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There have been two major eras in the history of gene discovery. The first was the era of
linkage analysis, with approximately 1,300 disease-related genes identified by positional
cloning by the turn of the millennium. The second era has been powered by two major
breakthroughs: the publication of the human genome and the development of massively
parallel sequencing (MPS). MPS has greatly accelerated disease gene identification, such
that disease genes that would have taken years to map previously can now be determined
in a matter of weeks. Additionally, the number of affected families needed to map a
causative gene and the size of such families have fallen: de novo mutations, previously
intractable by linkage analysis, can be identified through sequencing of the parent–child
trio, and genes for recessive disease can be identified through MPS even of a single
affected individual. MPS technologies include whole exome sequencing (WES), whole
genome sequencing (WGS), and panel sequencing, each with their strengths. While WES
has been responsible for most gene discoveries through MPS, WGS is superior in
detecting copy number variants, chromosomal rearrangements, and repeat-rich
regions. Panels are commonly used for diagnostic purposes as they are extremely
cost-effective and generate manageable quantities of data, with no risk of unexpected
findings. However, in instances of diagnostic uncertainty, it can be challenging to choose
the right panel, and in these circumstances WES has a higher diagnostic yield. MPS has
ethical, social, and legal implications, many of which are common to genetic testing
generally but amplified due to the magnitude of data (e.g., relationship misattribution,
identification of variants of uncertain significance, and genetic discrimination); others are
unique to WES and WGS technologies (e.g., incidental or secondary findings).
Nonetheless, MPS is rapidly translating into clinical practice as an extremely useful part
of the clinical armamentarium.
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THE RECOGNITION OF RARE
GENETIC DISORDERS

In starting this paper exploring massively parallel sequencing (MPS)
technologies for rare genetic disorders with particular reference to
skeletal diseases, it is extremely fitting that the first description of
any monogenic disorder was black bone disease (now known as
alkaptonuria). Archibald Garrod, a UK physician, commented in
1902 that the constellation of symptoms constituting alkaptonuria
“was apt to make its appearance in two or more brothers and
sisters” (1). Increased occurrence in siblings does not necessarily
indicate a genetic disorder (increased familiality may also reflect
environmental sharing); but crucially Garrod also noted that they
were commonly “the offspring of marriages of first cousins who did
not themselves exhibit this anomaly … and among whose
forefathers there is no record of its having occurred”. Through
the world-wide dissemination of Gregor Mendel’s gardening
experiences (2), the modern reader would rapidly recognize this
“peculiar mode of incidence….well known in connexion with some
other conditions” as a classic description of a recessive
monogenic disorder.

Monogenic disorders arise due to carriage of highly penetrant
variants affecting a single gene. The presence or absence of disease
can be predicted from the presence or absence of the variant(s) of
interest. With some allowance for differential penetrance and
expressivity, the mathematical and predictable inheritance
patterns of monogenic disorders enable meaningful genetic
counseling to affected individuals and known carriers and to
parents with a child affected by a de novo dominant mutation.
Monogenic disorders are individually rare but cumulatively affect
1% of the worldwide population (3) and include many (currently,
461 defined) skeletal disorders (4).
MAPPING RARE GENETIC DISORDERS:
EARLY DAYS

It took many decades to move from the recognition of
monogenic disorders to the mapping of the first gene. Initially,
such genes were mapped by linkage—the co-segregation [or
linkage] of a genetic region with a disease phenotype within a
family. The first disease to be linked to the inheritance of any
genetic marker was the dominant disorder of Huntington’s
disease, initially mapped to the short arm of chromosome 4 in
1983 (5). However, it took another decade until the gene itself
(huntingtin, located on chromosome 4p16.3) was finally
determined, which effort took 58 researchers from six research
groups and the participation of 75 large Venezuelan families (6).
By this time, though, the first gene to be identified for any human
disease had been cloned [CYBB, for X-linked chronic
granulomatous disease (IM 300640)] (7). Linkage was often
aided by recognition of chromosomal aberrations, such as
translocation or uniparental disomy, in an affected individual
—for example, contributing to the mapping of the gene for cystic
fibrosis (8, 9). By 1995 a review article enthused about the
dizzying number of genes which had been identified for
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human diseases—42!—marking the only time the authors have
seen the phrase, “Bingo!” used in a scientific paper (10).

Gene mapping by linkage, irrespective of the chosen marker
[whether chromosomal banding patterns, restriction fragment
length polymorphisms, microsatellites, or single nucleotide
polymorphisms (SNPs)] is critically restricted by the number of
informative meioses within contributing family pedigrees. Cross-
over events and recombination at meiosis incrementally limit the
genetic region shared by affected individuals within the family; ergo,
large multi-generational families with many affected individuals
(equating to multiple meiotic events between distantly related
affected individuals) represent the ideal pedigree for gene
mapping via linkage. It would be unusual for a single pedigree to
have sufficient affected individuals and sufficient informative
meioses for definitive statistical evidence of linkage; thus, methods
of summing genetic information from multiple families were
developed. Many monogenic diseases were mapped by linkage, by
2001, 1,336 monogenic disorders [personal correspondence from
Dr Victor McKusick, quoted in (11)].

There are some obvious difficulties with gene mapping by
linkage. The first is that diseases with late onset or incomplete
penetrance are harder to map, as correct disease attribution is
more difficult. Large family pedigrees are inherently unlikely in
diseases that adversely affect reproductive fitness (which includes
many skeletal dysplasias, for example). The success of pooling
genetic information from disparate families assumes that all
affected individuals, irrespective of which family they come
from, have a mutation in the same causative gene and not, for
example, mutations in many different genes along a common
pathway resulting in a common end phenotype. Here it is
relevant to add that within any one family all affected
individuals need to carry the same mutation (and, by
definition, share the same haplotype of genetic markers);
however, when pooling genetic information from multiple
families, each family can have a different causative mutation—
as long as it is in the same gene. Diseases with significant gene/
environment interaction will be difficult to map—unless all
family members are exposed equally to the requisite
environment, essentially removing its contribution to variable
affection status. Lastly, novel mutations are intractable by
linkage, as by definition linkage requires the presence of a
shared genetic haplotype among affected family members.
MAPPING RARE GENETIC DISORDERS:
A COMPLETE FRAMESHIFT

In 2014, in a paper celebrating the 10th anniversary of the release of
the Human Genome (12) and using the example of gene mapping
for fibrodysplasia ossificans progressiva (FOP; MIM 135100), we
wrote that, “if massively parallel sequencing [MPS] technologies had
been available when the search for the FOP gene began, the answer
could have been found in 15 weeks, not 15 years.” At first glance,
this statement might seem excessively hubristic even for a
celebratory piece. However, to illustrate the point: at this time we
had just published a review of MPS in skeletal dysplasias (13) which
February 2021 | Volume 11 | Article 628946
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at the time of submission (April 2013) listed 22 skeletal dysplasias
mapped using MPS with a total of 26 publications; at the time of
acceptance just twelve weeks later (July 2013) ten more papers had
added another six skeletal dysplasia genes to the list. The Nosology
and Classification of Genetic Skeletal Disorders: 2010 Revision
identified “456 conditions…316 [of which] were associated with
mutations in one or more of 226 different genes.” (14) By the 2019
revision, pathogenic variants in 437 genes had been identified for
425 of 461 disorders now categorized (92%) (4)—i.e. after the
decades needed to identify the first 226 genes for rare skeletal
disorders, it took less than 10 years to double this number. As for
skeletal dysplasias, so for many other monogenic disorders, as the
mode of gene discovery rapidly transitioned from positional cloning
and other traditional gene mapping methods to MPS (15, 16).
Currently, the catalog Online Mendelian Inheritance in Man
(https://omim.org/) lists 6,751 phenotypes for which the
molecular basis is known and 4,339 genes with a phenotype-
causing mutation—these numbers have increased even during the
short time this paper was in review.

The key developments underpinning the extraordinary recent
progress in gene mapping in rare disorders are:

a. the publication of the human genome project in 2003 (17)
(https://www.genome.gov/human-genome-project), providing
the reference genome for comparison with sequence data.

b. the development of massively parallel sequencing (MPS)
technologies—both undifferentiated genome sequencing and
sequencing targeted to the exome or a defined set of genes—
allowing sequencing of multiple genomic regions simultaneously.

c. easy accessibility of large databases of genetic variability (such
as the UK10K (https://www.uk10k.org/), 1,000Genomes
(https://www.internationalgenome.org/), Human Variome
Project (https://www.humanvariomeproject.org/), gnomAD
(https://gnomad.broadinstitute.org/) and dbSNP (https://
www.ncbi.nlm.nih.gov/snp/), so that rare/novel disease-
causing variants could be differentiated from more common
polymorphisms within ethnically appropriate populations.

d. international collaboration and cooperation, between clinicians
and researchers, with interaction through platforms such as the
National institute of Health Centers for Mendelian Genomics
(http://mendelian.org/), Orphanet (https://www.orpha.net/
consor/cgi-bin/index.php), ClinVar (https://www.ncbi.nlm.nih.
gov/clinvar/), Human Gene Mutation Database (http://www.
hgmd.cf.ac.uk/ac/index.php), the International Rare Diseases
Research Consortium (https://irdirc.org/) and Leiden Open
Variation Database (https://www.lovd.nl/), informing and
encouraging collaborative new gene discovery.

Each of the above websites has detailed information about
their formation and governance.
TYPES OF MASSIVELY PARALLEL
SEQUENCING

MPS technologies can be divided into pre-defined gene panels and
the more agnostic approaches of whole genome and whole exome
Frontiers in Endocrinology | www.frontiersin.org 3
sequencing (with abbreviations WGS and WES respectively). The
authors acknowledge that, strictly speaking, WGS and WES are
misnomers, as neither technology has perfect coverage of its
eponymous target; however, these common abbreviations will be
used in this review. There are many excellent review articles on the
technical aspects of the various types of MPS (18, 19). The strengths
and weakness of different MPS technologies for new gene discovery
and for clinical utility are discussed below.
ANALYSIS OF MPS DATA

Human genetic variability is huge. On average, each individual
harbors 3 million SNPs (5,000 private to that individual); 700,000
indels (295 private), 215 large deletions (one private), and 576 genes
with either homozygous or compound heterozygous predicted loss-
of-function variants (20). Sifting so much data to determine the
causal variant for a disease can be, at the risk of understatement,
challenging. After stringent quality control of the sequencing data, a
typical common-sense and empiric approach adopted by ourselves
and many others has been to filter for rare variants (with minor
allele frequency thresholds informed by disease frequency andmode
of inheritance) of likely deleterious effect (e.g., nonsense, missense,
affecting canonical splice-sites, frameshift), affecting highly
evolutionarily conserved bases and predicted damaging by one or
more in silico prediction algorithms [e.g., SIFT (21), Polyphen (22),
MutationTaster (23)] that segregate appropriately with disease
within a family (24); or, if looking at unrelated individuals, are
present in the same gene in multiple unrelated cases (25). Obviously
this description is somewhat simplistic, and simply finding variants
that fulfil these criteria does not prove they are disease-causing.
However, these steps usually lead to a tractable list of variants that
can then be assessed for functional consequence and/or compared
with data from other unrelated individuals with a
common phenotype.

The use of ethnically appropriate populations to determine
allele frequencies for variants and inform their categorization as
novel, rare, infrequent, or common, is critical. The reference data
in most sequencing databases are not populated from all ethnic
groups equally, with over-representation of western European
Caucasian populations; more recent sequencing efforts have
aimed to address this imbalance. Cohorts such as gnomAD
(26) provide ethnicity-specific minor allele frequencies; but the
robustness of these understandably depends on the size of the
sequenced population contributing to the data.
HOW MANY CASES ARE NEEDED TO
MAP A MONOGENIC DISORDER?

The success rate of MPS to map novel causative genes depends
on the mode of inheritance of the condition. We have focused on
examples drawn from skeletal dysplasias here, but the principles
apply to other disease groups also.

Autosomal recessive disorders are generally easier to ‘solve’ as
the list of genes with rare homozygous or compound
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heterozygous variants is usually relatively short. It is possible to
identify the likely causative gene from initial sequencing a single
affected individual (27–29)—though, as above, such evidence
would need confirmation by identifying pathogenic variants in
the same gene in other unrelated individuals and/or
functional support.

For de novo dominant disorders, the causative gene may be
mapped by sequencing a single affected child and parents (30) or by
sequencing several unrelated probands (as few as three) and filtering
the data for either a common variant shared by all affected
individuals (31, 32) or with unique mutations but within a
common gene (25, 33). Mapping inherited (as opposed to de
novo) autosomal dominant diseases is more difficult due to co-
inheritance of multiple unimportant variants within a family. The
most parsimonious design is to sequence most distantly related
affected individuals: as discussed above, these have the largest
number of meioses (and, by implication, greatest number of
recombination events) separating the affected cases. With n
meioses between individuals, the chance of any given variant
segregating is (½)n; and use of MPS data from both affected and
unaffected individuals can help filter down variants according to
disease status. Examples of autosomal dominant skeletal dysplasias
mapped within a single family include spondylocostal dysostoses,
mapped through MPS of five members of a family (three affected,
two unaffected), with pathogenicity subsequently confirmed with
functional data (34); and KBG syndrome [MIM 148050] (named
after the initials of early affected individuals, in whom skeletal
features include macrodontia, craniofacial abnormalities, and short
stature), initially mapped through MPS of two affected family
members and confirmed through MPS of one unrelated
person (35).

Examples of X-linked skeletal dysplasias mapped by WES
include the identification of mutations in FLNA as the cause of
Terminal Osseous Dysplasia (36); and two forms of osteogenesis
imperfecta, due to mutations in PLS3 (37) and MBTBS2 (38).

Somatic disorders can be mapped through paired analysis,
with MPS of affected and unaffected tissues, subtracting the
variants in the latter from the former—indeed, this approach is
commonly employed in paired tumor/germline sequencing in
cancer. This approach has been successful in skeletal dysplasias
also—for example, identification of postzygotic somatic
mutations in PIK3CA as the cause of Congenital Lipomatous
Overgrowth with Vascular, Epidermal, and Skeletal anomalies
(CLOVES), identified through WES of affected lipomatous tissue
from six individuals compared with their germline DNA (39);
and of AKT1 as the cause of Proteus Syndrome (40) through
WES of affected vs. unaffected tissue biopsies in 29 individuals.
Depth of coverage will critically affect the ability to detect
mosaicism, in that the allelic ‘mix’ in somatic disorders will
vary both between individuals and between different tissues
within an individual. The acceptable depth of MPS for calling
germline heterozygous carriage of a variant is relatively modest:
10× is usually regarded as sufficient to ‘call’ a heterozygous
variant and 15× for a homozygous variant (41); at these
depths of coverage WES would be unlikely to detect low
level mosaicism.
Frontiers in Endocrinology | www.frontiersin.org 4
STRENGTHS AND WEAKNESS OF
DIFFERENT MPS TECHNOLOGIES FOR
NEW GENE DISCOVERY AND FOR
CLINICAL UTILITY

In keeping with early predictions that 85% of Mendelian
disorders would arise from coding mutations (42) and with the
logic inherent in Sutton’s law (viz., that one robs banks because
that’s where the money is), it is neither surprising that WES has
been the most frequently employed modality to map novel genes,
nor how successful this approach has been. Most of the examples
provided above used WES as their mode of gene discovery, and
the figure given above may well prove an underestimate. WES is
not simply much cheaper than WGS for a given coverage: the
large databases detailing exonic variation that informs analysis of
WES data do not as yet exist for the whole genome (though this is
rapidly changing with initiatives such as the UK Biobank 500K
Sequencing Project and gnomAD), and proving causality for
non-coding variants is difficult.

WES has proven similarly fruitful in diagnostic yield when
translated from the research setting to clinical delivery [recently
reviewed extensively (43)] with high diagnostic rates reported in
both developed and developing countries (44), including
sequencing in consanguineous families (44–46) and singleton
sequencing (47) [noting that yield is approximately two-fold
higher when sequencing parent–child trios compared with
singletons (43)]. WES may also lead to a revision of a
diagnosis—which may be confronting to both patient and
clinician (discussed further below) but hopefully direct more
appropriate clinical care (45, 47). A recent study reporting 155
novel causal genes identified during clinical sequencing (WES) in
a consanguineous cohort comprising 2,200 families highlighted
not only the use of WES for diagnostic purposes but also the
benefits of these data in completing the virtuous circle of clinical
discovery and clinical delivery, through feedback of these data for
ongoing research and gene discovery (44). However, WES is not
ideal for detection of copy number variation (48) including
detection of large indels.

Very few monogenic disorders due to non-coding/splice-site
variants have been identified to date (49). Ironically, a notable
exception to this is the skeletal disorder of van Buchem’s disease,
a high bone mass disorder due to a 52 kb deletion downstream of
SOST (50), though this disorder was not identified through MPS
approaches. Thus, the usefulness of WGS in gene discovery in
monogenic disorders, compared to WES, has not yet been
established. Certainly WGS captures the exome more evenly
(as well, obviously, as the genome) than does WES. WGS is also
superior for the detection of large (>50 bp) indels, copy number
variation, and chromosomal rearrangements. The higher costs of
WGS and analysis are rapidly falling (51); and thus choosing
between sequencing technologies from a purely fiscal perspective
may soon be redundant. Nonetheless, to date WGS has not
demonstrated superiority to WES in diagnostic utility (43); and
the extent to which WGS may ultimately provide a diagnosis in
cases for which WES has failed to identify a cause is not known.
February 2021 | Volume 11 | Article 628946
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By definition, a targeted panel approach cannot be used for
new gene discovery, as such panels consist of already identified
genes. Nonetheless, panel sequencing has an established place
within clinical delivery as a cheap, sensitive, and specific means
of sequencing known disease genes, with excellent coverage due
to the limited targeted region, and minimization of some of the
concerns raised with the agnostic approaches such as WES or
WGS such as incidental or secondary findings (discussed below).
However, the first-line use of WES, rather than panel approaches
—even when up to three panels were chosen by expert clinical
geneticists—shortens the diagnostic odyssey and is more cost-
effective (52).

Considering clinical utility of MPS technologies for bone
diseases specifically, both WES (53) and panel sequencing (54)
approaches have been reported. There are no inherently unique
issues pertaining to clinical use of MPS in skeletal diseases
compared to other disorders.
INCORRECT ATTRIBUTION OF
PATHOGENICITY

A variant is only rare when considered against the population;
within a family, a rare variant is not rare—it has a 50% chance of
transmission from a parent to a child; similarly siblings will share
a variant identical-by-descent on average 50%. It is extremely
easy to be tempted into attributing causality to a rare variant that
segregates within a small family just because it is rare [discussed
in depth in (55) and (56)]. However, a priori one can predict the
chance that any particular variant will segregate with disease
within a family according to the number of meiosis between
affected individuals and within a small family that probability
may be higher than the typical threshold for declaring scientific
significance (i.e. p < 0.05). Unsurprisingly, in a review article on
this topic, MacArthur et al. wrote that of “406 published severe
disease mutations… .122 (27%) were either common
polymorphisms or lacked direct evidence for pathogenicity” (56).

Efforts to refine criteria for attributing pathogenicity to an
identified variant led to the publication of guidelines for
classifying the likely pathogenicity of identified variants (e.g.
‘pathogenic’, ‘likely pathogenic’, ‘variants of uncertain
significance’, etc.) according to the strength of evidence (57).
These guidelines recommend using multiple criteria and
resources to guide classification of an individual variant into a
particular category, including population, disease-specific, and
sequence databases, the published literature, the type of variant
(nonsense, frameshift, initiation codon, canonical splice-sites,
large deletions, etc.), and in silico prediction algorithms.
However, considering the evidential basis even within these
criteria demonstrates the imperfections. There are multiple in
silico prediction methods, each with differing criteria (gene-level,
variant level, evolutionary conservation, amino acid change, etc.)
trained on varying datasets—not surprisingly, they vary in
performance [recently discussed and compared in (58)].
Replication—observing the same mutation with the same
phenotype in an unrelated family—depends on cooperation
Frontiers in Endocrinology | www.frontiersin.org 5
and collaboration of researchers, and for rare diseases this
needs to happen at an international level—which depends on
clinical networks. Clinical variation databases (e.g., ClinVar,
Online Mendelian Inheritance in Man, Leiden Open Variation
Database, Human Gene Mutation Database) rely on curation
expertise. Altruism is a key component for the success of any
database [including PubMed (https://pubmed.ncbi.nlm.nih.gov/)]
—however, clinical reporting of affected cases requires awareness,
motivation, confidence, and time. Thus, functional studies, in
either in vitro or in vivo models, are often necessary for
definitive classification. To this end, CRISPR technology (for
which discoverers Emmanuelle Charpentier and Jennifer
Doudna were recently awarded the 2020 Nobel Prize for
Chemistry) has proven a boon.
ETHICAL, LEGAL, AND SOCIAL
IMPLICATIONS IN MASSIVELY PARALLEL
SEQUENCING TECHNOLOGIES

Whatever type of genetic testing is performed—whether MPS or
other technologies—pre-test discussion is crucial to ensure the
individual is aware of all possible outcomes and their
implications, both for the individual personally and for their
family members. Some considerations are universally long-
recognized risks associated with any type of genetic test
(discussed further below). However, MPS can add to the
magnitude of risk and/or complexity of results, as well as
generating issues specific to the technology, such as
secondary findings.
Relationship Misattribution
For decades, clinical genetics professionals have faced the
challenge of misattributed relationships identified through
genetic testing, especially non-paternity. Most genetics
clinicians only disclose this information when clinically
necessary (59, 60). Moreover, in accordance with the Institute
of Medicine Guidelines (61), non-paternity results [estimated to
be present in up to 30.0% of livebirths (62)] are only disclosed to
the mother alone. With genetic tests ordered in many more
settings and much more frequently, the risk of uncovering
misattributed relationships is extremely likely to increase (63).
In addition, misattributed relationship results generated by
single-gene tests are often associated with some degree of
uncertainty, which allows for some degree of clinical
discretion. In contrast, the simultaneous identification of both
common and rare variants inherent in any MPS technology
generates unequivocal results (63).

Disclosure of Genetic Status Through
Relationships With Other Family Members
The shared nature of genetic material means that a positive test
result in one individual can reveal the genetic status of other
family members by inference. This may be due to their affection
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https://pubmed.ncbi.nlm.nih.gov/
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


McInerney-Leo and Duncan MPS for Rare Genetic Disorders
status (e.g., a BRCA1 result in a woman with breast cancer
implies mutation carriage in her mother with ovarian cancer)
or the nature of inheritance (e.g., the obligate carrier status of
parents whose child is diagnosed with a recessive condition).

Unexpected Results Related to the
Disease in Question
Genetic tests have the potential to yield information about the
future health of an individual, who may be clinically unaffected at
the time of testing. In single gene testing for carrier status, careful
predisposition testing protocols were developed, particularly for
neurodegenerative (64) and cancer susceptibility syndromes
(65), to ensure individuals were prepared for the clinical,
psychological, and logistical sequelae of learning such
information. Preparing an individual for testing by MPS is
challenging from a counseling perspective, if only for the large
number of genes being tested simultaneously. However, more
subtle issues may arise—for example, a causal gene may be
identified that differs from the expected gene (66); and the
results may confer an increased risk for conditions not
previously described in the family or not previously recognized
to be significant (e.g., a TP53 mutation in a family with a strong
history of breast cancer).

Variants of Uncertain Significance
Variants of uncertain significance (VUSs) are variants for which
there is insufficient evidence to classify them as benign or
pathogenic. As additional information becomes available over
time, they are sometimes re-classified as pathogenic/likely
pathogenic or, more commonly, benign/likely benign (67–69).
VUSs have been a long-standing challenge in genetic testing for
hereditary cancer generally (68) and BRCA1/2 specifically (67).
The larger the number of genes interrogated, the higher the
probability of generating a VUS: 36 and 73% in multigene panels
(70) and exome sequencing (71) respectively. A recent systematic
review found VUSs are associated with genetic test-specific
concern and affects clinical management (72).

Incidental or Secondary Findings
Incidental or secondary findings are genetic test results unrelated
to the primary condition. Incidental findings are generally
regarded to be inadvertent or accidental discoveries emerging
during data analysis. In contrast, secondary findings emerge
from the deliberate interrogation of ‘actionable’ genes in
individuals undergoing WES or WGS, with the goal of
prevention or early detection of treatable conditions. To
overcome the challenge of terminology, these are cumulatively
referred to as incidental and secondary findings (ISFs) (73).

In 2013, the American College of Medical Genetics published
guidelines recommending that all individuals having WES/WGS
have automatic analysis of 56 actionable genes, associated with
24 hereditary cardiac or cancer predisposition syndromes (74).
Among other statements, the guidelines stated that neither
patient age nor patient preferences should be taken into
account because this would be “logistically challenging” for
laboratories (74). The paper stimulated multiple articles in
response. Concerns raised included the lack of scientific
Frontiers in Endocrinology | www.frontiersin.org 6
evidence to support screening of all 56 genes, with insufficient
information about phenotype and penetrance (75, 76). The
potential for large numbers of VUSs was also recognized as
was the challenge of interpreting variants in ethnic minorities
(77). The potential for iatrogenic harm or false reassurance was
raised. Multiple papers stated that the guidelines disregarded
individual autonomy (78, 79) and contravened the ACMG’s own
guidelines on genetic testing in children (75)—with overlapping
concerns of lack of informed consent (75). The second version of
the guidelines removed the wording around any obligation to
interrogate these genes whenever WES/WGS and acknowledged
that all patients should have the right to opt out—and modified
the medically actionable genes to a slightly different list with the
overall number increased to 59 (80). At present, some
laboratories offer secondary screening of the ACMG 59TM (81);
however, the extent to which it has been adopted by clinical
laboratories world-wide is unclear. Additionally, there is ongoing
debate about whether the ACMG 59™ should be offered and
reported in the prenatal period (82). The ACMG Board of
Directors recently released a policy statement stating that they
do not support the use of ACMG 59™ as a screening tool in the
general population (83).

Genetic Discrimination
Fear of genetic discrimination, particularly as it pertains to
insurance underwriting, is a deterrent in the pursuit of
clinically indicated genetic testing (84–86). Several papers
suggest these fears are not ill-founded, with incidences of
proven or alleged genetic discrimination reported in carriers of
recessive conditions (87–89) and—perhaps surprisingly—
individuals receiving a negative (i.e. good news) result in
predictive testing for familial mutations (88, 89) and healthy
carriers of dominant variants who pursued surgical/medical
interventions and/or screening to mitigate their risk (89–96).
Policies and legislation have been introduced in many countries
(including the UK, US, Canada, Australia, and European
countries) to limit or prohibit the use of genetic test results in
insurance underwriting (97), but initial studies suggest that
awareness of such legislation among non-genetics clinicians
(98) and members of the public (99, 100) is low. For example,
a UK study found that BRCA1/2 carriers had difficulty obtaining
insurance even after the introduction of the Concordat and
Moratorium on Genetics and Insurance (95).

Equity
Personalized (or precision) medicine aims to improve care
by customizing management to the individual and the profile
of their disease. Genetic testing is an integral component of
personalized medicine and encompasses a gamut of approaches,
from tumor sequencing [e.g., improving survival through
targeted chemotherapy (101)] to common variant genotyping
[e.g., use of polygenic risk scores, usually determined through
microarray technology (102)] to rare variant detection by MPS
technologies (as discussed above). Access to genetic services is
limited by racial, ethnic, and social factors; and disproportionate
access has potential to widen, rather than reduce, health
disparities both within developed countries (103, 104) and
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between developed and developing countries (105) [though here
we would highlight increasing use of MPS technologies clinically
in communities with higher rates of intrafamilial marriage
(44–46)].
FINAL THOUGHTS: ACCESS TO
SEQUENCING AND FUTURE DIRECTIONS

In 2016, one of the current authors wrote “Conventional
sequencing is commercially available for a finite number of
mutations in clear-cut monogenic diseases—but these
conditions represent a minority of genetic disorders. In
Australia, genetic testing is available for 597 genes which cause
<500 different syndromes and conditions, a small subset of the
~5,000” [McInerney-Leo, PhD thesis; data drawn from the Royal
College of Pathologists, Australia, accessed 2016 (http://
genetictesting.rcpa.edu.au)]. Just four years later, the situation
is very different, with both public and private access to testing for
multiple conditions in Australia and in many countries around
the world. A recent review article led with an arresting title of A
Frontiers in Endocrinology | www.frontiersin.org 7
Diagnosis for All Rare Genetic Diseases: the Horizon and the Next
Frontiers, (49) and presented a vision that all families with a rare
genetic disorder would ultimately receive a genetic diagnosis
through sequencing technologies and novel data analyses
approaches. This aim is not only exciting but with ongoing
international cooperation and collaboration—even mid-
coronavirus—it also seems achievable (49).
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