

OPEN d ACCESS

Crystal structure of 2-phenyl- $2\lambda^4$,3ditelluratetracyclo[5.5.2.0^{4,13}.0^{10,14}]tetradeca-1(12),4,6,10,13-pentaen-2ylium trifluoromethanesulfonate

Louise M. Diamond, Alexandra M. Z. Slawin and J. Derek Woollins*

EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland. *Correspondence e-mail: jdw3@st-and.ac.uk

Received 30 July 2014; accepted 7 August 2014

Edited by E. R. T. Tiekink, University of Malaya, Malaysia

In the title compound, $C_{18}H_{13}Te_2^+ \cdot CF_3O_3S^-$, the Te^{II} atom of the cation and one O atom of the trifluoromethanesulfonate counter-ion form a close-to-linear Te—Te—O system, with a Te—Te—O angle of 172.3 (1)° and a Te—O distance of 2.816 (5) Å, which may suggest the presence of a three-centre– four-electron (3c–4e) bond. Secondary Te···O interactions [3.003 (4) and 3.016 (4) Å], involving the second Te^{II} atom of the binuclear molecule, are also noted, resulting in a supramolecular layer in the *bc* plane.

Keywords: crystal structure; acenaphthene; triflate; tellurium.

CCDC reference: 1018417

1. Related literature

For studies on related interactions with halogen counter-ions, see: Knight *et al.* (2010, 2012). For discussions of 3c–4e bonding in this type of system, see: Aschenbach *et al.* (2012). For a general review of *peri*-substituted naphthalenes and acenaphthenes, see: Kilian *et al.* (2011).

V = 1947.4 (7) Å³

Mo $K\alpha$ radiation

 $0.06 \times 0.03 \times 0.03$ mm

 $\mu = 3.15 \text{ mm}^{-1}$

T = 93 K

Z = 4

2. Experimental

2.1. Crystal data

 $\begin{array}{l} C_{18}H_{13}Te_2^{+}\cdot CF_3O_3S^{-}\\ M_r = 633.57\\ \text{Monoclinic, } P2_1/c\\ a = 10.687 \ (2) \ \text{A}\\ b = 15.264 \ (3) \ \text{Å}\\ c = 12.242 \ (3) \ \text{Å}\\ \beta = 102.808 \ (6)^{\circ} \end{array}$

2.2. Data collection

Rigaku Mercury70 diffractometer	11783 measured reflections
Absorption correction: multi-scan	3407 independent reflections
(REQAB; Rigaku, 1998)	2926 reflections with $F^2 > 2\sigma(F^2)$
$T_{\text{min}} = 0.619$ $T_{\text{max}} = 0.910$	$R_{int} = 0.053$

2.3. Refinement $P(E^2) = Q(E^2)$

 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.100$ S = 1.073407 reflections 253 parameters H-atom parameters constrained $\Delta \rho_{max} = 1.19$ e Å⁻³ $\Delta \rho_{min} = -1.03$ e Å⁻³

Table 1Selected bond lengths (Å).

Te1-Te2	2.7297 (6)	Te1-C13	2.130 (6)
Te1-C1	2.104 (5)	Te2-C9	2.131 (5)

Data collection: *CrystalClear-SM Expert* (Rigaku, 2009); cell refinement: *CrystalClear-SM Expert*; data reduction: *CrystalClear-SM Expert*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2008); molecular graphics: *CrystalStructure* (Rigaku, 2014); software used to prepare material for publication: *CrystalStructure*.

Acknowledgements

We are grateful to the University of St Andrews and the EPSRC for support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5334).

References

Aschenbach, L. K., Knight, F. R., Randall, R. A. M., Cordes, D. B., Baggott, A., Bühl, M., Slawin, A. M. Z. & Woollins, J. D. (2012). *Dalton Trans.* 41, 3141– 3153.

Kilian, P., Knight, F. R. & Woollins, J. D. (2011). Chem. Eur. J. 17, 2302-2328.

- Knight, F. R., Arachchige, K. S. A., Randall, R. A. M., Bühl, M., Slawin, A. M. Z. & Woollins, J. D. (2012). *Dalton Trans.* 41, 3154–3165.
- Knight, F. R., Fuller, A. L., Bühl, M., Slawin, A. M. Z. & Woollins, J. D. (2010). *Inorg. Chem.* 49, 7577–7596.
- Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2009). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2014). E70, o1003-o1004 [doi:10.1107/S1600536814018170]

Crystal structure of 2-phenyl- $2\lambda^4$, 3-ditelluratetracyclo-[5.5.2.0^{4,13}.0^{10,14}]tetradeca-1(12), 4, 6, 10, 13-pentaen-2-ylium trifluoromethanesulfonate

Louise M. Diamond, Alexandra M. Z. Slawin and J. Derek Woollins

S1. Experimental

S1.1. Synthesis and crystallization

5,6-Bis(phenyltelluro)acenaphthene (0.22 g, 0.39 mmol) was added to a solution of copper triflate (0.15 g, 0.40 mmol) in dichloromethane (20 ml) at 263 K. The resulting dark-purple solution was left to stir at this temperature for 3 h, then at room temperature for a further 12 h. The solution was filtered to give a grey solid and a dark-orange filtrate. The filtrate was evaporated under reduced pressure to yield an orange oil. The oil was redissolved in the minimum amount of dichloromethane, hexane was layered on top and the solution was left at 243 K. After 24 h the solution had yielded red needle-like crystals (0.03 g, 9%).

S1.2. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with U_{iso} (H) set to $1.2U_{equiv}$ (C). The highest peak in the difference map is 1.06 Å from atom H7.

S2. Results and discussion

ENTER TEXT

Figure 1

The molecular structure of I with displacement ellipsoids drawn at the 50% probability level, hydrogen atoms omitted for clarity.

$\label{eq:2.2} 2-Phenyl-2\lambda^4, 3-ditellurate tracyclo [5.5.2.0^{4,13}.0^{10,14}] tetrade ca-1(12), 4, 6, 10, 13-pentaen-2-ylium trifluoromethane sulfonate$

Crystal data	
$C_{18}H_{13}Te_2^+ \cdot CF_3O_3S^-$	F(000) = 1192.00
$M_r = 633.57$	$D_{\rm x} = 2.161 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71075$ Å
Hall symbol: -P 2ybc	Cell parameters from 6711 reflections
a = 10.687 (2) Å	$\theta = 2.2 - 25.4^{\circ}$
b = 15.264 (3) Å	$\mu = 3.15 \text{ mm}^{-1}$
c = 12.242 (3) Å	T = 93 K
$\beta = 102.808 \ (6)^{\circ}$	Prism, red
V = 1947.4 (7) Å ³	$0.06 \times 0.03 \times 0.03 \text{ mm}$
Z = 4	
Data collection	
Rigaku Mercury70 diffractometer	Absorption correction: multi-scan (<i>REQAB</i> ; Rigaku, 1998)
Detector resolution: 14.629 pixels mm ⁻¹	$T_{\rm min} = 0.619, \ T_{\rm max} = 0.910$
ω scans	11783 measured reflections

3407 independent reflections	$h = -12 \rightarrow 9$
2926 reflections with $F^2 > 2\sigma(F^2)$	$k = -18 \rightarrow 16$
$R_{\rm int} = 0.053$	$l = -13 \rightarrow 14$
$\theta_{\rm max} = 25.0^{\circ}, \theta_{\rm min} = 2.2^{\circ}$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
$R[F^2 > 2\sigma(F^2)] = 0.041$	map
$wR(F^2) = 0.100$	Hydrogen site location: inferred from
S = 1.07	neighbouring sites
3407 reflections	H-atom parameters constrained
253 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0442P)^2 + 0.2589P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 1.19 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -1.03 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Te1	0.92263 (3)	0.03268 (2)	0.27873 (3)	0.03050 (15)
Te2	1.06486 (3)	0.15215 (2)	0.19281 (3)	0.03058 (15)
S1	1.22291 (14)	0.36194 (10)	0.05449 (12)	0.0343 (3)
F1	1.3368 (4)	0.2922 (3)	-0.0924 (3)	0.0736 (12)
F2	1.4264 (3)	0.4088 (3)	-0.0175 (3)	0.0663 (11)
F3	1.4490 (3)	0.2900 (3)	0.0760 (3)	0.0580 (10)
O1	1.1412 (4)	0.4067 (3)	-0.0381 (3)	0.0504 (11)
O2	1.1831 (5)	0.2769 (3)	0.0794 (4)	0.0708 (15)
O3	1.2729 (4)	0.4160 (3)	0.1503 (3)	0.0561 (12)
C1	0.8098 (5)	0.0140 (3)	0.1162 (4)	0.0306 (12)
C2	0.7081 (5)	-0.0459 (4)	0.0972 (4)	0.0336 (13)
C3	0.6348 (5)	-0.0581 (4)	-0.0142 (5)	0.0369 (13)
C4	0.6668 (5)	-0.0150 (3)	-0.1026 (5)	0.0339 (13)
C5	0.7726 (5)	0.0419 (3)	-0.0806 (4)	0.0254 (12)
C6	0.7958 (5)	0.0781 (3)	-0.1800 (4)	0.0323 (12)
C7	0.8986 (6)	0.1343 (4)	-0.1715 (5)	0.0348 (13)
C8	0.9751 (6)	0.1531 (3)	-0.0650 (5)	0.0323 (13)
C9	0.9514 (5)	0.1190 (3)	0.0320 (4)	0.0311 (12)
C10	0.8473 (5)	0.0597 (3)	0.0259 (4)	0.0272 (11)
C11	0.6098 (6)	-0.0171 (4)	-0.2265 (5)	0.0393 (14)
C12	0.6954 (6)	0.0459 (4)	-0.2789 (5)	0.0398 (14)
C13	0.8004 (5)	0.1217 (3)	0.3394 (5)	0.0321 (12)
C14	0.8276 (6)	0.1392 (4)	0.4527 (5)	0.0383 (14)
C15	0.7547 (5)	0.1992 (4)	0.4949 (5)	0.0378 (13)
C16	0.6548 (5)	0.2397 (4)	0.4255 (5)	0.0374 (13)

C17	0.6254 (5)	0.2217 (4)	0.3126 (5)	0.0405 (14)	
C18	0.6985 (5)	0.1620 (3)	0.2671 (5)	0.0341 (13)	
C19	1.3656 (6)	0.3386 (4)	0.0029 (5)	0.0411 (15)	
H2	0.68829	-0.07808	0.15763	0.0403*	
H3	0.56297	-0.09649	-0.02735	0.0443*	
H7	0.91742	0.15997	-0.23669	0.0417*	
H8	1.04654	0.19114	-0.06005	0.0387*	
H11A	0.51973	0.00346	-0.24279	0.0472*	
H11B	0.61218	-0.07721	-0.25642	0.0472*	
H12A	0.73565	0.01444	-0.33292	0.0478*	
H12B	0.64423	0.09538	-0.31778	0.0478*	
H14	0.89646	0.10994	0.50143	0.0460*	
H15	0.77437	0.21228	0.57267	0.0453*	
H16	0.60456	0.28089	0.45527	0.0449*	
H17	0.55472	0.25015	0.26522	0.0486*	
H18	0.67911	0.14935	0.18917	0.0409*	

Atomic displacement parameters (\mathring{A}^2)

	<i>U</i> ¹¹	U ²²	<i>U</i> ³³	<i>U</i> ¹²	<i>U</i> ¹³	<i>U</i> ²³
Te1	0.0320 (2)	0.0332 (3)	0.0270 (2)	0.00187 (14)	0.00796 (17)	0.00255 (15)
Te2	0.0295 (3)	0.0324 (3)	0.0307 (2)	-0.00155 (14)	0.00854 (18)	-0.00344 (15)
S1	0.0339 (8)	0.0419 (8)	0.0283 (8)	-0.0023 (6)	0.0093 (6)	-0.0031 (6)
F1	0.073 (3)	0.106 (3)	0.040 (2)	0.035 (3)	0.009 (2)	-0.018 (2)
F2	0.043 (2)	0.092 (3)	0.066 (3)	-0.004 (2)	0.0170 (19)	0.030 (2)
F3	0.055 (2)	0.080 (3)	0.038 (2)	0.022 (2)	0.0064 (17)	0.0081 (19)
01	0.033 (2)	0.075 (3)	0.043 (2)	0.015 (2)	0.0056 (19)	0.005 (2)
O2	0.075 (3)	0.069 (3)	0.069 (3)	-0.039 (3)	0.019 (3)	0.007 (3)
03	0.056 (3)	0.068 (3)	0.041 (2)	0.011 (2)	0.004 (2)	-0.026 (2)
C1	0.035 (3)	0.033 (3)	0.024 (3)	0.006 (2)	0.007 (2)	-0.001 (2)
C2	0.025 (3)	0.049 (3)	0.028 (3)	-0.003 (2)	0.008 (2)	-0.015 (3)
C3	0.034 (3)	0.038 (3)	0.043 (3)	-0.009 (2)	0.015 (3)	-0.008 (3)
C4	0.032 (3)	0.040 (3)	0.030 (3)	0.001 (2)	0.008 (3)	-0.008 (3)
C5	0.029 (3)	0.022 (3)	0.029 (3)	0.004 (2)	0.012 (2)	-0.002 (2)
C6	0.038 (3)	0.031 (3)	0.028 (3)	0.003 (2)	0.007 (2)	-0.003 (2)
C7	0.047 (4)	0.032 (3)	0.029 (3)	0.005 (3)	0.016 (3)	0.006 (2)
C8	0.038 (3)	0.025 (3)	0.037 (3)	-0.002 (2)	0.015 (3)	0.002 (2)
C9	0.036 (3)	0.029 (3)	0.027 (3)	0.005 (2)	0.005 (2)	-0.002 (2)
C10	0.029 (3)	0.028 (3)	0.028 (3)	0.003 (2)	0.014 (2)	-0.003 (2)
C11	0.041 (3)	0.044 (3)	0.032 (3)	-0.008 (3)	0.007 (3)	-0.006 (3)
C12	0.048 (4)	0.039 (3)	0.033 (3)	-0.001 (3)	0.010 (3)	-0.001 (3)
C13	0.030 (3)	0.035 (3)	0.032 (3)	-0.004 (2)	0.011 (2)	0.006 (3)
C14	0.037 (3)	0.043 (3)	0.035 (3)	-0.003 (3)	0.008 (3)	-0.002 (3)
C15	0.038 (3)	0.043 (3)	0.033 (3)	-0.006 (3)	0.009 (3)	-0.003 (3)
C16	0.033 (3)	0.038 (3)	0.043 (3)	-0.003 (3)	0.012 (3)	-0.004 (3)
C17	0.035 (3)	0.039 (3)	0.048 (4)	0.008 (3)	0.009 (3)	0.011 (3)
C18	0.035 (3)	0.038 (3)	0.029 (3)	0.001 (2)	0.006 (3)	0.004 (2)
C19	0.047 (4)	0.053 (4)	0.023 (3)	0.010 (3)	0.008 (3)	0.008 (3)

Geometric parameters (Å, °)

Te1—Te2	2.7297 (6)	С8—С9	1.370 (8)
Te1—C1	2.104 (5)	C9—C10	1.424 (7)
Te1—C13	2.130 (6)	C11—C12	1.560 (9)
Te2—C9	2.131 (5)	C13—C14	1.379 (8)
S1-01	1.441 (4)	C13—C18	1.385 (7)
S1—O2	1.420 (5)	C14—C15	1.374 (8)
S1—O3	1.437 (4)	C15—C16	1.357 (7)
S1—C19	1.810(7)	C16—C17	1.376 (8)
F1—C19	1.341 (7)	C17—C18	1.394 (8)
F2—C19	1.307 (7)	C2—H2	0.950
F3—C19	1.339 (6)	С3—Н3	0.950
C1—C2	1.401 (7)	C7—H7	0.950
C1-C10	1.437 (8)	C8—H8	0.950
С2—С3	1.426 (7)	C11—H11A	0.990
C3—C4	1.373 (8)	C11—H11B	0.990
C4—C5	1.403 (7)	C12—H12A	0.990
C4—C11	1.505 (7)	C12—H12B	0.990
C5—C6	1.408 (8)	C14—H14	0.950
C5—C10	1.396 (7)	C15—H15	0.950
C6—C7	1.379 (8)	C16—H16	0.950
C6—C12	1.510(7)	C17—H17	0.950
С7—С8	1.407 (7)	C18—H18	0.950
F1…O1	2.913 (6)	F2···H11A ^{xiv}	3.5516
F1…O2	2.951 (7)	F2···H11B ^{vi}	2.7142
F2…O1	3.003 (5)	F2···H12A ^{vi}	2.7467
F2…O3	2.902 (6)	F2···H12B ^{vi}	3.4740
F3…O2	2.859 (6)	F2···H12B ^{xiv}	2.9799
F3…O3	2.972 (6)	F2…H16 ^{iv}	3.5216
C1…C4	2.810(7)	F3····H3 ^{ix}	3.0105
C1…C18	3.302 (8)	F3····H12B ^{xiv}	2.8107
C2…C5	2.770 (8)	F3…H15 ^{iv}	3.4861
C3…C6	3.600 (8)	F3···H16 ^{iv}	2.6844
C3…C10	2.853 (7)	F3···H17 ^{vii}	2.4194
C5…C8	2.724 (7)	F3···H18 ^{vii}	3.3265
C6····C9	2.825 (7)	O1…H8	3.4347
C7…C10	2.832 (8)	O1…H12A ^{vi}	2.8026
C13…C16	2.739 (8)	O1…H14 ^{viii}	3.1733
C14…C17	2.748 (7)	O1···H14 ⁱⁱⁱ	2.7746
C15…C18	2.778 (8)	O2…H8	2.3778
Te1…O1 ⁱ	3.003 (4)	O2…H14 ⁱⁱⁱ	3.4610
Tel····O3 ⁿ	3.016 (5)	O3····H2 ^{viii}	2.2975
$Te2\cdots F1^{1}$	3.563 (4)	O3…H11A ^{xiv}	2.9415
$Te2\cdotsO1^{1}$	3.336 (4)	C2···H3 ^x	3.5714
Te2…O2	2.816 (5)	C2···H8 ^{ix}	3.5384
F1…Ie2 ^m	3.563 (4)	C2H11A ^x	3.3843

F1…C16 ^{iv}	3.391 (7)	C3…H3 ^x	3.2820
F1…C17 ^{iv}	3.536 (8)	C5…H16 ⁱⁱⁱ	3.3296
F2…F2 ^v	3.179 (6)	C7…H15 ^{xv}	3.3385
F2····C11 ^{vi}	3.272 (7)	C9…H15 ⁱⁱⁱ	3.2977
F2…C12 ^{vi}	3.294 (7)	C10…H16 ⁱⁱⁱ	3.5217
F2····C16 ^{iv}	3.512 (7)	C12…H15 ^{xv}	3.3381
F3…C16 ^{iv}	3.198 (7)	C12···H17 ⁱⁱⁱ	3.5496
F3····C17 ^{vii}	3.258 (6)	C14···H8 ⁱ	3.5166
O1…Te1 ⁱⁱⁱ	3.003 (4)	C14···H12A ^{xvi}	3,5530
O1…Te2 ⁱⁱⁱ	3,336 (4)	C15····H7 ^{xvi}	3.4127
01···C14 ⁱⁱⁱ	3401(7)	C15····H12A ^{xvi}	3 5535
02…Te2	2.816 (5)	C15····H12B ^{xvi}	3 2196
02	3 145(7)	C15H18 ⁱ	3 5368
02	3.113(7) 3.411(7)	$C17 \cdots H11B^{x}$	3 3179
O3…Te1 ^{viii}	3.111(7) 3.016(5)	$C17 \cdots H12B^{i}$	3 2449
$O3 \cdots C1^{viii}$	3.509(7)	$C18 \cdots H7^{i}$	3 5931
$O_3 \cdots C_2^{\text{viii}}$	3.309(7) 3.108(7)	$C18 \cdots H11 \Delta^{x}$	3 4055
$O_3 C_2$ $O_3 C_1 3^{\text{viii}}$	3.108(7) 3.245(7)	C18····H11B ^x	3 5380
	3.243(7)		3,0057
C1C ^{8ix}	3.509(7)	$C10H11P^{i}$	3.2957
C2O3ii	3.381(8) 3.108(7)		3.3304
C^{2} C^{3} C^{3}	3.108 (7)	C10H12Pxiv	3.4210
C5C16 ⁱⁱⁱ	3.400(8)		2 2020
	5.5/1(7)		3.2939
C6C17 ⁱⁱⁱ	5.342 (8) 2.540 (8)		3.3004
C6C1/	3.349 (8) 2.145 (7)		3.3609
C8 = C1ix	5.145(7)		2.2973
	3.381(8)		2.8904
C8C14 ^{III}	3.568 (8)		3.3946
C8C15	3.455 (8) 2.411 (7)		3.0103
C902	3.411 (7)	$H3\cdots C2^{n}$	3.5/14
	3.450 (7)		3.2820
$C11 \cdots F2^{n}$	3.272(7)		3.3670
$C12\cdots F2^{x}$	3.294 (7)		2.8615
C1303 ⁿ	3.245 (7)	H3…H18*	2.9994
	3.401 (7)		3.4963
	3.568 (8)	H/····1e2 ^m	3.4720
	3.455 (8)	H/C15**	3.4127
C15····C9 ⁴	3.450 (7)	H7C18 ^m	3.5931
C16····F1 ^{xn}	3.391 (7)	H7…H14 ^{xv}	3.2547
$C16\cdots F2^{xn}$	3.512 (7)	H7…H15 ^{xv}	2.6153
C16…F3 ^{xn}	3.198 (7)	H8…S1	3.3383
C16····C5 ¹	3.571 (7)	H8…F1	3.5644
C16…C6 ⁱ	3.542 (8)	H8…O1	3.4347
C17····F1 ^{xii}	3.536 (8)	H8···O2	2.3778
C17····F3 ^{xiii}	3.258 (6)	H8····C2 ^{ix}	3.5384
C17…C6 ⁱ	3.549 (8)	H8····C14 ⁱⁱⁱ	3.5166
Te1…H2	3.1116	H8····H14 ⁱⁱⁱ	3.5907
Te1…H14	3.0397	H11A···F2 ^{xi}	3.4316

Te1…H18	3.1435	H11A…F2 ^{xviii}	3.5516
Te2…H8	3.1155	H11A…O3 ^{xviii}	2.9415
С1…Н3	3.2925	H11A…C2 ^x	3.3843
C1…H18	2.7511	H11A…C18 ^x	3.4055
C2…H18	3.2258	H11A…H2 ^x	2.8904
C3…H11A	2.9500	H11A…H18 ^x	3.3175
C3…H11B	2.9360	H11B…Te2 ^{ix}	3.5548
С4…Н2	3.2867	H11B…F1 ^{xi}	2.8537
C4…H12A	3.1007	H11B…F2 ^{xi}	2.7142
C4…H12B	3.0915	H11B···C17 ^x	3.3179
С5…Н3	3.2482	H11B····C18 ^x	3.5389
С5…Н7	3.2570	H11B····C19 ^{xi}	3.3364
C5…H11A	3.0345	H11B…H17 [×]	3,1743
C5…H11B	3.0394	H11B…H18 ^x	3.5662
C5…H12A	3.0546	H12A…Te2 ^{ix}	3.5117
C5…H12B	3 0352	$H12A\cdots F1^{xi}$	3 5539
C6…H8	3 2511	$H12A\cdots F2^{xi}$	2.7467
C6…H11A	3 0967	$H12A\cdots O1^{xi}$	2.8026
C6…H11B	3 0874	H12A····C14 ^{xv}	3 5530
C7…H12A	2 9595	$H12A\cdots C15^{xv}$	3 5535
C7…H12R	2.9649	$H12A\cdots C19^{xi}$	3 4216
C9…H7	3 2884	$H12A\cdots H14^{xv}$	3 2766
C10····H2	3 3355	H12AH15 ^{xv}	3 2922
C10···H8	3 2652	H12R $H13H12BF2^{xi}$	3 4740
C10···H18	3 2698	H12B T2 H12B···F2 ^{xviii}	2 9799
C11H3	2 8646	H12B T2 H12B···F3 ^{xviii}	2.9799
C12···H7	2.8010	H12B $\cdot \cdot \cdot 5$ H12B····C15 ^{xv}	3 2196
C13…H15	3 2397	H12B ···C17 ⁱⁱⁱ	3 2449
C13···H17	3 2406	H12B···C19 ^{xviii}	3 4361
C14···H16	3 2237	H12B···H15 ^{xv}	2 7828
C14…H18	3 2682	H12B H17 ⁱⁱⁱ	2.7626
C15…H17	3 2273	H12D H117	3 4313
C16···H14	3 2238	$H14\cdots O1^{ii}$	3 1733
C16···H18	3 2674	$H14O1^{i}$	2 7746
C17H15	3 2316	$H14\cdots O2^{i}$	3 4610
C18…H14	3 2628	$H14\cdots H7^{xvi}$	3 2547
C18…H16	3 2611	$H14\cdots H8^{i}$	3 5907
Н2…Н3	2 3783	H14···H12 A^{xvi}	3 2766
H2···H18	3 4967	H15F3 ^{xii}	3 4861
H3…H11A	2 9928	H15···C7 ^{xvi}	3 3385
H3…H11B	2.9920	H15C9 ⁱ	3 2977
H7…H8	2 3418	$H15 \cdots C12^{xvi}$	3 3381
H7…H12A	3 0135	$H15 \cdots C18^{i}$	3 2957
H7…H12B	3 0326	H15H7 ^{xvi}	2 6153
H11A…H12A	2.7748	H15H12A ^{xvi}	3 2922
H11A…H12R	2.2635	H15···H12R ^{xvi}	2 7828
H11B…H12A	2.2635	H15H18 ⁱ	2.8592
H11B…H12B	2.7813	H16…F1 ^{xii}	3.0054
		+	

H14…H15	2.3255	H16…F2 ^{xii}	3.5216
H15…H16	2.3021	H16…F3 ^{xii}	2.6844
H16…H17	2.3168	H16C5 ⁱ	3.3296
H17…H18	2.3559	H16…C10 ⁱ	3.5217
Te1…H7 ^{ix}	3.4963	H16····C19 ^{xii}	3.2939
Te2…H7 ⁱ	3.4720	H16…H3 ^{xix}	2.8615
Te2…H11B ^{ix}	3.5548	H16…H18 ⁱ	2.9927
Te2…H12A ^{ix}	3.5117	H17…F1 ^{xii}	3.2678
S1…H2 ^{viii}	3.5604	H17…F3 ^{xiii}	2.4194
S1…H8	3.3383	H17…C12 ⁱ	3.5496
S1…H14 ⁱⁱⁱ	3.4313	H17…H11B ^x	3.1743
F1…H2 ^{ix}	3.3609	H17…H12B ⁱ	2.8174
F1…H3 ^{ix}	3.3946	H18····F3 ^{xiii}	3.3265
F1…H8	3.5644	H18…C15 ⁱⁱⁱ	3.5368
F1···H11B ^{vi}	2.8537	H18…H3 ^x	2,9994
F1···H12A ^{vi}	3.5539	H18···H11A [×]	3.3175
F1···H16 ^{iv}	3.0054	H18…H11B ^x	3.5662
F1···H17 ^{iv}	3.2678	H18…H15 ⁱⁱⁱ	2.8592
F2···H11A ^{vi}	3 4316	H18H16 ⁱⁱⁱ	2,9927
12 11111	5.1010		2.7727
Te2—Te1—C1	88.70 (15)	C14—C15—C16	120.1 (5)
Te2—Te1—C13	98.34 (15)	C15—C16—C17	120.7(5)
C1—Te1—C13	98.6 (2)	C16—C17—C18	120.6(5)
Te1—Te2—C9	86.91 (15)	C13-C18-C17	117.7 (5)
01—S1—O2	116.3 (3)	S1—C19—F1	111.1 (4)
01—S1—O3	114.9 (3)	S1—C19—F2	113.5 (4)
01—S1—C19	103.3 (3)	S1—C19—F3	111.3 (4)
02-81-03	115.1 (3)	F1—C19—F2	107.1 (5)
02—S1—C19	102.2 (3)	F1—C19—F3	106.2 (5)
O3—S1—C19	102.0 (3)	F2—C19—F3	107.2 (5)
Te1-C1-C2	120.4 (4)	C1—C2—H2	120.450
Te1-C1-C10	117.6 (3)	C3—C2—H2	120.449
C2-C1-C10	121.8 (4)	С2—С3—Н3	119.656
C1—C2—C3	119.1 (5)	С4—С3—Н3	119.651
C2—C3—C4	120.7 (5)	С6—С7—Н7	120.424
C3—C4—C5	118.5 (5)	C8—C7—H7	120.429
C3-C4-C11	131.9 (5)	С7—С8—Н8	118.517
C5-C4-C11	109.6 (5)	C9—C8—H8	118.501
C4—C5—C6	111.5 (4)	C4—C11—H11A	110.757
C4—C5—C10	124.7 (5)	C4—C11—H11B	110.756
C6-C5-C10	123.8 (5)	C12—C11—H11A	110.759
C5—C6—C7	118.0 (4)	C12—C11—H11B	110.756
C5-C6-C12	109.5 (5)	H11A—C11—H11B	108.843
C7—C6—C12	132.5 (5)	C6—C12—H12A	110.873
C6-C7-C8	119.1 (5)	C6—C12—H12B	110.872
C7—C8—C9	123.0 (5)	C11—C12—H12A	110.874
Te2—C9—C8	122.3 (4)	C11—C12—H12B	110.871
Te2—C9—C10	118.5 (4)	H12A—C12—H12B	108.910

C8—C9—C10	119.2 (4)	C13—C14—H14	120.132
C1—C10—C5	115.2 (4)	C15—C14—H14	120.134
C1—C10—C9	128.0 (4)	C14—C15—H15	119.953
C5—C10—C9	116.9 (5)	C16—C15—H15	119.953
C4—C11—C12	104.9 (4)	C15—C16—H16	119.680
C6-C12-C11	104.4 (4)	C17—C16—H16	119.670
Te1-C13-C14	117.7 (4)	C16—C17—H17	119.695
Te1-C13-C18	121.1 (4)	C18—C17—H17	119.691
C14—C13—C18	121.2 (5)	C13—C18—H18	121.144
C13—C14—C15	119.7 (5)	C17—C18—H18	121.146
Te2—Te1—C1—C2	179.4 (3)	C3-C4-C11-C12	-178.6 (5)
Te2—Te1—C1—C10	4.1 (3)	C5-C4-C11-C12	0.4 (6)
C1—Te1—Te2—C9	-4.04 (15)	C11—C4—C5—C6	-1.5 (6)
Te2—Te1—C13—C14	-101.8 (3)	C11-C4-C5-C10	179.5 (4)
Te2—Te1—C13—C18	76.9 (4)	C4—C5—C6—C7	-178.9 (4)
C13—Te1—Te2—C9	-102.50 (13)	C4—C5—C6—C12	2.0 (6)
C1-Te1-C13-C14	168.2 (3)	C4C5C10C1	0.7 (7)
C1-Te1-C13-C18	-13.0 (4)	C4—C5—C10—C9	179.7 (4)
C13—Te1—C1—C2	-82.3 (4)	C6C5C10C1	-178.2 (4)
C13—Te1—C1—C10	102.3 (3)	C6—C5—C10—C9	0.8 (7)
Te1—Te2—C9—C8	-175.5 (4)	C10-C5-C6-C7	0.1 (7)
Te1—Te2—C9—C10	4.7 (3)	C10-C5-C6-C12	-179.0 (4)
O1—S1—C19—F1	-56.7 (4)	C5—C6—C7—C8	-0.1 (8)
O1—S1—C19—F2	64.1 (4)	C5-C6-C12-C11	-1.6(5)
O1—S1—C19—F3	-174.8 (3)	C7—C6—C12—C11	179.4 (5)
O2—S1—C19—F1	64.5 (4)	C12—C6—C7—C8	178.8 (5)
O2—S1—C19—F2	-174.8 (3)	C6—C7—C8—C9	-1.0 (8)
O2—S1—C19—F3	-53.7 (4)	C7—C8—C9—Te2	-177.8 (4)
O3—S1—C19—F1	-176.2 (3)	C7—C8—C9—C10	2.0 (8)
O3—S1—C19—F2	-55.4 (4)	Te2—C9—C10—C1	-3.2 (7)
O3—S1—C19—F3	65.7 (4)	Te2—C9—C10—C5	177.9 (3)
Te1-C1-C2-C3	-179.0 (3)	C8-C9-C10-C1	177.0 (4)
Te1-C1-C10-C5	177.2 (3)	C8—C9—C10—C5	-1.8 (7)
Te1-C1-C10-C9	-1.7 (7)	C4—C11—C12—C6	0.7 (5)
C2-C1-C10-C5	2.0 (7)	Te1-C13-C14-C15	177.1 (3)
C2-C1-C10-C9	-176.9 (5)	Te1-C13-C18-C17	-177.9 (3)
C10—C1—C2—C3	-3.9 (8)	C14—C13—C18—C17	0.8 (8)
C1—C2—C3—C4	3.1 (8)	C18—C13—C14—C15	-1.6 (8)
C2—C3—C4—C5	-0.6 (8)	C13—C14—C15—C16	1.3 (8)
C2-C3-C4-C11	178.3 (5)	C14—C15—C16—C17	-0.3 (8)
C3—C4—C5—C6	177.6 (4)	C15—C16—C17—C18	-0.5 (8)
C3—C4—C5—C10	-1.4 (8)	C16—C17—C18—C13	0.3 (8)

Symmetry codes: (i) x, -y+1/2, z+1/2; (ii) -x+2, y-1/2, -z+1/2; (iii) x, -y+1/2, z-1/2; (iv) x+1, -y+1/2, z-1/2; (v) -x+3, -y+1, -z; (vi) -x+2, y+1/2, -z-1/2; (vii) x+1, y, z; (viii) -x+2, y+1/2, -z+1/2; (ix) -x+2, -y, -z; (x) -x+1, -y, -z; (xi) -x+2, y-1/2, -z-1/2; (xii) x-1, -y+1/2, z+1/2; (xiii) x-1, y, z; (xiv) x+1, -y+1/2, z+1/2; (xv) x, y, z-1; (xvi) x, y, z+1; (xvii) -x+1, y-1/2, -z+1/2; (xviii) x-1, -y+1/2, z-1/2; (xii) x-1, -y+1/2, z+1/2; (xviii) x-1, -y+1/2, -z+1/2; (xviii) x-1, -y+1/2, -z+1/2; (xviii) x-1, -y+1/2, -z+1/2.