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Abstract: Mandibular fracture is one of the most frequent injuries in oral and maxillo-facial surgery.
Radiologists diagnose mandibular fractures using panoramic radiography and cone-beam computed
tomography (CBCT). Panoramic radiography is a conventional imaging modality, which is less
complicated than CBCT. This paper proposes the diagnosis method of mandibular fractures in a
panoramic radiograph based on a deep learning system without the intervention of radiologists.
The deep learning system used has a one-stage detection called you only look once (YOLO). To
improve detection accuracy, panoramic radiographs as input images are augmented using gamma
modulation, multi-bounding boxes, single-scale luminance adaptation transform, and multi-scale
luminance adaptation transform methods. Our results showed better detection performance than the
conventional method using YOLO-based deep learning. Hence, it will be helpful for radiologists to
double-check the diagnosis of mandibular fractures.

Keywords: mandibular fracture; panoramic radiography; deep learning; object detection; YOLO;
YOLO v4; image processing; multi-scale luminance adaptation transform (MLAT); single-scale
luminance adaptation transform (SLAT)

1. Introduction

Mandibular fracture is one of the most frequent injuries in oral and maxillo-facial
surgery. Mandibular fractures occur by assault, vehicle accident, fall, among others [1].
They are classified in anatomic areas as follows; symphysis/parasymphysis (30–50%),
body/horizontal branch (21–36%), angle (15–26%), ramus (2–4%), condyle (20–26%), and
coronoid process (1–2%) as shown in Figure 1a [2]. Mandibular fractures’ shapes are
straight, including bending and torsion. These fractures sometimes show shear fractures,
as shown in Figure 1b–d [3].

Radiologists mostly diagnose mandibular fractures using cone-beam computed to-
mography (CBCT) and panoramic radiography. Panoramic radiography is a conventional
imaging modality that is the most common way to visualize mandibular fractures [4,5].
Alternatively, CBCT is more capable of observing detailed diseases than panoramic ra-
diography. It has a significantly longer imaging time and higher radiation exposure than
panoramic radiography [6]. In panoramic radiography, a routine patient diagnosis is
conducted, whereas in CBCT patient diagnosis, it is usually conducted when the patient’s
disease is severe. The panoramic radiography has disadvantages of two-dimensional imag-
ing such as patient’s positioning, anatomic noise, superimposition, geometric distortion,
and radiographic contrast, as shown in Figure 1c,d. These shortcomings cause inaccurate
detection of mandibular fractures. Nevertheless, panoramic radiographs are widely used,
thus useful for training and testing datasets of deep learning methods, which are primarily
results determined by radiologists.
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Figure 1. Examples of mandibular fracture: (a) anatomic area of mandibular fracture [2], (b) mandibu-
lar fractures (red boxes) in panoramic radiographs, (c) linear fracture on parasymphysis area,
and (d) shear fracture on angle area.

Nowadays, the deep learning system has been applied in many medical fields. Con-
volution neural network (CNN) is one of the most popular object detection deep learning
methods applied to the medical field. It is configured to be trained by maintaining the
association between pixels and the surrounding pixels in the image. We begin the CNN
process by generating multiple images that are associated with pixel to pixel from one
image. Multiple images are obtained from convolution calculation. By convolution cal-
culation, the adjacent pixel is multiplied by the convolution filter [7]. In practice, deep
learning systems have been used in detecting teeth problems using CNN-based methods [8].
These CNN-based methods combine region-based convolution neural network (R-CNN),
single-shot multi-box detector, and heuristic methods for detecting teeth, implants, and
crowns. In addition, these methods are expected to produce better results by training larger
amounts of dental data. That is, the more training data, the better the detection results.
Furthermore, there is an automation of tooth segmentation using Mask R-CNN [9]. This
automation uses Mask R-CNN without the modification of the deep learning network. The
high-quality ground truth and fine-tuning algorithms contribute to higher performance
and augmentation techniques, which are rotation, flip, Gaussian blur, and sheared affine
transformation. However, it reduces the overfitting of image segmentation. Hence, the
training method is an important factor in producing better results.

Recently, another deep learning method, you only look once (YOLO), has also been
applied for the detection and classification of breast masses, skin lesion segmentation, and
automatic detection of cyst and tumor of the jaw in panoramic radiographs [10–12]. The
deep learning system for the detection and classification of breast masses is a computer-
aided diagnosis (CAD) system based on YOLO. These deep learning methods help in
detecting areas of interest in the medical field. They can simultaneously handle the
detection and classification of mass for mammography in one framework. However, it
is not able to detect the masses of the pectoral muscle and the surrounding dense tissue.
To increase the detection accuracy, they use augmentation techniques, such as translation,
rotation, and scale changing, to increase the training data.

Generally, these deep learning methods have pre- or post-image processing to increase
the size of data. Data augmentation is used to increase the accuracy of detection. Therefore,
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the selection of an appropriate deep learning method and data augmentation based on
the characteristic of symptoms has a great influence on the detection performance. Unlike
diseases where specific areas are well-divided in the existing method, it is difficult to learn
fracture areas using regional masks. Additionally, when the existing anchor box is used as
it is, erroneous detection easily occurs. Therefore, previous techniques are difficult to be
applied in detecting the mandibular fracture regions where region segmentation is difficult.

The object detection based on CNN is divided into two; one-stage detection and
two-stage detection. One-stage object detection, such as YOLO, is that in which regional
proposal and classification are carried out simultaneously. The two-stage object detection,
such as Mask R-CNN, executes regional proposal, followed by classification [13]. In general,
two-stage object detection shows a better prediction of object detection than one-stage
object detection, though it is slower than one-stage object detection. The proposed method
uses the recent YOLO v4, one-stage object detection method that allows radiologists to
shorten the diagnosis time of mandibular fractures quickly and accurately [14–17]. As de-
scribed, our method improves the detection rate of the deep learning system by increasing
the amount of data through pre-processing and proliferation of the data in common to
learn a vast amount of data. In addition, YOLO is fast and accurate compared to other
deep learning methods because it simultaneously conducts detection and classification.
Therefore, we used a YOLO deep learning method and pre-processing techniques in the
training dataset to detect the mandibular fracture.

Before training the input panoramic radiographs on YOLO v4, the proposed method
suggests applying tone mapping operators to input panoramic radiographs. First, adapt
image processing to panoramic radiographs, such as gamma modulation and luminance
adaptation transform. These pre-processed panoramic radiographs enhance the local
contrast, desaturation in bright areas, and the balance between local and global tone
rendering for better visibility at the bone border. The enhanced panoramic radiographs are
used to increase the accuracy of the detection of mandibular fractures.

In addition, we used two luminance adaptation transforms, single-scale luminance
adaptation transform (SLAT) and multi-scale luminance transform (MLAT) [18]. Regional
tone mapping operators, such as SLAT and MLAT, convert the original panoramic ra-
diographs with overall dark and irregular background brightness into images with even
brightness and better visibility at the bone border to improve detection accuracy. In ad-
dition, the training data set contains multi-bounding boxes. The use of multi-bounding
boxes is due to the characteristics of mandibular fractures.

The proposed YOLO-based deep learning method is either trained by fractures’ shape
or the anatomic areas of mandibular fractures. The comparison of those two training
methods demonstrates that the precision score of the fractures’ shape training is lower
than the precision score of the anatomic training areas. The characteristic of mandibular
fracture has various shapes and sizes. Therefore, the detection of mandibular fractures can
be improved by the multi-bounding boxes. We simulated two different categories, two
classes related to only the shape of the mandibular fracture, and six classes related to the
anatomic area of the mandibular fracture. The purpose of this study is to determine which
part of the localization or classification is more influential. The simulation results show
that the anatomic area-related six classes pre-processed panoramic radiograph training
datasets module presents better predicting mandibular fractures than using only YOLO v4
and other modules which have been simulated.

This study proposed a method that will automatically detect mandibular fractures
using deep learning algorithms. Our result will help radiologists not only to diagnose
mandibular fractures but to re-confirm their perception of the mandibular fractures. It is
expected that automatic detection of mandibular fractures used in YOLO v4 with various
techniques will help reduce misdiagnosis.
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2. Materials and Methods
2.1. Related Works
2.1.1. Medical Diagnosis Based on YOLO Deep Learning

The YOLO is one-stage object detection and has been utilized in many medical diag-
noses. Mohammed et al. presented an automatic detection of the masses in mammogram
using YOLO [10]. In the paper, they aimed to establish a novel CAD system based on
YOLO. This system contains pre-processing of mammogram, feature extraction, mass de-
tection, and mass classification. The pre-processing part was used for image processing to
achieve high performance of the CAD system in the training and testing of datasets. In the
mammograms of this training and testing dataset, the shape and position of the malignant
mass usually occur in a constant region and shape, as shown in Figure 2. Therefore, we
inferred that there is no separate study of localization and shape of objects.

Figure 2. The result of breast mass detection by Mohammed et al. [10]: (a) Ground truth of mass
(red circle), (b) detection by Mohammed et al. (pink box), (c) ground truth of a malignant case (red
circle), and (d) detection by Mohammed et al. (green box). Reprinted with permission from ref. [10].
Copyright 2018, Elsevier.

Another medical diagnosis based on YOLO is by Yang et al. They presented an
automated detection of cyst and tumor of the jaw in panoramic radiographs [12]. Note that
the odontogenic tumors and cysts are ambiguous radiological features because they do
not reveal their characteristic until they reach a certain size. However, they trained many
data of the cyst and tumors of the jaw to overcome its flaws. They also tried the YOLO’s
localization objects correctness. Odontogenic cysts and tumors appear in various features
and borders in panoramic radiographs, as shown in green boxes in Figure 3. Therefore, it
is difficult to recognize it in YOLO. Moreover, feature maps of cysts and tumors in YOLO
have become too obscure to set the bounding boxes, which may have contributed to the
significant false negative (undiagnosed) rate of cysts and tumors.

Figure 3. The result of cyst detection (green boxes) by Yang et al. [12]: (a) Odontogenic keratocyst
and (b) dentigerous cyst, both detected by Yang et al.

This research is related to the automatic detection of mandibular fractures in panoramic
radiographs. Unlike the masses in the breast, mandibular fractures can occur in random
anatomical areas and the shape and size of mandibular fractures are not constant. In
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addition, mandibular fractures detection has a similar problem in localization and shape as
cysts and tumors of the jaw.

2.1.2. The Structure of YOLO

The YOLO is reframed object detection as a single regression problem. That is, YOLO
transforms the detection problem into a regression problem. This transformation is fast
since a single regression problem does not need a complex pipeline. Additionally, YOLO
is faster to process than the R-CNN family because it looks through the entire image,
unlike the R-CNN family. Furthermore, YOLO has fewer background errors compared
to the R-CNN family. This is because the R-CNN family cannot process the surrounding
information of the object. Moreover, one of the characteristics of YOLO is to extract features
from the entire image and predict bounding boxes. For each object that presents grid cells
on the image, it divides the image into S× S grid, and for each grid cell, it predicts the
bounding box’s location and class probabilities. The YOLO feature map tensor is encoded
as Equation (1).

f eature map tensor = S× S× B× (5 + C) (1)

where S is the number of grid cells, B is the number of the bounding boxes (or anchor
boxes), and C is the number of class scores. The confidence score depends on whether the
object exists inside the bounding box.

Con f idecne score = Pr(Fracture)× IOUground truth
prediction (2)

where Pr(Fracture) is the probability of the existing mandibular fracture and IOUground truth
prediction

is the ratio of the intersection over union (IOU). The IOU is the intersection between ground
truth and predicted bounding box. The class-specific confidence scores are calculated by
confidence score and conditional class probabilities as follows.

Class speci f ic con f idence score = Pr(Classi|Fracture)× Con f idence score
= Pr(Classi)× IOUground truth

prediction
(3)

where Pr(Classi|Fracture) is the conditional class probability of ith Class. The class-specific
confidence score is multiplied by the confidence score and conditional class probability.
This process is shown in Figure 4.

YOLO has been developed from one to four versions. YOLO v1 used bounding
boxes to solve a regression problem directly, whereas YOLO v2–v4 used anchor boxes,
instead of bounding boxes to easily solve a regression problem. YOLO v2 adapted batch
normalization instead of drop-out, anchor boxes, direct location prediction, and multi-scale
training methods to improve detection. YOLO v3 adapted residual block to build deep
network layers and predictions across scales. The predictions across scales are similar to
feature pyramid networks [19]. It expects predicting boxes in three scales of the feature
map. The feature map from the beginning of predictions across scales concatenates the up-
sampling feature map. This process of concatenation can extract meaningful information
from the previous layer and fine-grained information from the current layer. Then, add a
convolution layer to handle the concatenated feature map. The same procedure is executed
to predict the final scale of the feature map. Based on this process, the prediction of the
third scale utilizes the current information from all previous layers and information from
the third scale. The anchor boxes in the three scales of the feature map are calculated by
k-means clustering. Notably, there are three anchor boxes in each of the three feature maps.

The YOLO v4 adapted new techniques such as cross-stage-partial-connection (CSP) [20],
spatial pyramid pooling (SPP) [21], and path aggregation network (PAN) [22] to improve
YOLO v3. The YOLO v4 was divided into three parts: backbone, neck, and head, as shown
in Figure 5. The backbone structure consists of CSP-Darknet53, which is shown in Figure 6.
The neck structure consists of SPP and PAN. Head structure consists of YOLO v3 prediction,
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which is the same as YOLO v3 architecture. Neck and head structure in YOLO v4 are
shown in Figures 7 and 8.

Figure 4. YOLO prediction feature map of the mandibular fracture panoramic radiograph: Red box
is a feature map tensor of the mandibular fracture.

Figure 5. The brief structure of YOLO v4.

Figure 6. YOLO v4 backbone structure: Cross-stage-partial-connection-Darknet53.
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Figure 7. YOLO v4 neck structure: Spatial pyramid pooling layer.

Figure 8. YOLO v4 path aggregation network neck and head structure.

Furthermore, YOLO v4 used new techniques of data augmentation such as CutMix [23]
and Mosaic [17] for training the datasets to improve detection ability. The deeper the CNN
layers, the higher the object detection capability. Thus, YOLO v4 applied CSP-Darknet53,
which is an improvement over Darknet53 shown in Figure 6. The CSP-Darknet53 changed
the Mish activation function instead of the leaky-Relu activation function. Additionally,
it adapted CSP to make deeper CNN. Again, CSP consists of convolution, residual unit,
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and concatenation, whereas CSP-Darknet53 does not need to use the bottleneck layers
because only half of the feature maps pass through the residual block. It means that in
CSP-Darknet53, the residual structure is mapped directly from the previous feature map
layer to the latter feature map layer without convolution, and it is helpful for training and
feature extraction.

The neck structure includes two different methods, SPP and PAN. Four layers are
concatenated in SPP. These four layers are generated by 1× 1, 5× 5, 9× 9, and 13× 13 max
pooling layers. The max-pooling layer extracts the most significant contextual features,
and it increases the receptive field of the backbone feature effectively. Therefore, it can be a
powerful method for feature extraction. In Figure 7, we show the SPP in the mandibular
fracture YOLO v4 module. In Figure 8, we show how PAN can repeatedly extract features
by up-sampling and stacking and then down-sampling and stacking. The aim of PAN
is to improve information flow in a proposal-based instant segmentation framework. It
enhances the entire feature layer with accurate localization signals of the lower layers by
bottom-up path augmentation, which is used for information flow between lower layers
and topmost features [22].

Head structure in mandibular fracture YOLO v4 module followed the YOLO v3. After
passing through backbone and neck structure, YOLO v4 produced three feature maps,
19× 19× 33, 38× 38× 33, and 76× 76× 33, whenever the module had six classes, as
shown in Figure 8. The predicted bounding box is the same as predictions across scales
in YOLO v3. The predicted bounding box is marked as red boxes which are shown in
Figure 8. The prediction of the third scale (76× 76× 33) utilized the current information
from the previous layers (19× 19× 33, 38× 38× 33) and information from the third scale.
The predicted bounding box prior to performing non-maximum suppression (NMS) had
multiple predicted bounding boxes for one class. Therefore, NMS was used to reduce these
multiple predicted bounding boxes. In the mandibular fracture YOLO v4 module, greedy
NMS was used because it obtained the best performance when using average precision as
an evaluation score [24]. This head structure provided more accurate mandibular fracture
detection, especially in small fractures.

2.2. Proposed Methods
2.2.1. Data Augmentation

Data augmentation is an important part of the deep learning system. The more
training datasets, the more possibility of accurate detection. Therefore, training datasets
is an important procedure. Typical data augmentation methods are applied to rescale,
flip, and switch targets to increase the number of datasets. However, pre-processing
for enhanced data is also one of the methods for data augmentation. For example, the
radiographs are dark, and some areas are saturated. If suitable image processing is applied
to the radiographs, fractures may be revealed and the detection performance for these will
be improved. Thus, before training data, local tone improvement processing is required for
the radiographs of various brightness.

This part describes the pre-processing methods to be applied to augment training
datasets, which are gamma modulation, luminance adaptation transform, and extended
multi-anchor boxes. First, gamma modulation is presented for various brightness back-
ground data without over- or under-saturations. It can generate luminance augmentation
to train a wide range of brightness information. In the first step, we used three global
gamma values: gamma value = γ, (γ = [1.0, 1/0.6, 1/0.3]).

O = (
I

255
)

γ

× 255 (4)

where O is an output image of gamma modulation and I is an input image. These gamma
values darken the images to accurately represent fractures. If the gamma value is less
than 1, the images are brighter and more saturated, making it difficult for the image to
recognize fractures.
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However, the gamma modulation module tends to detect normal regions that do not
have fractures. Thus, we additionally applied luminance adaptation transforms to the
gamma shifted training dataset. There are two types of the luminance adaptation transform,
SLAT and MLAT [18]. SLAT has two main processes, local tone mapping in the luminance
channel and chrominance compensation in the chrominance channel. Since the panoramic
radiographs are only grayscale images, only the local tone mapping of the luminance
channel is considered in the SLAT process. As the second step for luminance augmentation,
the luminance adaptation transform (LAT) process is shown in Figure 9. The SLAT adjusts
visually compensated gamma values according to local adaptation luminance level. The
luminance level is divided into minimum luminance level and maximum luminance level.

Figure 9. Single-scale luminance adaptation transform.

The luminance scaling normalizes the luminance channel up to 100 (Ln) because
local luminance estimation is designed on the condition of the adaptation luminance
under surround luminance, 100 cd/m2. The single-scale Gaussian low pass filter makes a
surround image (Lan), which supposes the adaptation luminance condition.

Lmin = 0.0212 + 0.0185L1.0314
an (5)

Lmax = 25.83 + 30.82L0.6753
an (6)

where Lmin is minimum luminance level, Lmax is maximum luminance level, and Lan is
normalized adaptation luminance, which is calculated from the Gaussian low pass filter.

The local visual gamma value, which can affect SLAT, is based on Bartelson–Breneman’s
brightness function [25].

The SLAT enhances the local contrast and desaturation in bright area.

γ = 0.444 + 0.045 ln(Lan + 0.6034) (7)

where γ is the local visual gamma value and Lan is normalized adaptation luminance. This
gamma value is fixed on Bartelson–Breneman’s brightness function curve.

f =

∣∣∣∣ Ln − Lmin
Lmax − Lmin

∣∣∣∣γ (8)

where Ln is the normalized luminance input image, Lmin is the minimum luminance level,
Lmax is the maximum luminance level, and γ is the visual gamma.

Igain =
Rcs

fmax − fmin
, ... Io f f set =

Rcs fmin
fmax − fmin

(9)
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where Rcs is the intensity range of the selected color space, fmax is the maximum value of
(8), and fmin is the minimum value of (8).

SLAT = Igain f + Io f f set (10)

Based on the result obtained from these calculations, SLAT enhances the local contrast
and desaturation in bright area.

The MLAT is the sum of several SLATs with different surrounding images. Multi-scale
related methods require multiple surroundings for the balance between local and global
tone rendering in SLAT. It should be noted that MLAT consists of a weighted sum of SLATs
using three different scales of low pass filters. The scales of filters are 15, 80, and 250.

MLAT =
N

∑
1

wnSLATn (11)

where SLATn is nth single luminance adaptation transform and wn is nth weighting factor
of scales. By this, we observed that MLAT improved local and global rendering, and
increased both detail qualities and tonal rendition enhancement.

In conclusion, SLAT and MLAT are applied to clearly show mandibular fractures in
panoramic radiographs as shown in Figure 10. SLAT is used for local boundary enhance-
ment by applying a single Gaussian filter. In MLAT, an overall tone compression technique
using multiple Gaussian filters is applied to mitigate the local noise amplification of SLAT.
Moreover, the SLAT images are useful for searching detailed feature parts while MLAT
helps in providing useful images for searching severe fracture areas. Therefore, the purpose
of SLAT and MLAT image processing is to increase the detection capability for the YOLO
deep learning method.

Figure 10. The comparison between original panoramic radiograph, single-scale luminance adapta-
tion transform (SLAT), and multi-scale luminance adaptation transform (MLAT) panoramic radio-
graph: (a) Original, (b) SLAT, and (c) MLAT.

The last data augmentation method is to apply bounding boxes of different sizes to
all training datasets. Since the training datasets are a small amount of radiographs, the
data should be effectively increased. The multiple bounding boxes are suitable for data
augmentation. We used a multi-bounding box because the characteristics of the mandibular
fracture have various shapes and sizes. The size of the multiple bounding boxes is set at
0.7 times and 1.6 times of the reference bounding box, and there are three bounding boxes
per one fracture.

These modules are pre-trained with only 54 panoramic radiographs for the trained
dataset to compared only pre-process performance. These four modules, which use only
54 panoramic radiographs for the training dataset, perform worse than those that use
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360 panoramic radiographs as the training dataset module of the proposed method. How-
ever, it is easy to compare pre-process performances. The precision and recall scores of
each module for 45 panoramic radiographs test datasets are shown in Table 1.

Table 1. The comparison of pre-process performance using precision and recall scores.

Original Gamma
Modulation

Luminance Adaptation
Transform

Proposed
Pre-Processing

Precision 0.375 0.341 0.441 0.570
recall 0.048 0.222 0.474 0.714

The original module is not able to detect fractures in most cases. The gamma modula-
tion module is better than the original module and has less precision score than the original
module. The luminance adaptation transform can detect mandibular fractures relatively
well but the precision and recall scores do not exceed 0.5. The proposed pre-processing
module can detect mandibular fractures better than other modules. Thus, we decided to
use LAT with gamma modulation and a multiple box module. The comparison of those
four modules’ mandibular fracture detection results is shown in Figure 11.

Figure 11. The comparison between different four modules for mandibular fracture detection (white
boxes): (a) Diagnosed radiographs (blue lines) by a radiologist, (b) Original module, (c) Gamma
modulation module, (d) Luminance adaptation transform module, and (e) The proposed module.

2.2.2. Training and Detection Process

Before training the dataset, the data to be trained should be processed using luminance
adaptation transforms, gamma modulation, and multiple bounding boxes. After pre-
processing, the datasets are then trained by YOLO v4. The training parameters of YOLO
v4 are shown in Table 2.

The YOLO v4 has its own data augmentation options, such as angle, saturation,
exposure, hue, and mosaic, which combines four training images to one in certain ratios.
Since the proposed method is used in six classes for detecting mandibular fractures, max
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batches (or iteration) are set to 12,000 and this iteration can be calculated with approximately
711 epochs.

Table 2. The parameters of the proposed method in YOLO v4.

Option Set Value

Batch size 64
Subdivision 16
Resolution 608 × 608
Momentum 0.949

Decay 0.0005
Learning rate 0.0001

Angle 180
Saturation 1
Exposure 1.5

Hue 0

During 12,000 iterations, we were able to obtain the best weight file for mandibular
fracture detection. To compare the performance of the six-class SLAT and MLAT module,
we also trained two classes of SLAT and MLAT modules under the same conditions. The
six classes’ modules are related to the anatomic area of the mandibular fracture (parasym-
physis, body, angle, ramus, condyle, and coronoid) whereas two classes of modules were
related to the form of the mandibular fracture (shear fracture and linear fracture).

In the training process, the dataset to be trained was subjected to LAT processing. After
the LAT process, the images went through the process of gamma modulation and multiple
boxes to reveal the mandibular fracture. After the pre-processing progress, this dataset
was trained by the YOLO v4 deep learning network. All images were set to 608× 608
resolution and went through a convolution network for the feature map to be extracted.
In the testing process, we applied luminance adaptation transform to the test dataset as
well. After testing the dataset using both MLAT and SLAT modules, which were trained
by the YOLO v4 deep learning network, we obtained coordinates to detect mandibular
fractures. When combined with MLAT and SLAT predicted boxes, which are pink and
yellow boxes, both coordinates could be applied to the original panoramic radiographs
to show radiologists where the fracture was located. The entire process of the proposed
method is shown in Figure 12.

Figure 12. The proposed method’s block diagram of the diagnosis process in YOLO v4.
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2.2.3. Performance Evaluation Metrics

The proposed method was presented as an indicator for object detection evaluation
and classification performance on three evaluation metrics, precision, recall, and F1 score.
We measured 60 test images of panoramic radiographs by these three metrics.

Precision =
TP

TP + FP
=

Detection
Detection + Misdetection

(12)

Recall =
TP

TP + FN
=

Detection
Detection + Undetection

(13)

F1 score =
2× (Recall × Precision)

Recall + Precision
(14)

where TP, FP, and FN symbolize the true positive, false positive, and false negative.
Detection is accurate detection of mandibular fractures, Misdetection is the detection of
objects other than mandibular fractures, and Undetection is the detection of nothing. If the
recall score was higher, the precision score was low, so it was not possible to determine
whether the precision score or the recall score was better. Therefore, it was possible to
determine the better object detection with the F1 score metric. The F1 score is the harmonic
mean of precision and recall scores, which we can use to compare better object detection
results. Furthermore, the accuracy score, which was frequently used in evaluation metric
for object detection, was not available for the proposed method performance evaluation
metric. The reason for not using the accuracy score, related to TN (true negative), is that
we do not know where fractures will occur in anatomic regions of the mandible.

3. Results
3.1. Deep Learning System and Dataset

The deep learning system was implemented on a PC with an Intel i7-9700K processor,
32GB RAM, NVIDIA TITAN RTX and a window version of YOLO v4. For the simulation,
panoramic radiographs of 420 mandibular fracture patients were used, which consisted
of 360 panoramic radiographs of training datasets and 60 panoramic radiographs of test
datasets. The resolution of panoramic radiographs was 2228× 1244 to 2972× 1536 pixels.

3.2. Detection Results

We evaluated and compared the detection performance of the proposed method and
the deep learning results of various methods. For the classification of training datasets in
the proposed model, learning was conducted based on classes of two different sizes related
to the shape of fractures or anatomic mandibular fracture regions. We set shear fracture
and linear fracture for two classes of shape difference and parasymphysis, body, angle,
ramus, condyle, and coronoid for six classes of the anatomic region. In this comparison, we
used 360 panoramic radiographs with the proposed pre-processing, such as SLAT, MLAT,
gamma modulation, and multiple boxes. We obtained a total of 1080 images for training
datasets. We tested 60 panoramic radiographs of test images and a total of 97 mandibular
fractures in test datasets.

The diagnosed and undiagnosed distribution plots of mandibular fractures are shown
in Figures 13 and 14. The distribution plots show that six classes of SLAT and MLAT
modules have better detection precision. The six-class SLAT and MLAT modules have a
less undiagnosed distribution of mandibular fracture than the two-class SLAT and MLAT
modules. In these plot images, the six classes as anatomic region classification modules
can reduce the chronic problem of localization errors in YOLO v4.

The scores of two-class modules are shown in Figure 15. In two-class modules, our
recall scores are less than 0.7. That is, the probability of detecting a fracture is less than
two-thirds. However, the precision score is almost 1. What this means is that if we use
this module to detect a mandibular fracture, there is almost no error. The MLAT and SLAT
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module is the highest recall score and F1 score. This module is the complementary module
of the MLAT and SLAT modules, which is the best of the three modules.

Figure 13. The two-class and six-class comparison of correct diagnosed distribution (red circles) of mandibular fractures:
(a) two-class single-scale luminance adaptation transform (SLAT), (b) six-class SLAT, (c) two-class multi-scale luminance
adaptation transform (MLAT), and (d) six-class MLAT.

Figure 14. The two-class and six-class comparison of undiagnosed distribution (red triangles) of mandibular fractures:
(a) two-class single-scale luminance adaptation transform (SLAT), (b)six-class SLAT, (c) two-class multi-scale luminance
adaptation transform (MLAT), and (d) six-class MLAT.

The scores of six-class modules are shown in Figure 16. In six-class modules, the recall
and F1 scores are higher than two-class modules. That is, six-class modules can detect more
mandibular fractures than two-class modules. Even though six-class SLAT modules have
no error for detecting mandibular fractures, the total precision score in the six-class MLAT
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and SLAT module is lower than the two-class modules. But this difference does not have
much effect. In conclusion, six-class MLAT and SLAT modules have better performance to
detect mandibular fractures. The comparison of two-class and six-class MLAT and SLAT
modules’ scores is shown in Figure 17.

Figure 15. The comparison of multi-scale luminance adaptation transform (MLAT), single-scale luminance adaptation
transform (SLAT), and MLAT and SLAT in two-class.

Figure 16. The comparison of multi-scale luminance adaptation transform (MLAT), single-scale luminance adaptation
transform (SLAT), and MLAT and SLAT in six-class.

Figure 17. The comparison of two-class and six-class multi-scale luminance adaptation transform
and single-scale luminance adaptation transform modules.
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4. Discussion

The experiments have provided training directions for two different classes, the shape
of mandibular fractures and the anatomical region of mandibular fractures. The results
presented that the classification based on the anatomical region of mandibular fractures
showed better performance than the classification based on the shape of mandibular
fractures. The evaluation using metric scores, such as precision, recall, and F1 scores,
helped us compare detection performances.

In Figures 18–20, we show some results of MLAT and SLAT modules and compare
them with six-class and two-class modules. The reference panoramic radiographs, which
are diagnosed by a specialist in oral maxillofacial radiology, shows the mandibular fractures’
correct position. As for the relatively distinct fracture shape in Figure 18, both two-class
and six-class MLAT and SLAT modules can detect correct mandibular fractures’ location,
but multi-detection boxes show more weighted results. However, in areas where it is
difficult to distinguish the surrounding bone tissue from the anglesite of Figure 19, two-
class modules cannot detect a mandibular fracture in the angle position of the mandible.
Additionally, in Figure 20, the case of including fractures in the areas of the ramus and
condyle sites where it is difficult to be distinguished, six-class modules can detect all
positions of mandibular fractures. Moreover, the six-class module tends to detect the upper
part of the mandible (condyle area of mandible) well. Therefore, in many cases where
visual identification is difficult, the six-class MLAT and SLAT module could be a better
choice than the two-class MLAT and SLAT module. The proposed method can be used for
detecting mandibular fractures, also for a bone healing process after a surgical operation.
Since radiologists can diagnosis a bone healing state after the post-operation in panoramic
radiographs [26], so the proposed method can be used to evaluate osteotomies performance
in panoramic radiography.

Figure 18. The mandibular fractures diagnosis comparison: (a) diagnoses mandibular fractures
(orange lines) by radiologist, (b) mandibular fracture detection (red boxes) of two-class multi-scale
luminance adaptation transform (MLAT) and single-scale luminance adaptation transform (SLAT)
module, and (c) mandibular fracture detection (red boxes) of six-class MLAT and SLAT module.
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Figure 19. The mandibular fractures diagnosis comparison: (a) diagnoses mandibular fractures
(orange lines) by radiologist, (b) mandibular fracture detection (red boxes) of two-class multi-scale
luminance adaptation transform (MLAT) and single-scale luminance adaptation transform (SLAT)
module, and (c) mandibular fracture detection (red boxes) of six-class MLAT and SLAT module.

Figure 20. The mandibular fractures diagnosis comparison: (a) diagnoses mandibular fractures
(orange lines) by radiologist, (b) mandibular fracture detection (red boxes) of two-class multi-scale
luminance adaptation transform (MLAT) and single-scale luminance adaptation transform (SLAT)
module, and (c) mandibular fracture detection (red boxes) of six-class MLAT and SLAT module.

5. Conclusions

This paper presents an automatic detection method of mandibular fractures based on
the YOLO v4 deep learning model. In general, the original panoramic radiographs are dark
and mandibular fractures in panoramic radiographs have severe curvature characteristics
at the background level. Therefore, if the existing YOLO-based detection learning is used
as it is, detailed fracture identification is impossible.

Therefore, we suggested the data augmentation and pre-processing techniques for the
training dataset and test dataset. Gamma modulation, SLAT, and MLAT pre-processing
methods showed enhanced detection performance for mandibular fractures with unspeci-
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fied shapes and areas. To increase the accuracy score of mandibular fracture detection, it
is necessary to increase the training data sizes. Thus, we applied multiple boxes on the
training dataset to complement that of the small dataset. Additionally, multiple boxes are
helpful to detect various sizes and shape of mandibular fractures.

The conclusion derived from the comparison of simulations is that using the six-class
module with the combined MLAT and SLAT module results in an effective performance
for mandibular fracture detection. The limitation of the proposed method is that we used
only panoramic radiography. Panoramic radiography, which is a two-dimensional imaging
of mandibular fractures, is usually limited to isolated lesions. However, CT has no overlap
between the different anatomic structures [2]. Thus, in the case of multiple facial fractures
or comminuted fractures, CT should be diagnosed rather than panoramic radiography to
identify the fractures more accurately. Due to these fractures, future works will require the
study of mandibular fracture detection with a mixture of panoramic radiography and CT.

It is our hope that the proposed deep learning model will help radiologists and dentists
diagnose mandibular fractures.
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