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microRNAs are differentially regulated between MDM2-positive 
and negative malignant pleural mesothelioma
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ABSTRACT

Background: Malignant pleural mesothelioma (MPM) is a highly aggressive 
tumour first-line treated with a combination of cisplatin and pemetrexed. MDM2 
and P14/ARF (CDKN2A) are upstream regulators of TP53 and may contribute to 
its inactivation. In the present study, we now aimed to define the impact of miRNA 
expression on this mechanism.

Material and Methods: 24 formalin-fixed paraffin-embedded (FFPE) tumour 
specimens were used for miRNA expression analysis of the 800 most important 
miRNAs using the nCounter technique (NanoString). Significantly deregulated miRNAs 
were identified before a KEGG-pathway analysis was performed.

Results: 17 miRNAs regulating TP53, 18 miRNAs regulating MDM2, and 11 miRNAs 
directly regulating CDKN2A are significantly downregulated in MDM2-expressing 
mesotheliomas. TP53 is downregulated in MDM2-negative tumours through miRNAs 
with a miSVR prediction score of 11.67, RB1 with a prediction score of 8.02, MDM2 
with a prediction score of 4.50 and CDKN2A with a prediction score of 1.27.

Conclusion: MDM2 expression seems to impact miRNA expression levels in MPM. 
Especially, miRNAs involved in TP53-signaling are strongly decreased in MDM2-
positive mesotheliomas. A better understanding of its tumour biology may open the 
chance for new therapeutic approaches and thereby augment patients’ outcome.

INTRODUCTION

Malignant pleural mesothelioma (MPM) is a 
biologically highly aggressive tumour arising from the 
pleura leading to a dismal prognosis [1–5].

Nowadays, cisplatin is the drug of choice for 
the treatment of MPM, and carboplatin seems to have 
comparable efficacy [1, 6–10]. Combined with antifolates 
they are considered as the most effective regimen for 
MPM [10–13]. However, patients only show response 
rates of approximately 40% with a progression-free 
survival (PFS) of 5.7 months [14].

In contrast to other solid tumours, mutations 
of the TP53 gene are extremely rare in MPM, so 
other mechanisms such as deletion of the locus or 
methylation contribute to inactivation of TP53 [15–17]. 
Overexpression of MDM2 in some tumour types can 
lead to a loss of TP53 regulatory function in cancer 
cells by its increased proteasomal degradation [18–
23]. P14/ARF, the physiological inhibitor of MDM2 
is recognized as a tumour suppressor and induces cell 
cycle arrest in a TP53-dependent and -independent 
manner [24–27]. Analysis of the signalling relationship 
between these genes indicates an additional role of 
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RB1 in this signalling network [28–30]. In previous 
studies, we have demonstrated that MDM2 is strongly 
expressed in the nuclei in approximately 25% of MPM 
affecting only epithelioid or the epithelioid components 
of biphasic MPM [23, 31]. Moreover, patients with 
MDM2-positive MPM showed a significantly decreased 
overall survival (OS) and progression-free survival (PFS) 
compared to MDM2-negative MPM [23, 31]. This might 
be explained by a significantly decreased or completely 
abolished TP53 activity and/or stability mediated by an 
overexpression of MDM2 [18–22]. A promising approach 
to explain the differences in MDM2 expression is a 
differential expression of miRNAs [32], targeting some 
of these key enzymes and thereby reducing expression 
levels of those.

The recent study is designed to analyse the 
miRNA profile of pleural mesotheliomas with respect to 
immunohistochemical MDM2 expression (score 0 versus 
score ≥1) using the nCounter system (NanoString), a 
hybridization-based digital detection method that can be 
used to analyse mRNA, miRNA and DNA [31, 33–36].

RESULTS

136 miRNAs significantly differentially regulated 
between MDM2-positive and -negative samples were 

identified. 39 of them showed a p-value <0.01 and six of 
them (miR-106-5p, miR-15b-5p, miR24, miR-29a, miR-
29c and miR-130a) a p-value <0.001.

Six miRNAs with p<0.01 were increased, whereas 
the remaining were decreased in MDM2-expression 
positive tumours.

All significant p-values are summarized in suppl. 
Table 1.

Furthermore, 17 miRNAs inhibiting TP53, 18 
miRNAs binding MDM2 and eleven miRNAs suppressing 
CDKN2A were significantly decreased in MDM2-
expressing mesotheliomas. Of note, five miRNAs (miR-
29a, miR-29b, miR-29c, miR-125a, miR-125b) binding all 
three targets, five regulating both TP53 and CDKN2A (let-
7a, let-7c, let-7d, let-7e, let-7g), and three binding both 
MDM2 and TP53 (miR-34a, miR-145, miR-185) were 
found to be significantly decreased, respectively. TP53 is 
predicted to be suppressed in MDM2-negative tumours by 
miRNAs with a prediction score (PS) of 11.67, RB1 with 
a PS of 8.02, CDKN2A with a PS 1.27 and MDM2 with a 
PS of 4.50 (Figure 1).

A summary of the miRNAs, the affected target, 
correlating p-values and correlation coefficients is given 
in Table 1.

Some pathways are stimulated in MDM2-positive 
tumours by decreased miRNA expression. In silico, the most 

Figure 1: In silico prediction of miRNAs affecting TP53 pathway members in MDM2-negativ tumours compared to 
MDM2-positive ones is shown. TP53 is downregulated with a prediction score (PS) of 11.67, RB1 with a PS of 8.02, CDKN2A with 
a PS 1.27 and MDM2 with a PS of 4.50.
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influenced KEGG-pathways between MDM2-positive and 
negative tumours with respect to the expression levels are 
Ribosome (eight targets, PS 36.24), Wnt signaling pathway 
(122 targets, PS 29.45), metabolism of xenobiotics by 
cytochrome P450 (seven targets, PS 24.14), MAPK signaling 
pathway (184 targets, PS 23.49), focal adhesion (145 targets, 
PS 21.53), regulation of actin cytoskeleton (152 targets, PS 
19.46), axon guidance (99 targets, PS 19.26), colorectal 
cancer (73 targets, PS 18.11), oxidative phosphorylation 
(35 targets, PS 16.49) and TGF-beta signaling pathway (74 
targets, PS 15.87).

An overview of all differentially stimulated 
pathways can be found in suppl. Table 2. The results are 
visualized in Figure 2.

DISCUSSION

Recently, a number of miRNAs targeting both 
TP53 and MDM2 have been identified. In TP53 wild type 
plasmocytomas, TP53 can induce the expression of miR-
192, miR-194 and miR-215, subsequently decreasing 
MDM2 expression. Hypermethylation of the promoter 

Table 1: An overview of significances of miRNAs directly regulating TP53-pathway members in MDM2-expressing 
and non-expressing tumours is shown

Target miRNA Expression p-Value Correlation Coefficient

TP53/CDKN2A/MDM2 hsa-miR-125a 0.0078 -0.6030

TP53/CDKN2A/MDM2 hsa-miR-125b 0.0019 -0.6316

TP53/CDKN2A/MDM2 hsa-miR-29a 0.0000 -0.4055

TP53/CDKN2A/MDM2 hsa-miR-29b 0.0344 -0.4055

TP53/CDKN2A/MDM2 hsa-miR-29c 0.0000 -0.4055

TP53/CDKN2A hsa-let-7a 0.0014 -0.5711

TP53/CDKN2A hsa-let-7c 0.0117 -0.5711

TP53/CDKN2A hsa-let-7d 0.0014 -0.5711

TP53/CDKN2A hsa-let-7e 0.0142 -0.5711

TP53/CDKN2A hsa-let-7g 0.0246 -0.5711

MDM2/TP53 hsa-miR-34a 0.0006

MDM2/TP53 hsa-miR-145 0.0063 -0.3741

MDM2/TP53 hsa-miR-185 0.0470 -0.2059

CDKN2A hsa-miR-340 0.0470 -0.1303

MDM2 hsa-miR-140 0.0063 -0.1286

MDM2 hsa-miR-223 0.0206 -0.2969

MDM2 hsa-miR-23b 0.0011 -0.1197

MDM2 hsa-miR-142 0.0246

MDM2 hsa-miR-191 0.0008

MDM2 hsa-miR-331 0.0403

MDM2 hsa-miR-605 0.0292

MDM2 hsa-miR-548d 0.0142

MDM2 hsa-miR-374b 0.0172 -0.1462

MDM2 hsa-miR-383 0.0292 -0.1209

TP53 hsa-miR-19b 0.0031 -0.2945

TP53 hsa-miR-218 0.0050 -0.1678

TP53 hsa-miR-22 0.0078 -0.1955

TP53 hsa-miR-27b 0.0019 -0.5795
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region of all three miRNAs impairs the MDM2 suppression, 
still resulting in a blunted TP53 function [38]. Additionally, 
miR-143, miR-45, miR-605, miR-34a and miR-29b are 
direct transcriptional targets of TP53 [44]. Together with the 
three former ones, they form a TP53-positive feedback loop 
by decreasing MDM2 and HDM4 expression levels [45, 
46]. Nevertheless, 10 miRNAs suppressing MDM2 showing 
low overall expression levels (Figure 3) but still seem to be 
associated to TP53 activity and thereby are also significantly 
decreased in MDM2-positive tumours (Table 1).

TP53 shows the strongest predicted suppression via 
miRNAs in MDM2-positive tumours with an overall PS 
of 11.67. Active TP53 stimulates the DROSHA complex, 
mediating the processing of tumour suppressor miRNAs 
[44, 47]. As already demonstrated, differences between 
epithelioid and sarcomatoid mesotheliomas regarding 
miR-34a expression were found [48]. These differences 
may be explained by the high incidence of loss of 
heterozygosity (LOH) in sarcomatoid mesotheliomas, 
whereas epitheloid subtypes more often show functional 
inhibition of TP53 via MDM2 [23, 31]. Furthermore, it has 
been reported that epigenetic silencing of miR-34 family 
members plays an important role in the pathogenesis of a 
majority of MPMs [49].

MDM2 suppresses wild type TP53 leading to a more 
or less impaired but still specific transcriptional activity [50]. 
This may shift to other promoters e.g. controlling oncogenic 
miR-128b. Of note, activation of TP53 leads to an genome-
wide change of miRNA pattern, indicating that TP53 has a 
complex role in regulating miRNAs (Figure 4) [51, 52].

Due to the high number of targets measured in 
a relatively low number of cases, a classical p-value 
adjustment by FDR or Bonferroni correction was not 
suitable. To our opinion, this study should be more seen 
like a screening study to get a first insight in possible 
regulatory mechanisms but therefore is still of importance 
to smooth the way for larger validation cohorts.

An interesting finding was the strong difference in 
activation of the ribosomal pathway predicted in silico. 
RPS6 encoding for the ribosomal protein S6, but also 
other ribosomal components, rendered high PS (suppl. 
Table 2), suggesting it plays an important role in pleural 
tumour progression. Multiple studies reported RPS6 as a 
predictive marker in pleural mesotheliomas with platinum-
based chemotherapy [53, 54], but these findings may 
be coincidental. More likely, the MDM2 driven knock-
down of TP53 can predict the response to platinum-based 
regimes and the subsequent regulation of ribosomal 

Figure 2: In silico prediction of the most affected KEGG-pathways between MDM2-positive and negative tumours is 
shown. Most likely affected are Ribosome, Wnt signaling pathway, Metabolism of xenobiotics by cytochrome P450, MAPK signaling 
pathway, focal adhesion, regulation of actin cytoskeleton, Axon guidance, Colorectal cancer, Oxidative phosphorylation as well as TGF-
beta signaling pathway.
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Figure 3: The heatmap presents miRNAs directing TP53 pathway members. miRNAs regulating either MDM2, TP53 or RB1 
are downregulated in MDM2-positiv tumours. CDKN2A seems to be unaffected.

Figure 4: The schematic illustrations describes the role of TP53 in miRNA processing and regulation. TP53 acts as 
transcription factor for some miRNAs. Additionally, TP53 plays a role in miRNA processing by directly interacting with P68 (DROSHA-
complex), P63 (DICER-complex) as well as RBM38. The figure is adapted from Rokavec et al. Clin Exp Gastroenterol, 2014 [44].
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components acts as an indirect parameter. RL26 can 
directly bind TP53 and therefore form a positive feedback 
loop with MDM2 [55, 56].

In summary, 136 miRNAs significantly differentially 
expressed in MDM2-positive and -negative tumours were 
identified. Furthermore, 17 miRNAs directly binding 
TP53, 18 miRNAs directly suppressing MDM2, and eleven 
miRNAs directly inhibiting CDKN2A are significantly 
decreased in MDM2-expressing mesotheliomas. TP53 is 
predicted to be strongly suppressed by miRNA depending 
on expression pattern, whereas the impact on MDM2 itself 
is just moderate and on CDKN2A is even weaker. The 
present data lead to the conclusion that MDM2 expression 
level noticeably impacts the overall miRNA expression 
and thereby cellular pathways (e.g. ribosomal translation) 
in MPM. This can lead to a better understanding of the 
biology of MPM and may open the chance for new 
therapeutic approaches and thereby augment patients’ 
outcome.

MATERIALS AND METHODS

Study design

For this exploratory miRNA study, twenty-four 
formalin-fixed paraffin-embedded (FFPE) tumour 
specimens were screened with respect to their MDM2 
immunoexpression (twelve MDM2-positive and twelve 
MDM2-negative MPM) as described previously [31]. 
Tumor classification is based on the WHO classification 
of tumours guidelines (2004) [37], TNM-staging is based 
on the UICC classification of malignant tumours [38]. 
Both were confirmed by two experienced pathologists 
(JWO, KWS). The study included only patients with 
MPM, treated at the West German Cancer Centre or 
the West German Lung Centre between 2006 and 2009. 
Clinicopathological data including age, gender, histology 
and stages are summarized in Table 1. Surveillance 
for this study was stopped on August 31, 2014. The 
retrospective study was approved by the Ethics Committee 
of the Medical Faculty of the University Duisburg-Essen 
(identifier: 14-5775-BO). The investigation conforms to 
the principles outlined in the declaration of Helsinki.

RNA extraction and RNA integrity assessment

According to the manufacturer’s recommendations, 
three to five paraffin sections with a thickness of 4 μm 
per sample were deparaffinised with xylene prior to 
total RNA extraction including small RNAs using the 
miRNeasy FFPE kit (Qiagen, Venlo, Netherlands). 
RNA concentrations were measured using a Qubit 2.0 
fluorometer with the appertaining RNA broad-range assay 
(Thermo Fisher Scientific, WA, USA). RNA integrity was 
assessed using a Fragment Analyzer (Advanced Analytical 
Inc., Ames, IA, USA).

NanoString CodeSet design and expression 
quantification

The commercially available human miRNA V2.1 
code set containing probes and miRTags for the 800 
most important miRNAs described in the context of 
cancerogenic events was chosen for miRNA expression 
analysis. Probe sets and miRTags for each target in the 
CodeSet were designed and synthesized by NanoString 
Technologies (Seattle, WA, USA). 200 ng total RNA of 
each sample was processed. For the sample preparation, 
the high-sensitivity program was chosen. The cartridge 
was read with maximum sensitivity (555 FOV).

NanoString data processing and statistical 
analysis

All statistical analyses were calculated with 
the R statistical programming environment (v2.15.2). 
NanoString data processing was done using the 
NanoStringNorm package [34]. Considering the counts 
obtained for positive control probe sets raw NanoString 
counts for each gene were subjected to a technical factorial 
normalization. Mean background plus 2x standard 
deviations were subtracted for background correction. 
Additionally, samples with less than mean background 
plus 2x standard deviations were interpreted as not 
expressed to overcome basal noise. After this procedure a 
biological normalization using the reference genes ACTB 
and GAPDH included in the CodeSet was performed. For 
in silico prediction of the functional impact of miRNAs 
we used DIANA-microT v4.0 [39], PicTar 4-way [40] 
as well as TargetScan5 [41]. KEGG-Pathway analysis 
was performed by the DIANA-mirPath tool for multiple 
miRNA analysis [42]. Analysis of already validated 
miRNA-target interactions was performed using the 
miRWalk database [43].

For statistical analysis of dichotomous factors such 
as gender and MDM2-positivity, the Wilcoxon Mann-
Whitney rank sum test was applied. Associations between 
gene expression of tested genes and associations between 
gene expression and TNM-criteria were analysed by using 
the Spearman’s rank correlation test.

The level of statistical significance was defined as 
p≤0.05.
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