in the subterranean tissues compared to that in aerial

tissues (Table 3), though mean values for race 5 were significantly

higher than those for race 0 (F= 171.31, P,0.0001) (Fig. 5e–h).

Conversely, that pattern of colonization differed much between

races when infection gave rise to the symptomatic stage (Fig. 5).

Thus, for F. oxysporum f. sp. ciceris race 0 the ItVC was significantly

higher (F= 44.53, P,0.0001) in subterranean than in aerial plant

parts (Fig. 5e–h; Table 3), and ItVC decreased in the upper stem

tissues as the severity of symptoms increased (F= 51.61,

P,0.0001) (Fig. 5h; Table 3). On the contrary, for race 5 ItVC

was higher (F= 39.71, P,0.0001) in the aerial than in sub-

terranean plant parts, reaching similar values (F= 2.83,

P= 0.0928) in the epicotyl and upper stem tissues (Fig. 5e–h;

Table 3).

Discussion

This study demonstrates for the first time the utility of CLSM

for better understanding the spatial-temporal dynamics of the

infection and colonization processes of F. oxysporum f. sp. ciceris

races 0 and 5 in three chickpea cultivars including compatible and

incompatible interactions.

The use of genetically transformed organisms requires prior

demonstration that transformation did not modify any biological

feature of the wild strains. Phenotypic characterization of the

transformants developed in our study, including growth rate and

morphology, pathogenicity and virulence on a susceptible chick-

pea cultivar, and pathogenic race, showed that most of them

retained the biological features of the wild-type strain. Based on

these evaluations, two transformants were selected for the study:

F11 and F93 derived, respectively from wild strains Foc-7802 (race

0) and Foc-W6-1 (race 5).

We qualitatively and quantitatively assessed the interactions of

F. oxysporum f. sp. ciceris races 0 and 5 with chickpea cultivars in

both compatible and incompatible interactions from the early

stages of root colonization to infection and extensive stem vascular

Figure 4. Temporal and spatial patterns of chickpea infection by Fusarium oxysporum f. sp. ciceris race 5. Colonization of three cultivars,
including P-2245 (susceptible, S), JG-62 (S), and WR-315 (resistant, R) was imaged using confocal laser scanning microscopy. ep: epidermis, c: cortex, x:
xylem, dai: number of days after inoculation. (a–c): root apex; (d–i): lower root zone; (j): stem second internode; (k): epicotyl; (l): lower root zone; (m):
stem fourth internode; (n): stem third internode; (o): lower root zone. The Fusarium oxysporum f. sp. ciceris isolate was transformed with the ZsGreen
fluorescent protein.
doi:10.1371/journal.pone.0061360.g004

Table 2. Colonization process of different parts of three chickpea cultivars showing differential resistance by Fusarium oxysporum
f. sp. ciceris races 0 and 5a.

Time (days after
inoculation) Cultivar

P-2245 JG-62 WR-315

F. oxysporum f. sp. ciceris race 0

1 to 3 Root (L): epidermis Root (L): epidermis Root (L): epidermis

4 Root (L): epidermis Root (L): epidermis Root (L): epidermis

6 Root (L): cortex Root (L): cortex Root (L): epidermis

8 Root (U): xylem vessels Root (L): xylem vessels Root (L): cortex

10 Stem (L): xylem vessels Root (U): xylem vessels Root (M): cortex

12 Stem (M): xylem vessels Stem (M): xylem vessels Root (M): cortex

14 Stem (U): xylem vessels Stem (M): xylem vessels Root (M): cortex

F. oxysporum f. sp. ciceris race 5

1 to 3 Root (L): epidermis Root (L): epidermis Root (L): epidermis

4 Root (L): cortex Root (L): cortex Root (L): epidermis

6 Root (L): xylem vessels Root (M): cortex Root (L): epidermis

8 Stem (L): xylem vessels Epicotyl: xylem vessels Root (L): cortex

10 Stem (M): xylem vessels Stem (L): xylem vessels Root (L): cortex

12 Stem (U): xylem vessels Stem (M): xylem vessels Root (L): xylem vessels

14 Stem (U): xylem vessels Stem (U): xylem vessels Root (L): xylem vessels

aProgress of pathogen proliferation along the vertical axis of the plant was analyzed in the following parts: Root: (L) lower: meristem, elongation and differentiation
zones; (M) medium, (U) upper. Stem: (L) lower, internode 1 to 2nd; (M) medium, internode 3 to 4th; (U) upper, 5th internode or above.
doi:10.1371/journal.pone.0061360.t002
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Figure 5. Intensity of vascular colonization (ItCV) by races 0 and 5 of Fusarium oxysporum f. sp. ciceris. The Fusarium oxysporum f. sp.
ciceris (Foc) isolates were transformed with the ZsGreen fluorescent protein. Plants were sampled daily from 1 to 4 days after inoculation (dai), and at
2 days intervals from 6 to 18 (dai). Tissues sampled included: Root: lower and intermediate zone of the tap root (a, e); Hypocotyl (b, f) and epicotyl (c,
g): zones immediately before and after the insertion of cotyledons, respectively; Stem (d, h): internodes one to fifth of the main stem. Severity (S)
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colonization. In contrast to our work, most studies on formae

speciales of F. oxysporum/host plant interactions involving the use of

CLMS were restricted to subterranean host tissues [e.g.,

18,19,33,34,35,36,37], with only a few of them trying to observe

colonization in the stem tissues [20,21,38].

Ingress of formae speciales of F. oxysporum into host plants was

assumed to take place either by direct penetration or through

wounds [39]. In this present study, penetration of chickpea roots

by F. oxysporum f. sp. ciceris races 0 and 5 occurred through intact

tissues without need of differentiating specialized penetration

structures. This confirms previous observations in this same

pathosystem by Jiménez-Dı́az et al. [23], as well as most works

performed in other Fusarium wilts [e.g., 17,18,21,39,40,41,42,43].

In our study, the meristematic cells of chickpea root apex were

identified as the preferential infection site for F. oxysporum f. sp.

ciceris. This does not agree with previous studies on this

pathosystem, which concluded that the cotyledons and zones of

the epicotyl and hypocotyl at the junction of or close to cotyledons

are preferential invasion sites of the pathogen [23,24]. Differences

in the inoculation methods used may account for differences

between these studies. Indeed, Olivain & Alabouvette [43]

observed that colonization of the root elongation zone and root

apex were the preferential infection sites of tomato roots

inoculated with F. oxysporum f. sp. lycopersici by the hydroponic

culture method, but that did not hold when plants were inoculated

by the soil-infestation inoculation method [22,35].

In the absence of wounds, most formae speciales of F. oxysporum

can get ingress into the host through a variety of root tissues,

including the root meristem, root hairs, and different zones of the

root and seed [39]; however, most reports support the root tip as

a preferential site for host invasion by these pathogens. This was

reported for F. oxysporum f. sp. asparagi in asparagus [44], F.

oxysporum f. sp. dianthi in carnation [45], F. oxysporum f. sp. lini in flax

[46], F. oxysporum f. sp. pini in pine seedlings [47], F. oxysporum f. sp.

vanillae in vanilla [48], and F. oxysporum f. sp. vasinfectum in cotton

[42]. The lack of penetration through the host root apex was

described only for F. oxysporum f. sp. cucumerinum in cucumber [49].

Others reported that host penetration sites for formae speciales of

F. oxysporum include the zone of root elongation by F. oxysporum f.

sp. lentis in lentils [50], and the cotyledonary node and un-

differentiated region of the root tip for F. oxysporum f. sp. pisi in peas

[51]. In our study, the rate and intensity at which the pathogen

colonized the epicotyl and stem xylem was directly related to the

degree of compatibility of the F. oxysporum f. sp. ciceris race/

chickpea cultivar combination. Thus, both in the root and stem

the fastest and higher intensity of xylem colonization (ItVC)

occurred in the compatible interactions. Thus, ItCV was highest in

cv. P-2245 infected by the highly virulent race 5, followed by that

in cv. JG-62 infected by the same race and in cv. P-2245 infected

by the less virulent race 0. This quantitative pattern of xylem

colonization agrees with observations by Garcı́a-Sánchez et al. [20]

in bean infected with F. oxysporum f. sp. phaseoli, in which the rate

and intensity of colonization of xylem vessels were higher for the

most virulent isolate of the pathogen. The higher biomass of race 5

compared with that of race 0 observed and quantified with CLSM

indicate the disease severity (DS) level of foliar symptoms assessed at each sampling time using a 0 to 4 scale based on the percentage of affected
foliar tissue (0 = 0%, 1 = 1 to 33%, 2 = 24 to 66%, 3 = 67 to 100%, and 4 = dead plant). S = 0: no symptoms; S = L: initial symptoms (0,DS,2); S = M:
moderate symptoms (2,DS$3); and S = S: severe symptoms (DS$3), for Foc-0 (first character) and Foc-5 (second character). There were four plants
(two plastic pots) per F. oxysporum f. sp. ciceris race/chickpea cultivar combination analysed for each sampling time. The experiments were arranged
in a randomized complete blocks design, and were repeated twice. For each sampled tissue, vascular colonization was assessed on four blocks with
20 cells (xylem vessels) per block, covering the entire vascular cylinder. Error bars indicate the standard error of the mean. Significant differences
(P,0.05) between ItCV level reached on races 0 and 5 for each chickpea cultivar/tissue combination at each sampling date are indicated by an
asterisk.
doi:10.1371/journal.pone.0061360.g005

Figure 6. Intensity of vascular colonization (ItCV) by races 0 and
5 of Fusarium oxysporum f. sp. ciceris at early and advanced
stages of plant colonization. (a) ItCV mean values at early stages of
plant colonization, i.e., sampling times in which no disease symptoms
develop in the compatible interactions. (b) ItCV mean values at
advanced stages of plant colonization, i.e., at sampling times in which
symptoms develop in compatible interactions. The Fusarium oxysporum
f. sp. ciceris (Foc) isolates were transformed with the ZsGreen
fluorescent protein. I: incompatible interaction; C: compatible in-
teraction. Plants were sampled daily from 1 to 4 days after inoculation
(dai), and at 2 days intervals from 6 to 18 (dai). Tissues sampled
included: Root: lower and intermediate zone of the tap root; Hypocotyl
and epicotyl: zones immediately before and after the insertion of
cotyledons, respectively; Stem: internodes one to fifth of the main stem.
There were four plants (two plants per pot) per F. oxysporum f. sp. ciceris
race/chickpea cultivar combination analysed for each sampling time.
The experiments were arranged in a randomized complete blocks
design, and were repeated twice. For each sampled tissue, vascular
colonization was assessed on four blocks with 20 cells (xylem vessels)
per block, covering the entire vascular cylinder. Error bars indicate the
standard error of the mean. Significant differences (P,0.05) between
ItCV level reached at races 0 and 5 for each chickpea cultivar are
indicated by an asterisk.
doi:10.1371/journal.pone.0061360.g006
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confirms results from our previous studies using real-time

quantitative PCR, in which the quantity of race 5 DNA both in

subterranean and aerial plant tissues was significantly higher than

that of race 0 [52].

Results of particular interest from this present study are those

concerning the incompatible interactions. In general, asymptom-

atic reactions in fungal wilt pathosystems are associated with the

absence of vascular invasion by wilting fungi. In our study, that

occurred only for the cv. WR-315/race 0 combination. However,

when this same cultivar was infected by the more virulent race 5,

and particularly when cv. JG-62 was infected by the less virulent

race 0, the pathogen either invaded the root xylem vessels to

a limited degree or extensively colonized the root and stem xylem

vessels, respectively, but without any symptom’s development.

This observed lack of vascular colonization in highly incompatible

chickpea/F. oxysporum f. sp. ciceris interactions agrees with reports

from other authors that used light microscopy for observations of

paraffin-embedded tissues [23,24]. Stevenson et al. [24] failed to

find the fungus in the xylem vessels of any of the resistant cvs. WR-

315 and CPS-1 inoculated with each of races 1A or 2, and

Jiménez-Dı́az et al. [23] reported the absence of fungal structures

in root and stem tissues of resistant ‘WR-315’ inoculated with

either race 0 or 5, and resistant ‘JG-62’ inoculated with race 0.

However, these later authors also reported positive isolation of the

pathogen in artificial growth media from subterranean tissues

located at or near sites of cotyledon attachment. From this,

Jiménez-Dı́az et al. [23] concluded that F. oxysporum f. sp. ciceris can

remain associated with those tissues from which it could be

isolated, though to such a minor extent that no fungal structures

could be observed microscopically. Our results for the incompat-

ible cv. WR-315/race 5 interaction are consistent with the

observations by those authors and demonstrate the high efficiency

of the CLSM technology to visualize and characterize in vivo host-

pathogen interactions.

The difference in the degree of colonization of resistant cultivars

by F. oxysporum f. sp. ciceris races found in this present study was also

reported for other formae speciales of F. oxysporum in resistant

cultivars of different hosts. Fang et al. [38] indicated that F.

oxysporum f. sp. fragariae remained confined in the epidermal layer of

the root in a resistant strawberry cultivar, and Tessier et al. [53]

described that F. oxysporum f. sp. pisi was restricted to the initially

infected root vessels in asymptomatic reactions of a resistant pea

cultivar. Conversely, Zvirin et al. [21] reported vascular coloniza-

tion of a resistant melon cultivar by F. oxysporum f. sp. melonis race

1.2, although that occurred at a lower rate and incidence than that

in the susceptible cultivar. Similarly, Ramı́rez-Suero et al. [19]

indicated that there were no significant differences between the

degree of colonization of susceptible and tolerant M. truncatula

genotypes by F. oxysporum f. sp. medicaginis.

Less common among Fusarium wilt diseases is the occurrence of

extensive vascular colonization of the plant axis in the absence of

visible symptoms, as observed in this study for cv. JG-62 infected

with race 0. On the contrary, the degree of symptom expression is

usually reported as being closely related to the extent of vascular

colonization by the pathogen [54], as it was found in the

compatible chickpea/F. oxysporum f. sp. ciceris interactions in this

present study. Interestingly, cv. JG-62 is susceptible to all known

races of the pathogen causing the wilting syndrome but shows

a moderate reaction to race 1B/C, which together with race 0,

belongs to the yellowing pathotype [55]. The asymptomatic

response of ‘JG-62’ plants to extensively xylem colonization by

race 0 corresponds to a tolerant reaction rather than true

Table 3. Effects of sampling time and plant tissue on vascular colonization intensity by Fusarium oxysporum f. sp. ciceris (Foc) races
0 and 5 in chickpea cultivars showing differential resistance.

Cultivar JG-62 Cv. P-2245

Foc-0 Foc-5 Foc-0 Foc-5

Source of variationa F P.F F P.F F P.F F P.F

Sampling time 15.96 ,0.0001 30.20 ,0.0001 165.68 ,0.0001 30.72 ,0.0001

Plant zone 9.22 ,0.0001 7.10 ,0.0001 37.00 ,0.0001 5.60 0.0008

Sampling time 6 Plant zone 2.57 0.0022 7.69 ,0.0001 20.77 ,0.0001 6.47 ,0.0001

Contrasts for asymptomatic plants (sampling times 8 and 10 dai)b

Subterranean vs. aerial tissues –c – 2.20 0.1386 10.07 0.0016 11.56 0.0007

Root vs. Hypocotyl – – 0.55d 0.4578 6.09 0.0139 1.45 0.2283

Hypocotyl vs. Epicotyl – – 0.50 0.4816 ,0.01 0.9525 6.37 0.0118

Epicotyl vs. Stem – – 18.05 ,0.0001 4.58 0.0328 0.93 0.3347

Contrasts for symptomatic plants (sampling times 12 to 16 dai)b

Subterranean vs. aerial tissues 14.15 0.0002 6.43 0.0114 44.53 ,0.0001 39.71 ,0.0001

Hypocotyl vs. Epicotyl 6.77 0.0095 11.69 0.0007 4.78 0.0291 39.67 ,0.0001

Epicotyl vs. Stem 1.72 0.1900 5.99 0.0147 51.61 ,0.0001 2.83 0.0928

aPlants were grown hydroponically in a growth chamber at 2562uC and a 14-h photoperiod of fluorescent white light of 360 mE m22 s21 in an orbital shaker at
120 rpm. Plants were sampled at 2 days intervals from 6 to 18 days after inoculation (dai). Tissues sampled included: Root: lower and intermediate zone of the tap root;
Hypocotyl and epicotyl: zones immediately before and after the insertion of cotyledons, respectively; Stem: internodes one to third of the main stem. Four plants (two
plastic vessels) per F. oxysporum f. sp. ciceris race/chickpea cultivar combination were analysed at each sampling time. The experiments were arranged in a randomized
complete blocks design, and were repeated twice. For each sampled tissue, vascular colonization was assessed on four blocks with 20 cells (xylem vessels) per block,
covering the entire vascular cylinder.
bLinear single-degree of freedom contrasts were computed to test the effect of selected experimental treatment combinations at P,0.05.
cExperimental combinations in which no disease symptoms developed.
dUnderlined values indicate that estimated value for the first term of the contrast was lower than that of the second term.
doi:10.1371/journal.pone.0061360.t003
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resistance. This could indicate that either the fungal biomass has

not yet reached the threshold for inducing symptoms or, more

likely, that other mechanisms together with the presence of

pathogen in the vascular tissues are required for the disease to

develop.

The differential patterns of infection and colonization of

chickpea cultivars by different races could be related to differences

in the defence mechanisms between resistant and susceptible

cultivars. In fact, Garcı́a-Limones et al. [56] indicated that

infection by F. oxysporum f. sp. ciceris race 5 caused significant

changes in activity levels of several oxidative stress-related enzymes

in the apoplast of chickpea roots, although there were differences

between susceptible (‘JG-62’) and resistant (‘WR-315’) cultivars.

Thus, while infection by the pathogen increased apoplastic

glutathione reductase (GR) activity and decreased superoxide

dismutase (SOD) and diamine oxidase (DAO) activities in the

susceptible and resistant cultivars, that occurred earlier (i.e., GR

and SOD) or in higher quantities (i.e., DAO) in the resistant (‘WR-

315’) than in the susceptible (‘JG-62’) cultivar. Conversely, the

main specific responses to infection in each interaction were an

increase in apoplastic ascorbate peroxidase activity in cv. WR-315

and a decrease of this activity in cv. JG-62.

Finally, the results in our study are relevant for disease control.

It is well accepted that the use of resistant cultivars is one of the few

and most effective and environmentally friendly control measures

of Fusarium wilt of chickpeas [4,57,58]. However, populations of

F. oxysporum f. sp. ciceris display high pathogenic variability, which

limits the effectiveness and extensive use of available resistance and

makes necessary the adequate characterization of resistance of

chickpea lines and cultivars to specific races of F. oxysporum f. sp.

ciceris [52,57,59,60]. Our work demonstrates the utility of CLSM

as a rapid and efficient method to qualify and quantify infection by

F. oxysporum f. sp. ciceris races in plant roots and stem, which allows

for the accurate assessment of disease reactions of chickpea

germplasm particularly in incompatible interactions. This tech-

nique allows selecting breeding lines with complete resistance or

those that being partially resistant may carry traits of agronomic

and/or commercial interest. Thus, alone or in combination with

the q-PCR protocol developed in a previous study [52], use of

CLSM is a powerful tool for studies aimed at gaining better

understanding of chickpea - F. oxysporum f. sp. ciceris interactions

and the efficient management through disease resistance breeding

in Fusarium wilt of chickpeas.
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23. Jiménez-Dı́az RM, Basallote-Ureba MJ, Rapoport H (1989) Colonization and

pathogenesis in chickpeas infected by races of Fusarium oxysporum f. sp. ciceri. In:

Tjamos EC, Beckman CH, editors. Vascular Wilt Diseases of Plants. Berlin,

Germany: Springer-Verlag, NATO ASI Series H28. 113–121.

24. Stevenson PC, Turner HC, Haware MP (1997) Phytoalexin accumulation in the

roots of chickpea (Cicer arietinum L.) seedlings associated with resistance to

Fusarium wilt (Fusarium oxysporum f. sp. ciceri). Physiol Mol Plant Pathology 50:

167–178.

25. Gupta S, Chakraborti D, Rangi RK, Basu D, Das S (2009) A Molecular insight

into the early events of chickpea (Cicer arietinum) and Fusarium oxysporum f. sp. ciceri

(race 1) interaction through cDNA-AFLP analysis. Phytopathology 99: 1245–

1257.

Fusarium Oxysporum - Chickpea Interactactions

PLOS ONE | www.plosone.org 13 April 2013 | Volume 8 | Issue 4 | e61360



26. Khang C, Park S, Rho H, Lee Y, Kang S (2006) Agrobacterium tumefaciens-

mediated transformation and mutagenesis of filamentous fungi Magnaporthe grisea

and Fusarium oxysporum. In: Wang K, editor. Agrobacterium Protocols. Totowa:

Humana Press. 403–420.

27. Mullins ED, Chen X, Romaine P, Raina R, Geiser DM, et al. (2001)
Agrobacterium-mediated transformation of Fusarium oxysporum: An efficient tool

for insertional mutagenesis and gene transfer. Phytopathology 91: 173–180.
28. Hellens R, Mullineaux P, Klee H (2000) Technical Focus: A guide to

Agrobacterium binary Ti vectors. Trends Plant Sci 5: 446–451.

29. Puhalla JE (1985) Classification of strains of Fusarium oxysporum on the basis of
vegetative compatibility. Can J Bot 63: 179–183.
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