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A chromatin structure-based model accurately
predicts DNA replication timing in human cells
Yevgeniy Gindin1,2, Manuel S Valenzuela3, Mirit I Aladjem4, Paul S Meltzer1,* & Sven Bilke1

Abstract

The metazoan genome is replicated in precise cell lineage-specific
temporal order. However, the mechanism controlling this orches-
trated process is poorly understood as no molecular mechanisms
have been identified that actively regulate the firing sequence of
genome replication. Here, we develop a mechanistic model of
genome replication capable of predicting, with accuracy rivaling
experimental repeats, observed empirical replication timing
program in humans. In our model, replication is initiated in an
uncoordinated (time-stochastic) manner at well-defined sites. The
model contains, in addition to the choice of the genomic landmark
that localizes initiation, only a single adjustable parameter of
direct biological relevance: the number of replication forks. We
find that DNase-hypersensitive sites are optimal and independent
determinants of DNA replication initiation. We demonstrate that
the DNA replication timing program in human cells is a robust
emergent phenomenon that, by its very nature, does not require a
regulatory mechanism determining a proper replication initiation
firing sequence.
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Introduction

In eukaryotes, DNA replication is a tightly regulated process that

follows a strict temporal program (Taylor, 1960; Masai et al, 2010).

This timing program is intimately associated with key aspects of cell

biology, including cell differentiation (Hiratani et al, 2004, 2010;

Hansen et al, 2010), cancer progression (Fritz et al, 2012; Ryba

et al, 2012; Donley & Thayer, 2013), the 3D conformation of cellular

DNA (Ryba et al, 2010, 2012; Moindrot et al, 2012), and the forma-

tion of cytogenetic aberrations (De & Michor, 2011). Whereas the

genome-wide replication program in eukaryotes appears nearly

deterministic, individual replication initiation events display a large

degree of stochasticity (Bechhoefer & Rhind, 2012). An important

step in resolving this apparent discrepancy was to recognize a

formal analogy between DNA replication and nucleation in one

dimension (Kolmogorov, 1937; Jun et al, 2005), which serves as the

foundation for most of today’s mathematical models of DNA replica-

tion. But while the molecular components of DNA replication

modeled in this formalism are mostly conserved across the domains

of life, it was found that the mechanism of recognition and regula-

tion of initiation sites varies greatly, even between lower and higher

eukaryotes (Aladjem, 2007).

Particularly amendable to modeling are extreme examples of

initiation site recognition: random and well characterized. Xenopus

laevis is a representative of random initiation site selection. Model-

ing efforts for this organism, which need not take into account loca-

tions of initiation sites, have helped to provide theoretical answers

to the so-called random completion problem (Blow et al, 2001;

Herrick et al, 2002; Yang & Bechhoefer, 2008), and the global

increase in the replication initiation rate throughout the S-phase

suggested as one possidble solution has later been confirmed experi-

mentally and described as a universal feature across eukaryotic

replication (Goldar et al, 2009). Saccharomyces cerevisiae occupies

the other end of the initiation site recognition spectrum. It’s quite

well characterized and efficient replication initiation sites have

helped to extract a number of parameters relevant for modeling

efforts, such as the average and the variance of the firing time distri-

bution for individual initiation sites. Based on such estimates, math-

ematical models were able to reproduce the global timing program

found in yeast (Lygeros et al, 2008; De Moura et al, 2010; Yang

et al, 2010), thus demonstrating how the deterministic timing

program emerges from individually stochastic initiation events.

Initiation site selection in metazoan genomes lies somewhere

between these two extreme cases. While here too, replication initia-

tion occurs at discrete sites in the genome, the metazoan replicator

remains relatively poorly characterized, as even the most efficient

sites fire in only a fraction of cell cycles (Martin et al, 2011; Valen-

zuela et al, 2011). This makes it more difficult to directly observe

location and amplitudes of initiation (Martin et al, 2011; Besnard

et al, 2012) or to extract this information from replication timing
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data (Baker et al, 2012b), contributing to the dearth of timing

models for metazoan cells. Beyond these technical difficulties of

obtaining a comprehensive set of robust parameters, a model built

around tuning a large number of parameters (at least one for each

of the 100,000 estimated initiation sites (Pope et al, 2013) in human

cells) would remain somewhat unsatisfactory. It would also sidestep

the question of what factors determine replication timing and could

therefore not explain timing plasticity. Moreover, parameters for

such a model would have to be re-determined for every cell state.

To address these challenges, we built a minimal model and identi-

fied a genomic marker that can be utilized to predict, rather than

reproduce, genome-scale DNA replication timing profiles at high

resolution with an accuracy (Pearson’s r = 0.92) rivaling that of

experimental repeats (r = 0.94) performed in different laboratories.

We use our model to demonstrate that the replication timing

program can be explained by the approximate location of initiation

sites alone, regardless of other factors such as exact initiation proba-

bilities, and that initiation sites are optimally localized by DNase-

hypersensitive (HS) sites.

Results

Mechanistic model of DNA replication

The focus of this study was to understand and predict the dynamic

DNA replication timing program of human cells. Here, we took a

reductionist modeling approach, including only essential compo-

nents while omitting all features not required to model the timing

program. In the resulting model (Fig 1A, Supplementary Fig S1), a

number N of rate-limiting factors independently select genomic loca-

tions and initiate replication (if the location has not yet been repli-

cated) with probabilities specified for that location by an initiation

probability landscape (IPLS). Thus, the probability of replication

initiation at a given genomic location x is the product of the proba-

bility of a rate-limiting factor selecting one of the unreplicated

competent initiation sites at time t, the initiation probability

assigned to that location by the IPLS and the number of available

(unengaged) rate-limiting factors at time t.

Since the result of each simulation is determined by the choice of

the input IPLS, the biological question of what determines the DNA

replication timing program can be addressed by identifying the IPLS

that most accurately predicts experimentally observed data. Here,

human replication timing data published in (Hansen et al, 2010)

and (Ryba et al, 2012) were used for this benchmark. Both datasets

report the average behavior of cell populations. We compared our

model’s prediction, averaged over millions of Monte Carlo-

simulated cell cycles, to these benchmark datasets. The concordance

between predictions generated by the optimal model (see below)

and the experimental data is striking at the 500-bp resolution used

in our simulations (Fig 1B and Supplementary Fig S2), recapitulat-

ing peaks and valleys of replication timing on a chromosome-wide

scale (Fig 1C).

Predictive power of static genomic features

Earlier studies (Cayrou et al, 2011; Martin et al, 2011; Valenzuela

et al, 2011) had indicated that DNA replication initiation is more

likely to occur in the vicinity transcription start sites (TSSs). Thus,

as a starting point, we tested the predictive capacity of an IPLS

where we assigned a constant, time-independent high initiation

probability to all TSSs annotated in RefSeq (Pruitt et al, 2005) and

low probabilities everywhere else (see Supplementary Information

S1 for further discussion). Despite the simplicity of these assump-

tions, the resulting timing prediction is quite similar (average

r = 0.69 across four cell lines Fig 2A) to the experimental data.

Testing other sequence features that were previously associated

with replication initiation generates similarly good predictions: CpG

islands (Meyer et al, 2013) (r = 0.64), GC content (Meyer et al,

2013) (r = 0.58), and predicted G4-quadruplexes (Besnard et al,

2012) (r = 0.55) (Fig 2A and Supplementary Fig S3). Remarkably,

an IPLS based on a structural feature of the DNA molecule, namely

its solvent-accessible surface (Greenbaum et al, 2007), produced

profiles (r = 0.51) only slightly less predictive than some of the

other, more commonly discussed factors (Fig 2A and Supplemen-

tary Fig S3). However, such invariant properties of the genome

cannot account for timing plasticity observed across cell types (Han-

sen et al, 2010). We therefore hypothesized that dynamic genomic

landmarks would generate models better suited to capture differenti-

ation lineage-specific timing plasticity.

DNase-hypersensitive sites are the main determinants of DNA
replication timing

Utilizing the recently published (ENCODE Project Consortium &

others, 2011; Rosenbloom et al, 2013) ENCODE data, we generated

IPLSs from all 167 cell-specific datasets available for the cell lines in

the Hansen data by assigning an initiation probability proportional to

the ENCODE amplitude, simulated the timing patterns, and

compared the results to the empirical DNA replication timing data for

Figure 1. Mechanistic model overview and simulation results.

A Mechanistic model inputs are initiation probability landscape (IPLS) and the number N of replication forks. The DNA replication program is executed on a simulated
cell population (a single cell is depicted). Simulated cells can be either in a non-replicating state (denoted as “G”) or in a replicating state (“S”). At the start of the
simulation, all cells are in the G state. Transition from G to S occurs randomly. When in the S state, free (red) rate-limiting forks select a random location and bind
with a probability set by the IPLS or remain unengaged otherwise. Once engaged (green), replication occurs bi-directionally until forks collide returning to their
unengaged state, restarting the process until the genome is replicated. The model periodically queries each cell’s replication progress. Once the genome is replicated,
the cell enters G state, repeating the process until simulation is terminated.

B Simulated and empirical DNA replication timing are highly correlated. Each point in the contour plot represents a replication time assignment for a 500-nt bin on
chromosome 12 of GM06990 cells. Simulated replication timing assignment is given on the y-axis, and the experimentally derived assignment is given on the x-axis.
Contour lines are meant to aid in interpretation. R-value represents Pearson’s correlation between simulated and empirical data.

C Simulation based on DNase-HS sites produces high-fidelity replication timing predictions. The simulated timing program (red) generally lies on or between two
experimental datasets plotted on the same axes, the Hansen (Han) dataset (red) and the Ryba (Ryb) dataset (blue). The density of DNase-HS sites (DNase I) is plotted
with higher-density regions colored darker. The stated correlation R-values and all the data that are shown are specific to chromosome 14.
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corresponding cells (Supplementary Table S1). Nearly one-half (77

out of 167) of the probed ENCODE marks produce better predictive

models compared to the best (TSS-based) static model (Table 1 and

Supplementary Fig S4). Notably, the gene expression-based model

(AffyExonArray, r = 0.75) did not show a measurably improved

accuracy in comparison with the static TSS model (r = 0.69). The

top-ranking model (r = 0.87) is based on an IPLS derived from

DNase-HS sites. This is followed by models derived from activating

chromatin marks such as H3k9ac (r = 0.83), H3k4me2 (r = 0.83), or

transcription factor binding (e.g., JunD r = 0.86).
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We hypothesized that the ability of more than one epigenetic

mark to predict DNA replication timing with high fidelity is a conse-

quence of the fact that many chromatin marks tend to co-localize

(Thurman et al, 2012) and that, in isolation, some marks would lose

much of their predictive value. To test this possibility, we performed

simulations based on reduced sets, where mutually co-localized

marks were removed (Fig 2B and Supplementary Fig S5). Remark-

ably, among the tested top-ranking genomic marks selected for this

analysis (histone H3K4me2, H3K9ac, transcription factor JunD, and

DNase-HS sites), only DNase-HS sites fully retained their ability to

predict replication timing in all pairwise comparisons. For all other

marks, accuracy of the timing prediction was substantially reduced

when removing overlaps with DNase-HS sites, even when account-

ing for the reduced set size. We further explored whether these

same marks co-localize with empirically determined DNA replica-

tion initiation sites (Besnard et al, 2012). Our results show that

JunD, H3K4me2, and H3K9ac sites overlap DNA replication origins

only so long as they also overlap DNase-HS sites (Supplementary

Fig S6). We therefore conclude, based on the available data, that

DNase HS is the main independent determinant of replication

timing. This conclusion is further supported by observing that

almost half of the DNase-HS sites in HeLa (47%, P < 1E-6, OR=5.0)

and IMR90 (47%, P < 1E-6, OR=3.8) cells are located within 500

bases of empirically determined initiation sites (Besnard et al,

2012). Also, the non-trivial distribution of initiation sites across

chromosomes, with the density of initiation sites varying substan-

tially between chromosomes, is closely recapitulated by DNase-HS

sites (Fig 2C and Supplementary Fig S7).

DNA replication timing plasticity across cell lineages and species
and its alteration as a result of chromosomal fusions

Replication timing shows remarkable plasticity across differential

lineages (Donley & Thayer, 2013) and in cancer cells (Ryba et al,

2012). Utilizing DNase-HS data for three cell lines (BJ, GM06990,

K562), for which matching experimental timing and DNase-HS data

were available, we performed DNA replication simulations and hier-

archical clustering of the simulated and experimental data (Fig 3A).

The model predictions tightly cluster with the experimental data for

the matching cell and also recapitulate the closer relatedness of

GM06990 and K562 cells (both of hematopoietic origin) in comparison

with BJ (fibroblast). Using stringent parameters (see Materials and

Methods), we identified 60 genes (Supplementary Table S2) in

regions with replication timing variable regions between GM06990

and K562 cells and found a significant enrichment for interferon and

hemoglobin complexes (DAVID (Huang et al, 2009) P-value 3.3E-12

and 2.3E-10, respectively), including the human b-globin locus

(Fig 3B)—in line with phenotypic properties of these cells.

The accuracy of our model predictions in human cells suggested

that the same mechanism will likely work in other mammalian cells.

Currently, the lack of simultaneous availability of both replication

timing and DNase-HS data for the same cells limits the ability for a

broader analysis. To test the applicability of our model to mouse

embryonic fibroblast cells, we compared replication timing predic-

tions generated from DNase-HS sites in NIH/3T3 cells (ENCODE

Project Consortium & others, 2011) to observed timing data in

mouse embryonic fibroblast cells (Hiratani et al, 2010). The average

Pearson’s correlation between model prediction and experimental

replication data is 0.85 (Supplementary Fig S8), confirming that our

model can be extended to other metazoan cells.

Recurrent chromosomal fusions are found in many cancers

(Rowley, 1973; Delattre et al, 1992; Tomlins et al, 2005). In acute

lymphoblastic leukemia, the well-characterized t(12;21)(p13;q22);

Table 1. Top DNA replication timing predicting initiation probability
landscape (IPLS) sources

IPLS source Average correlation

DnaseDgf 0.865

CCNT2 0.855

JunD 0.855

FaireSeq 0.854

ZNF384 0.849

COREST 0.849

CEBPB 0.847

MAZ 0.842

TBLR1 0.839

eGFP-JunD 0.835

ZNF-MIZD-CP1 0.834

H3K9acB 0.829

H3K4me2 0.829

HCFC1 0.828

UBTF 0.828

HMGN3 0.828

BHLHE40 0.827

TBP 0.827

DnaseSeq 0.825

H3K4me1 0.824

Figure 2. DNase-HS sites are main independent determinants of DNA replication timing.

A Simulations based on genome sequence features (GC content, CpG islands), or local genome conformation (ORChID, G-quadruplex), RefSeq annotated transcription
start sites (TSS) and gene expression levels (where available) in five cell lines. Shown is the correlation with the Hansen (Han) dataset averaged over 22 autosomal
chromosomes, and error bars represent the standard error of the mean.

B Mutual independence of representative top-ranking ENCODE marks (DNase, JunD, H3K4me2, H3K9ac) is probed by eliminating co-localized genomic marks in
pairwise comparisons. The results of these 4 (datasets) × 3 (overlaps) = 12 sets of simulations are presented in a 4 × 4 matrix format: rows indicate the dataset that
was used to generate the initiation probability landscape (IPLS), and columns indicate the subtracted dataset. Each panel plots the correlation to the experimental
timing data in K652 cells (the only set for which all annotations were available) for the full dataset (red), the non-co-localized marks (green), and a “random” dataset
(blue) from which the same number of (not necessarily overlapping) marks was removed. Error bars represent standard error of the mean.

C The number of initiation sites had been shown earlier to be non-trivially distributed across chromosomes (Besnard et al, 2012). Comparison of the number of DNase-
HS sites in IMR90 and HELA with the number of initiation sites on each chromosome reveals a tight correlation between the two. Each data point in the plot
represents the fraction (sum = 1) of initiation and DNase-HS sites, respectively, on a autosomal chromosome (see also Supplementary Fig S6).
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ETV6-RUNX1 fusion is accompanied by an abrupt change in DNA

replication timing near the fusion site (Ryba et al, 2012). Our model

reproduces this behavior when inducing (see Supplementary Infor-

mation S1) an in silico t(12;21)(p13;q22) translocation in GM06990

lymphoblastoid cells (Fig 3C). This behavior is also reproduced

when comparing replication timing at the in silico-induced break-

point in GM06990 cells with observed replication timing in REH

cells, which harbor the translocation (Supplementary Fig S9). The

results show that replication timing is not determined at the site of

the breakpoint. Instead, the timing pattern arises from the combined

influence of the DNase-HS sites situated on either side of the break.

The discontinuity, observed experimentally and reproduced in the

simulation, is the result of mapping physical coordinates of the rear-

ranged chromosome 12 onto the normal genome.

Modeling parameters

The proposed model has remarkably few parameters. In addition to

an IPLS and an optional technical variable (see below), there is only

one adjustable parameter, namely the maximum number (N) of

replication forks that can be active simultaneously. As N is not set a

priori (Supplementary Fig S10), we performed a series of simula-

tions identifying, for each chromosome, the optimal N that gener-

ates the closest match to the experimental data. We find that the

optimal N grows linearly with chromosome length at a rate of 1 fork

per 1.3 mega bases (Fig 3D), compatible with the assumption that

the stochastic process governing replication does not substantially

differ between chromosomes. Subsequently, we used the estimate

from the linear regression curve in this experiment for N. With this

setting, the predicted median length of the S-phase is 5,965

(mean = 6,134) simulation steps (Fig 3E) in GM06990 cells. In real

human cells, replication forks move at a speed of about 50 bases per

second (Alberts et al, 2008). With a 500-bp model resolution (and

two forks moving in opposite directions in each simulation step),

the predicted median wall-clock time for the S-phase is t = 5965

steps * 500 bases/(50 bases/s)/(2 step) = 8.3 h, in line with the experi-

mentally observed duration of 6–10 h. The optional technical vari-

able mentioned previously governs the simulation of a flow-sorter,

which in laboratory experiments divides asynchronously replicating

cells into S-phase fractions (Ryba et al, 2011). As the actual gate

settings used were not available (Hansen et al, 2010), numerical

optimizations (see Supplementary Information S1) were used,

further improving the similarity of the best (DNase HS-based) simu-

lated models from r = 0.89 (with 5 equidistant gates in GM06990

cells) to r = 0.92, a level approaching the limit of experimental noise

(r = 0.94 between experiments performed in different laboratories).

DNA replication timing is highly robust

With only a single adjustable biological parameter, and thus no real

risk of over-fitting the data, the accuracy of our model predictions is

exceptionally high, suggesting a high degree of robustness of the

proposed model. One potential limitation is the completeness of

genomic annotations. To test its importance, we built a series of

models by randomly sub-sampling DNase-HS annotations. The

predictions were essentially unchanged despite removing up to 75%

of DNase-HS sites with the accuracy degrading gradually beyond

this point (Supplementary Fig S11A). We conclude that the local

replication timing program emerges from the collective contribution

of adjacent initiation sites, and as a systems phenomenon, it is

largely independent from individual sites.

The model also shows a large degree of insensitivity with respect

to specific modeling choices. We wondered how strongly the specifics

of assigning probabilities in the IPLS based on ENCODE ampli-

tudes affects the simulation results. For the simulations presented so

far, the local initiation probability was set to be proportional to the

ENCODE amplitude. We tried alternate assignment functions (Sup-

plementary Fig S11B) which resulted in only insignificant changes

in the accuracy of the model prediction (linear r = 0.86, square

r = 0.86, square-root r = 0.84) and even when assigning the same

constant value to all sites (r = 0.86). On the molecular level in real

cells, this implies that, once a site is competent to initiate, the proba-

bility that it is going to do so does not substantially affect the global

replication timing program. We conclude that the relevant informa-

tion provided by the ENCODE data, with regard to DNA replication

timing, is location while amplitude is irrelevant. In our early simula-

tions, we had included a small background initiation rate outside of

the high efficiency initiation sites demarcated by DNase-HS sites.

This choice, too, was found to not affect the accuracy of the model

prediction (see Supplementary Information S1), even when assigning

a zero background initiation rate, that is, when initiation exclusively

occurred at high efficiency sites (Supplementary Fig S12).

Discussion

Here, we present a mechanistic model that fully predicts replication

timing in human cells, without the need to adjust any parameters

Figure 3. Mechanistic model is highly reflective of the underlying DNA replication timing biology.

A Hierarchical clustering and correlations heatmap of simulated and empirical data. Individual correlations (Pearson’s) are noted in the matrix for every dataset pair.
Simulations are consistently placed closest to the associated experimental data. The stated correlations are based on simulations which were not optimized for flow-
sorter settings.

B Analysis of timing plasticity between simulated GM06990 and K562 cells identified, among other regions, differential timing in the b-globin locus (indicated by
dashed lines, genes marked in blue). Hansen dataset (Han) is shown for reference.

C A translocation event simulated in silico in GM06990 cells qualitatively reproduces the timing discontinuity observed (Wiemels et al, 2000) at a TEL-AML1
translocation in ALL. Replication profile of translocated (blue line) and normal (red line) are shown on the same genomic axis, and the dashed line signifies the
translocation coordinate.

D DNA replication timing profiles were simulated using initiation probability landscape (IPLSs) derived from GM06990 DNase-HS data, noting the number of replication
factors that produced highest correlation for each chromosome. Solid line represents a linear fit (shading area denotes the 95% confidence interval). The linear
regression curve estimates that the number of forks per megabase is given by N = 10.24 + 7.9E-7 * x, where x is chromosome length. The Pearson’s correlation
between the optimal number of replication forks and chromosome length is 0.92.

E Histogram illustrating the distribution of the lengths of the S-phase in a simulated asynchronous cycling population of GM06990 cells.
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for new cell types. Once the number of rate-limiting factors and the

genomic landmark that optimally generates the IPLS had been iden-

tified, the same constant choices produced accurate timing predic-

tions for any tested cell type. Designed in a reductionist spirit, we

attempted to omit all details from the model that are not required to

understand the timing program (Supplementary Fig S1A and B). We

wondered if the replication fork collision mechanism in the model,

which dynamically determines the distance a fork travels, could be

removed by instead using the density of DNase-HS sites in the

vicinity (see Supplementary Information S1) to assign a replication

time. All such models produced substantially worse predictions

(Supplementary Fig S13 and Supplementary Information S1), indi-

cating that the collision mechanism is a required aspect of the

model. Therefore, while genomic regions dense in DNase-HS sites

delineate early DNA replication regions (Fig 1C), they are not suffi-

cient, on their own, to predict DNA replication timing.

An explicit separation of replication into licensing and initiation

steps proved also to be unnecessary. This separation is known to be

an essential molecular mechanism to avoid over-replication: licens-

ing occurs exclusively in late M/early G1 by assembly of the

so-called pre-replication complex (PreRC) at potential initiation sites,

with initiation occurring later in the S-phase by conversion of the

PreRC into bi-directional replication forks through phosphorylation

and recruitment of other factors (Machida et al, 2005). In our

model, the IPLS subsumes these two steps (over-replication itself is

prevented by explicitly keeping track of replicated regions); the initi-

ation probability at a given site represents the product of the biologi-

cal probabilities to first assemble and later activate the PreRC. The

above described intrinsic robustness of the model with respect to

the assignment of probabilities in the IPLS is remarkable in this

context. It implies that the factor dominating the timing program is

the selection of the location of PreRC assemblies. Our model predicts

(Supplementary Fig S11B) that the empirical timing pattern will

emerge even if all PreRCs, once assembled, have the same constant

probability of being subsequently activated unless the site is

passively replicated. While, to our knowledge, this possibility has

not been tested in metazoan cells, it has broadly been shown to be

the case in yeast (Yang et al, 2010), where a majority of initiation

sites were demonstrated to have a “potential initiation efficiency,”

with the initiation probability remaining larger than 0.9 after

correcting for passive replication.

Remarkably, we were not required to introduce a time-dependent

IPLS in order to precisely predict the global replication timing

pattern. Earlier models (Hyrien & Goldar, 2010; Yang et al, 2010)

used location and explicit time-dependent initiation rates I(x, t) to

force individual initiation sites to fire, on average, at the right time to

reproduce the global timing pattern. While these approaches

elegantly reconcile the orchestrated global replication timing

program with the stochastic nature of individual initiation events,

they do not ultimately address what determines the local initiation

timing. Instead, they reproduce, but do not predict, replication timing.

This is because these models rely on existing timing data, for each

cell type, in order to fit a large number of variables, one or more for

each initiation site. In contrast, in the model presented here, the

global timing program results from the spatial distribution of initia-

tion sites, and a determination of individual firing rates was therefore

not necessary. Once the genomic landmark that optimally locates

initiation sites, DNase HS, was determined, timing could be predicted

for all cell types. We expect that the basic mechanism described here

will also work in other metazoan cells. Indeed, we found an excellent

agreement between our model prediction and experimental timing

data in mouse embryonic fibroblast cells (Supplementary Fig S8).

Another important reason to use a time-dependent, globally

increasing initiation rate throughout S-phase in earlier models is to

stabilize the S-phase length, thus avoiding the random completion

problem (Blow et al, 2001; Herrick et al, 2002; Yang & Bechhoefer,

2008). These predictions were confirmed by a recent analysis

(Goldar et al, 2009), uncovering a universal behavior of the global initia-

tion firing rate across a number of species. How does this reconcile

with the time-independent IPLS presented here? The firing rate in

our model depends not only on the explicitly time-independent

IPLS, but also on the number of unengaged rate-limiting factors,

which dynamically changes over time, as well as on the search time

to find unreplicated origins, which differs between early and late

replicating regions as a result of the difference in the density of initi-

ation sites. A numerical analysis of the global initiation rate (Supple-

mentary Fig S15) shows a remarkable qualitative similarity to the

universal patterns described in Goldar et al, (2009). It will be inter-

esting to see whether it is necessary to extend our model by including

a more detailed replication factor diffusion process, such as the

sub-diffusive model discussed in Gauthier & Bechhoefer (2009), in

order to obtain a quantitative match with experimentally deter-

mined global initiation rates in human cells.

We identified DNase hypersensitivity as the optimal IPLS predict-

ing the DNA replication timing in metazoan cells. This suggests that

DNA replication timing is largely determined mechanistically:

locally by DNA accessibility as the dominant factor modulating the

likelihood of forming competent initiation complexes and globally

by the process of colliding replication forks—a reduced representa-

tion of the known molecular processes. This interpretation implies a

causal relationship, where the distribution of accessible genome

regions determines DNA replication timing. Recently, a tight correla-

tion, although significantly weaker (Pearson’s r = 0.8) compared to

the best models tested here, between replication timing and the first

eigenvector of the HiC contact probability matrix has been reported

(Ryba et al, 2010), suggesting that the 3D genome organization may

play a prominent role in DNA replication timing, for example, via

replication factories or by determining the boundaries of replication

domains (Baker et al, 2012a). It may therefore seem surprising that

our accurately predictive model does not require any reference to

the spatial genomic organization. It could be that both phenomena,

the distribution of DNase HS and 3D conformation, have a common

cause. Yet, it is generally believed that DNase-HS sites are estab-

lished by transcription factors dislocating and/or limiting the move-

ment of histones (Felsenfeld et al, 1996). It therefore seems

reasonable to speculate that the distribution of DNase-HS sites might

itself contribute to the control of the genomic conformation.

In summary, provided with a proper “IPLS”—a mathematical

construct that encodes the location information, the model predicts

the replication timing program and recapitulates cell-specific timing

patterns, including abnormal timing behavior in cancer cells. These

results strongly support the concept that replication timing is a

stochastic process ultimately determined by chromatin structure,

which itself is a consequence of the topological organization of

genes and functional regulatory elements on the chromosome as

encoded in the DNA sequence.
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Materials and Methods

Software implementation

The custom-written software (Replicon) is capable to simulating

genome replication and recording various associated measurements,

such as DNA replication timing. Replicon is written in C++ and can

be executed in a multi-threaded mode. In our experiments, a typical

simulation of a human genome-wide DNA replication profile took

about 15 min when executed in parallel: 22 simulations each

running on a 4-core, 2.93-GHz Linux node.

Replicon source code is included in the accompanying supple-

ment as is a set of instructions on how to generate IPLS files from

BED-formatted files. Also included with the supplement is the set of

IPLS files (based on DNase I-HS site data) and replication timing

predictions for GM06990 cells.

Simulated replication time assignment to genome coordinates

The simulation consists of millions of simulated cell cycles. The

assignment of replication time to genome coordinates starts by first

separating the cell population, according to each cell’s DNA content,

into one of six bins (akin to a flow-sorter sort). The replication time

is calculated for each genome coordinate (500-bp resolution) by

taking the average of the product of the bin number (1 through 6)

and the number of times the genome coordinate in question was

observed in each bin.

Flow-sorter gating optimization

We used a simulated annealing algorithm to approximate DNA

flow-sorter bin boundaries with the objective to minimize the

Euclidean distance between simulated and experimentally derived

DNA replication timing profile. Starting from a state where flow-

sorter bin boundaries were randomized, replication timing was

simulated based on DNase DGF data for GM06990 cells. The

neighboring state was calculated by perturbing a randomly chosen

bin boundary. The new boundary value was chosen from normal

distribution, where l was set to the old boundary and r to a value

of 1.

IPLS generation

Utilizing a 500-bp resolution, the probability of initiating replication

at any given genomic location was set either to a scaled value of an

attribute of interest or to a background frequency of 1E-4, whichever

was greater. Scaling was achieved using the formula x/max(x),

where x is the attribute of interest. All DNA replication initiation

landscapes, unless stated otherwise, were generated from a local

copy of the UCSC ENCODE database (Rosenbloom et al, 2013),

where the data attribute “score” was used as the attribute of inter-

est. For GC-content IPLS, the probability of DNA replication initia-

tion was scaled to the “sumData” attribute of the “gc5Base”

annotation table. For CpG island IPLS, the probability of DNA repli-

cation initiation was scaled to the “obsExp” attribute of the “cpgI-

slandExt” annotation table. For DNA G-quadruplex (G4) IPLS, the

probability of DNA replication initiation was scaled to the length of

the G4 motif. The G4 motifs were identified using a regular expres-

sion as described in Todd et al, (2005). ORChID IPLS was based on

“wgEncodeBuOrchidV1.bigWig” annotation file available at the

UCSC Genome Browser (http://genome.ucsc.edu/), where the

intensities of hydroxyl radical accessibility were averaged over non-

overlapping 500-bp windows. The transcription start site (TSS) IPLS

was set to a constant probability of 1.0 for every genomic region

annotated as “txStart” in the “refGene” table.

Generation of reduced-model IPLSs

For each set of genome annotations in a pairwise comparison, we

identified and removed co-localized genome regions, generating the

“Subtract Overlap” reduced model for each model in the compari-

son. The “Subtract Random” model was generated by removing

randomly chosen genome regions from each model in the comparison,

such that the number of regions in “Subtract Overlap” and “Subtract

Random” models was equal.

In silico ETV6-RUNX1 translocation

We generated t(12;21)(p13;q22) chromosomal translocation in silico

by joining GM06990 DNase DGF data for chromosomes 12 and 21—

producing an ETV6-RUNX fusion gene using molecularly mapped

breakpoint coordinates (Wiemels et al, 2000). We then simulated

replication timing for two fused chromosome products and

compared simulated replication timing data for translocated and

un-translocated chromosome 12.

Robustness

The effect of deleting DNase-HS sites was investigated using DNase

DGF data available for GM06990 cells. At each iteration of the algo-

rithm, we erased an ever-increasing fraction of DNase sites and

generated a corresponding DNA replication initiation landscape.

DNA replication plasticity regions

DNA replication plasticity regions were identified using custom-

developed software. First, a DNA replication difference profile was

derived for a given pair of DNA replication timing profiles by

subtracting one DNA replication profile from another for matching

genome coordinates. The distribution of differences was observed to

follow normal distribution. Using the normal distribution, a P-value

was assigned to every 500-bp non-overlapping genome bin (the

resolution of our model) in the difference profile. A DNA replication

plasticity region was identified as such if at least three consecutive

bins were assigned a P-value of 0.001 or less.

Supplementary information for this article is available online:

http://msb.embopress.org
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