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Oncogene is a special type of genes, which can promote the tumor initiation. Good study on oncogenes is helpful for understanding
the cause of cancers. Experimental techniques in early time are quite popular in detecting oncogenes. However, their defects
become more and more evident in recent years, such as high cost and long time. The newly proposed computational methods
provide an alternative way to study oncogenes, which can provide useful clues for further investigations on candidate genes.
Considering the limitations of some previous computational methods, such as lack of learning procedures and terming genes as
individual subjects, a novel computational method was proposed in this study. The method adopted the features derived from
multiple protein networks, viewing proteins in a system level. A classic machine learning algorithm, random forest, was applied
on these features to capture the essential characteristic of oncogenes, thereby building the prediction model. All genes except
validated oncogenes were ranked with a measurement yielded by the prediction model. Top genes were quite different from
potential oncogenes discovered by previous methods, and they can be confirmed to become novel oncogenes. It was indicated

that the newly identified genes can be essential supplements for previous results.

1. Introduction

Cancer is the second cause of human deaths in the world, fol-
lowing the cardiovascular disease. Lots of people directly died
from cancer per year [1]. Although several efforts have been
made in recent years, the mechanism of cancers has not been
fully uncovered, which makes difficulties in designing effec-
tive treatments. Genetic background and environmental fac-
tors are widely accepted to be major causes of cancers [2].
Investigation on the mechanism of cancers with related genes
is an essential way to understand the tumor initiation and
development.

Oncogene is an important type of cancer-related genes,
which can promote the tumor initiation. Thus, it is essential
to identify latent oncogenes as much as possible, promoting
the understanding of cancers. In early time, experimental
techniques performed on typical cell lines or animal models

are the main way for detecting oncogenes. However, this
way is time-consuming and with high cost. In recent years,
with the development of computer science, this procedure
can be improved aided by designing computational methods.
The computational methods can give a deep insight into a
large-scale data and learn hidden associations between can-
cers and genes, thereby making useful clues and providing
latent candidates. Experimenters can do targeted tests to con-
firm the results. Two pioneer studies have been proposed in
this regard recently. The first study proposed a network
method for inferring novel oncogenes based on validated
oncogenes reported in some online databases [3]. The
method applied the shortest path (SP) algorithm on a
protein-protein interaction (PPI) network to extract the
shortest paths connecting any two proteins of oncogenes.
Proteins lying on these paths were picked up and screened
by three measurements. 37 possible oncogenes were obtained


https://orcid.org/0000-0003-3068-1583
https://orcid.org/0000-0001-9507-2442
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/5160396

by this method. The second study investigated oncogenes in a
quite different way [4]. It tried to uncover the functions,
including Gene Ontology (GO) terms and biological path-
ways, of oncogenes with machine learning algorithms. They
first extracted essential GOs and pathways that can indicate
the differences of oncogenes and other general genes and
made prediction with them. More than 800 genes were pre-
dicted to be novel oncogenes. All of the above two studies
proposed some putative oncogenes; some of which were
extensively discussed. However, the limitations also exit.
For the network method proposed in the first study [3], it
did not contain a learning procedure, indicated that it cannot
capture the essential features of oncogenes, inducing several
false positive oncogenes. Although the second method [4]
contained a learning procedure, it did not include the protein
association information. As proteins with strong associations
always share common functions, the protein association
information is powerful materials for discovering novel
oncogenes.

In view of the limitations of the above two studies, this
study proposed a new computational method. The protein
networks, derived from protein associations, were con-
structed, from which informative features were extracted to
represent genes. The classic machine learning algorithm, ran-
dom forest (RF) [5], was adopted to capture essential features
of oncogenes and build the model. The latent oncogenes were
ranked by a measurement yielded by the proposed method.
Top latent oncogenes were quite different from those
reported in previous two studies. We also analyzed some
top latent oncogenes to confirm their likelihood of being
oncogenes.

2. Materials and Methods

2.1. Materials. Validated oncogenes were directly down-
loaded from a previous study [3], which were collected from
HUGO Gene Nomenclature Committee (HGNC, https://
www.genenames.org/) [6] and Gene Set Enrichment Analysis
Molecular Signatures Database (GSEA MSigDB, https://www
.broadinstitute.org/gsea/msigdb/gene_families.jsp) [7, 8].
From HGNGC, 251 oncogenes were collected and 330 onco-
genes were retrieved from GSEA MSigDB. 543 oncogenes
were obtained after combining above two sets of oncogenes.
Because we used protein-protein interaction (PPI) networks
to identify latent oncogenes, where proteins were represented
by Ensembl IDs, proteins encoded by these 543 oncogenes
were extracted and they were further mapped onto their
Ensembl IDs. After excluding Ensembl IDs that were not in
the PPI networks, we finally accessed 481 Ensembl IDs. With
these IDs, we designed a computational method to identify
new possible IDs. These new IDs suggested latent oncogenes.

2.2. Protein-Protein Interaction and Network Construction.
In recent years, it is quite popular to adopt networks for
investigating various diseases [3, 9-14]. Networks can orga-
nize data and information in a system level. It is beneficial
to study different problems in a more complete view. Thus,
we employed PPI networks to identify novel oncogenes in
present study.
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In this study, we adopted the PPI data reported in
STRING (https://string-db.org/, Version 10.0) [15, 16], a
well-known public database collecting known and predicted
PPIs. Currently, 9,643,763 proteins from 2,031 organisms
comprise huge numbers of PPIs, which were collected from
a variety of sources, such as genomic background prediction,
high-throughput laboratory experiments, (conservative)
coexpression, automated textualization, and prior knowledge
in databases. Thus, each interaction contains the physical and
functional associations of two proteins and can widely mea-
sure the linkage between proteins. Compared with the PPIs
reported in other databases, such as DIP (Database of Inter-
action Proteins) database [17] and BioGRID [18] which only
include experimentally validated PPIs, PPIs in STRING con-
tain more information and are more helpful for building
models with a complete view. For human, 4,274,001 PPIs
are reported in STRING, covering 19,247 human proteins.
Each PPI consists of two proteins, encoded by Ensembl
IDs. Further, STRING evaluates the strength of each PPI
from eight different aspects and assigns eight scores to each
PPI, titled by “Neighborhood”, “Fusion”, “Cooccurrence”,
“Coexpression”, “Experiment”, “Database”, “Textmining”,
and “Combined_score”. The last score combines other seven
scores in a naive Bayesian fashion [16]. It was not adopted in
the present study because it may produce redundancy with
other seven scores. For each of the other scores, one PPI net-
work was constructed in the following manner. We took the
“Neighborhood” score as an example. First, 19,247 proteins
were picked up as nodes. Second, two nodes were adjacent
if and only if the “Neighborhood” score between correspond-
ing proteins was larger than zero. Finally, such “Neighbor-
hood” score was assigned to the corresponding edge as its
weight. Accordingly, seven PPI networks were constructed,
which were denoted by Ny, Ny, Ng, Ncg, Ny, Np, and
N, respectively. The sizes (numbers of edges) of seven net-
works were quite different. N had most edges (3816497),
followed by N (1736931 edges), N (768962 edges), N,
(212430 edges), Ny (76214 edges), N (23739 edges), and
Ny (2060 edges).

2.3. Feature Engineering. Network is excellent to organize the
associations of the proteins, which can view a specific protein
in a system level. However, there is a gap between it and the
traditional machine learning algorithms because these algo-
rithms always need numerical vectors as input. Fortunately,
some network embedding algorithms, such as Mashup [19],
Node2vec [20], and Deepwalk [21], were proposed in recent
years, which can abstract relationship in the network and
output a feature vector for each node in the network. The
occurrence of these algorithms connects the network and
the traditional machine learning algorithm. Considering the
fact that seven networks were involved in this study, Mashup
[19] was adopted. It can tackle multiple networks, which is
the greatest merit compared with other network embedding
algorithms. Its brief descriptions were as follows.

The procedures of Mashup encoding each node consist of
two stages. In the first stage, it applies the random walk with
the restart (RWR) algorithm [22-26] on each network to
construct a raw feature vector for each node in this network.
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In detail, for a network N; (j € {N, F,CO,CE,E, D, T}) con-
structed in Section 2.2, each node p; in this network was
picked up as the node seed of the RWR algorithm one by
one. When the RWR algorithm stopped, each node in this
network was assigned a probability, indicating its associa-
tions to the seed node. A raw feature vector of p; was built
by collecting all these probabilities, which was denoted by
V; Because some nodes can occur in multiple networks, sev-
eral feature vectors were generated for these nodes. It is nec-
essary to fuse them into one feature vector in a rigorous way.
On the other hand, a dimensionality reduction procedure is
also necessary due to the large dimension of the raw feature
vectors. All these are the purpose of the second stage of
Mashup. Let X' be the final vector of protein p, and W; be
a context feature vector of p; in the network N;;. It is clear that
Mashup tries to determine the optimal components in X and
W;, which retain the essential information in V;- as much as

possible. Based on X' and W/, a vector, denoted by \7;, can be
constructed. Its components were defined as follows:

exp ((X")ij?

) -
e

k=

where 7 is the total number of different nodes (proteins)
in seven networks. The following problem is to find out the

optimal components in X’ and W;, which can generate \7;
approximating V; as much as possible. An optimization

problem is set up to determine the optimal components,
which is formulated as below:

n

minimize % i Z Dyt (V;

XX’Wj j=li=1
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where m stands for the total number of networks and Dy (e)
stands for the function of KL-divergence (relative entropy).
The present study used the Mashup program obtained
from http://cb.csail.mit.edu/cb/mashup/. The dimension of
the output vector is a main parameter of the Mashup. Several
dimensions, varying from 100 to 1000, were tried in this
study because we did not know which dimension was best.

2.4. Random Forest. The network embedding algorithm,
Mashup, connects the networks and traditional machine
learning algorithms. With the feature vectors extracted from
seven protein networks via Mashup, a specific machine learn-
ing algorithm can deeply study the characteristic of vectors of
oncogenes, thereby building a prediction model. This study
selected the classic machine learning algorithm, RF [5], due
to its wide applications in bioinformatics and medical infor-
matics [27-34].

RF is an ensemble classification algorithm, which consists
of several decision trees. Given a dataset with n samples and
m features, RF constructs each decision tree in the following
manner. Randomly selected #n samples, with replacement,
from the original dataset. A decision tree is constructed based

on selected samples. When the tree is grown at a node, ran-
domly select m' features, where m' is much smaller than m
, and the optimal splitting way is determined based on these
m' features. For an input sample, each decision tree first
makes its prediction. RF integrates these predictions by
majority voting. Although, decision tree is a weak classifier,
RF is deemed to be much strong and competitive compared
with other advanced classification algorithms [35].

In this study, a tool “RandomForest” in Weka [36] was
directly employed, which implements the above-mentioned
RF. Default parameters were used, where the number of deci-
sion trees was set to ten.

2.5. The Proposed Method for Inferring Latent Oncogenes.
Among the 19,247 proteins occurring in seven protein net-
works, 481 are encoded by validated oncogenes, whereas
the rest 18,766 proteins have not been labelled. It is clear that
some proteins may be encoded by latent oncogenes. The pro-
posed method can discover novel latent oncogenes with the
feature vectors obtained Section 2.3 and RF described in Sec-
tion 2.4.

For 18,766 unlabelled proteins, the proposed method
evaluated their likelihood of being oncogenes in the following
manner. For technique reasons, these 18,766 unlabelled pro-
teins were termed as negative samples, whereas 481 proteins
of oncogenes were deemed as positive samples. Evidently,
negative samples were much more than positive samples
(about 39 times). Thus, we randomly divided the negative
samples into 39 parts. Negative samples in each part were
combined with positive samples to construct a dataset,
thereby yielding 39 datasets. On each dataset, a prediction
model was built with RF as the classification algorithm.
Accordingly, 39 RF models were produced. For each unla-
belled protein p, it was fed into 38 RF models, except the
RF model containing it. Each model assigned a probability
to p, suggesting its likelihood to be an oncogene. The mean
of all its probabilities was finally calculated to fully measure
the likelihood of it being an oncogene. For an easy descrip-
tion, such mean value was called level value.

After all 18,766 unlabelled proteins had been evaluated
with the above procedures, we ranked them in a list with
the decreasing order of their level values. Evidently, those
with high level values were more likely to be oncogenes.

The entire procedures of the method are illustrated in
Figure 1.

2.6. Performance Evaluation. To evaluate the utility of the
proposed method, a procedure similar to the jackknife test
[37-39] was adopted. Each of 481 proteins encoded by onco-
genes was singled out one by one as unlabelled proteins. For a
specific singled out protein, we want to know whether the
rest 480 proteins of oncogenes can identify it. According to
the procedures of the abovementioned method, 18,767 unla-
belled proteins (one singled out protein and 18,766 actual
unlabelled proteins) were also randomly divided into 39
parts. Each part and the positive sample set were combined
to generate a dataset, thereby producing 39 datasets. Then,
the same procedures of the methods followed to yield the
level value of the singled out protein. After all proteins
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F1GURE 1: Flow chart to show the procedures of the method for inferring latent oncogenes. Seven protein-protein interaction (PPI) networks
are constructed using the PPI information reported in STRING, from which feature vectors of oncogenes and unlabelled genes are extracted
via Mashup. Unlabelled genes are divided into 39 parts; each of which combines the oncogenes to comprise a dataset. Each dataset induces a
random forest (RF) model. A level value is computed for each unlabelled gene, which is the average of the probabilities yielded by 38 RF
models. Unlabelled genes are ranked by the decreasing order of their level values. The same procedures are done for each oncogene,
thereby ranking oncogenes. Finally, all genes are sorted in a list and ROC and PR curves are plotted to evaluate the performance of the

method.

encoded by oncogenes had been tested, they were all assigned
a level value. A protein list was created by ranking all 19,247
proteins, including proteins of oncogenes and unlabelled
proteins, with the decreasing order of their level values. Some
measurements can be calculated to evaluate such list, thereby
indicating the utility of the method.

Given a protein list, which sorted proteins with decreas-
ing order of their level values, whether a protein was pre-
dicted to be an oncogene (positive sample) was determined
after a threshold of level value was set; that is, proteins with
level values larger than the threshold were predicted to be
oncogenes (positive samples); otherwise, they were predicted
to be nononcogenes (negative samples). Accordingly, four
values, true positive (TP), false negative (FN), false positive
(FP) and true negative (TN), can be counted. Then, the sen-
sitivity (SN) (same as recall), specificity (SP), and precision
can be computed by

TP
SN(recall) = TP L EN’

_IN

~ TN +FP’
TP

TP+ FP’

SP

Precision =

After setting several thresholds, we can obtain a number
of SN, SPs, and precisions. A receiver operating characteris-
tic (ROC) [40] curve and a precision-recall (PR) curve were
plotted, where the ROC curve sets SN as y-axis and 1-SP as
x-axis, whereas PR curve adopts precision as y-axis and recall
as x-axis. Furthermore, the area under each of above two

curves can be calculated, which were called AUROC and
AUPRC, respectively, in this study. Evidently, the higher
the area was, the better the method was.

3. Results and Discussion

3.1. Performance of the Method with Different Dimensions. In
this study, we used features derived from seven protein net-
works. Several dimensions were tried to select the best one.
For each dimension, the proposed method was evaluated in
the way described in Section 2.6. A ROC curve and a PR
curve was plotted, as shown in Figure 2. From Figure 2(a),
the method with dimension 300 yielded the highest AUROC
of 0.8845, whereas the method with dimension 600 gave the
highest AUPRC of 0.4676 from Figure 2(b). In general, the
PR curve is a more accurate measurement than the ROC
curve if the dataset is greatly imbalanced. In our study, the
negative samples were about 39 times as many as positive
samples. Thus, we selected the method with dimension 600
as the proposed method. To further elaborate that this selec-
tion is reasonable, we calculated the average of AUROC and
AUPRC for each dimension and plotted a scatter diagram to
show these averages, as illustrated in Figure 3. Evidently, the
dimension 600 gave the highest average of 0.6680, supporting
the above selection. The trend of average on dimension
shown in Figure 3 proved the reliability of the results. Before
600, the average showed an increasing trend, while it gener-
ally descended after 600. It is reasonable because when the
dimension was small, several essential information cannot
be included, where the dimension was large, lots of noisy
was included. All these results supported the method that
with dimension 600 was the best choice because it can
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F1GURrk 2: ROC and PR curves to show the performance of the method with different dimensions varying from 100 to 1000. (a) ROC curves,
the dimension 300 yields the highest AUROC of 0.8845; (b) PR curves, the dimension 600 yields the highest AUPRC of 0.4676.

recover actual oncogenes (positive samples) as much as pos-
sible. The unlabelled proteins predicted to be positive sam-
ples by this method were more reliable.

3.2. Inferred Oncogenes Obtained by the Proposed Method. As
mentioned in Section 3.1, we selected the method with
dimension 600 as the proposed method. For each unlabelled
protein, it was assigned a level value by the method to indi-
cate its likelihood of being oncogenes. The level values of all
18,766 unlabelled proteins are provided in Supplementary
Material S1. Figure 4 shows the distribution of all level values.

It can be observed that one unlabelled protein was assigned
the level value larger than 0.9, seven proteins were with level
values between 0.8 and 0.9. These proteins are more likely to
be encoded by latent oncogenes. On the other hand, majority
proteins (about 96.39%) received the level values smaller
than 0.6.

3.3. Comparison of Previous Studies. Two previous computa-
tional methods have been proposed for identifying possible
oncogenes. The one method adopted SP algorithm to search
novel oncogenes in a PPI network; thus, this method was
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FIGURE 4: Distribution of level values on 18,766 unlabelled proteins. Only 677 unlabelled proteins (~3.61%) are assigned the level values
higher than 0.6. These proteins are more likely to be encoded by latent oncogenes than others.

called the SP-based method. The other method investigated
oncogenes from the point view of their functions; it was
termed as function-based method in this study. These previ-
ous methods all yielded some latent oncogenes. A compari-
son was performed in this section.

As our method only ranks the candidates with their level
values, we set some thresholds to select inferred genes to
make comparisons. The thresholds included 0.8, 0.7, and
0.6, yielding eight, 67 and 677 inferred oncogenes, respec-
tively. The intersection of these inferred oncogene sets and
two oncogene sets yielded by previous methods is illustrated
in Figure 5. When the threshold was set to 0.8, only one gene
(HOXA10) was also identified by the SP-based method. 25
inferred oncogenes were shared by either SP- or function-
based methods when the threshold was 0.7, where two genes
(HOXAL10, AR) were inferred by all three methods. For the
threshold 0.6, this number was 246, where eight genes
(HOXA10, AR, ESR1, NOTCH3, PTPN6, MYO5A,
KIAA0100, and MAP2K1) were shared by all methods. The

exclusive oncogenes yielded by the proposed method occu-
pied 87.5% when 0.8 was set as the threshold. Such percent
was 62.69% and 63.66% for the thresholds 0.7 and 0.6,
respectively. These results indicate that majority top inferred
oncogenes of our method were not discovered by previous
methods, indicating that our method can discover novel
latent oncogenes that cannot be identified by previous
methods.

3.4. Analysis of Top Inferred Oncogenes. In this study, some
latent oncogenes were inferred by the proposed computa-
tional method. Each gene was assigned a level value to indi-
cate its likelihood of being oncogenes. Table 1 lists the top
fifteen inferred oncogenes. This section selected four of them
for detailed analysis.

3.4.1. RAB31. Such gene is the top identification with level
value 0.9105. RAB31 (Ras-related protein in brain 31), a
member of the RAB family, encodes a protein belonging to
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(a)

)

FIGURE 5: Venn diagrams to show the intersection of inferred oncogenes yielded by three methods. Blue, red, and green circles represent
inferred oncogenes obtained by the proposed method, SP-based method, and function-based method, respectively. (a) Inferred oncogenes
with level values larger than 0.8 are considered. (b) Inferred oncogenes with level values larger than 0.7 are considered. (c) Inferred

oncogenes with level values larger than 0.6 are considered.

the Ras superfamily of small GTPases. Because it was a signif-
icant homology with RAB22 (71% sequence identity), RAB31
was also named RAB22b. Similar to other members of the
RAB family, it functions as molecular switches and plays crit-
ical roles in cell adhesion molecules and membrane traffick-
ing of growth factor receptors [41]. Therefore, it is also
conceivable that RAB31-mediated dysregulation in endocy-
tosis or recirculation may result in failure to control cell pro-
liferation, adhesion, and migration. As expected, its
promotive effect on tumor progression has been reported in
several types of cancers [42]. In breast cancer, it was con-
firmed to be overexpressed in patients with estrogen receptor
(ER) positive breast cancer [43]. It is reported that high
expression of RAB31 mRNA has a significant correlation
with the poor prognosis of lymph node-negative breast can-
cer patients [44]. Further in vivo and in vitro experiments
confirmed that the overexpression of RAB31 promoted cell
proliferation of breast cancer cells [45]. Immunohistochemi-
cal staining revealed that the expression of RAB31 in liver
cancer tissue was significantly higher than that in adjacent
liver tissue. Overexpression of RAB31 in liver cancer tissue
after hepatectomy is considered to be related to a poor prog-
nosis [46]. In addition, it was found that RAB31 is associated
with the survival of glioblastoma [47]. A recent study also
confirmed that overexpression of RAB31 in gastric cancer tis-
sues was significantly related to specific clinicopathological
features and shorter survival time, strongly suggesting that
RAB31 can be a new oncogene for gastric cancer [48].

3.4.2. ACSL5. This gene received the level value of 0.8184. It
encodes a specific transcription factor of the long-chain
acyl-CoA synthetase (ACSL) family. In fatty acid metabo-
lism, the first and essential step is the activation of fatty acids.
ACSLs, responsible for activation of the most abundant long-
chain fatty acids (12-20 carbons) in the diet into acyl-CoA
thioesters, are generally deregulated in cancer. Such deregu-
lation is also related to poor survival in patients with cancer
[49]. The role of ACSL5 in cancer is quite complex. ACSL5
was reported to be downregulated in colorectal carcinomas
[50, 51], breast cancer [52, 53], bladder cancer [53], and pan-
creas cancer [54]. Furthermore, ACSL5 lower regulation pre-
dicted a worse prognosis in breast cancer [52]. However,
opposing results were also reported in studies on glioma
[55] and gastric cancer [56], where ACSL5 was upregulated.

In addition, fibroblast growth factor receptor 2 (FGFR2)
-ACSL5 chimera RNA caused clinical gastric cancer cells to
be resistant to the treatment with FGFR inhibitors [57]. Evi-
dences showed that high levels of ACSL5, as a potential
downstream target of the transcription factor ONECUT2
(0C2), together with OC2, may cooperatively promote intes-
tinal metaplasia and gastric cancer progression [56]. These
contradicting results indicated that the roles of ACSL5 were
different among the different cancer types. Lastly, exon 20
skipped variant of ACSL5 protein (splice, Spl) was identified.
Results showed that the growth inhibitory effect produced by
the Spl protein was opposed to the growth-promoting activ-
ity of the nonsplice (NSpl) isoform [58]. Therefore, due to
both isoforms, ACSL5 may act either as a tumor suppressor
gene or an oncogene.

3.4.3. WNT7B. This gene was assigned a level value of 0.8053.
WNT7B is an extracelluar matrix protein of Wnt family pro-
tein [59]. The Wnt (Wingless-INT) was derived from the
wingless gene related to visual mutations in Drosophila and
the Intl gene related to mouse breast cancer. Wnt signaling
is a well-conserved pathway via canonical (f-catenin) and
noncanonical (planar cell polarity and calcium) signaling
[60]. WNT7B, as an activator of canonical Wnt/f-catenin
signaling [61], plays a critical role in normal development
and tumorigenesis [62]. Because Wnt protein was first iso-
lated from mouse breast cancer, the role of WNT7B on breast
cancer has also been increasingly reported. Huguet et al. [63]
explored differential expression of human Wnt Genes 2, 3, 4,
and 7B in human breast cell lines and normal and disease
states of human breast tissue. They further found that in
10% of tumors WNT7B expression was 30-fold higher than
in normal or benign breast tissues. In addition to confirming
results consistent with them, Ojalvo et al. [64] and Chen et al.
[65] further validated that WNT7B expression makes con-
nections with markers of poor prognosis. Yeo et al. [59] built
a Csflr-icre mouse model using a WNT7B deletion, which
also illustrated a critical role of myeloid WNT7B in breast
cancer progression, including the levels of angiogenesis, inva-
sion, and metastasis. In addition to breast cancer, abnormal
expression of the WNT7b leads to the pathogenesis of many
other cancers. Arensman et al. [66] confirmed that WNT7B
expression was increased with high activity levels of auto-
crine Wnt/f-catenin signaling in pancreatic
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TasBLE 1: Top fifteen inferred oncogenes.
Rank Ensembl ID Gene symbol Description Level value
1 ENSP00000304565 RAB31 RAB31, member RAS oncogene family 0.9105
2 ENSP00000421799 ENSG00000257184 — 0.8868
3 ENSP00000469872 RAB4B-EGLN2 RAB4B-EGLN2 Readthrough (NMD candidate) 0.8500
4 ENSP00000283921 HOXA10 Homeobox A10 0.8289
5 ENSP00000385586 HOXD12 Homeobox D12 0.8184
6 ENSP00000348429 ACSL5 Acyl-CoA synthetase long chain family member 5 0.8184
7 ENSP00000256953 RERG RAS-like estrogen regulated growth inhibitor 0.8105
8 ENSP00000341032 WNT7B Wnt family member 7B 0.8053
9 ENSP00000321805 RIT2 Ras like without CAAX 2 0.7763
10 ENSP00000285735 RHOC Ras homolog family member C 0.7763
11 ENSP00000282397 FLT1 Fms related receptor tyrosine kinase 1 0.7763
12 ENSP00000264711 DNAJC27 DnaJ heat shock protein family (Hsp40) member C27 0.7737
13 ENSP00000339787 ACSL4 Acyl-CoA synthetase long chain family member 4 0.7737
14 ENSP00000357306 RIT1 Ras like without CAAX 1 0.7684
15 ENSP00000301068 RHEBL1 RHEB like 1 0.7684

adenocarcinoma. Zheng et al. [67] found that expression of
WNT?7B is essential for the growth of prostate cancer cells
and this effect is enhanced under androgen-deprived condi-
tions. Their further analyses revealed that WNT7B pro-
motes androgen-independent growth of CRPC cells likely
via the activation of protein kinase C isozymes. Their
results further showed that prostate cancer-produced
WNT7B maked osteoblast differentiation in vitro and
in vivo. As for osteosarcoma (OS) [68], WNT7B expres-
sion is dramatically upregulated in OS tissue samples and
cells, especially in metastatic OS cell lines. Liu et al. [68]
also found that WNT7B silence within OS cells remark-
ably inhibited the viability and invasion and enhanced
the apoptosis of OS cells, suggesting that knocking down
WNT7B could inhibit the OS cell growth. Therefore, we
presume that WNT7B may function as an oncogene in
carcinoma tissue types.

3.4.4. FLTI. This gene was assigned a level value of 0.7763.
Fms-related tyrosine kinase 1 (FLT1, also known as
VEGFR-1) is a gene that encodes for a member of the
VEGER family, which presents a critical point in angiogene-
sis and subsequent cancer progression [69]. The expression
of FLT1 is not limited to vascular endothelial cells. It is also
found in cells of the hematopoietic lineage (i.e., monocytes
and macrophages), dendritic cells, osteoclasts, pericytes, liver
cells, placental trophoblasts [70], and smooth muscle cells
[71], where it has a regulatory function. Therefore, with
respect to carcinogenesis, the role of FLT1 may be more com-
plex [72]. Recent reports also indicate that FLT1 is directly
expressed on tumor cells from breast, colon, and skin origin.
It is an important oncogenic driver in above cells, boosting
survival, cell proliferation, and invasion in an independent
manner [73-76]. In head and neck squamous cell carcinoma
(HNSSC), FLT1 was selectively overexpressed in tumor tis-
sue. FLT1 was further identified as an important oncogenic
driver of HNSCC survival and resistance to radiotherapy

with a shRNAmir-based dropout screening setup [72]. Qian
et al. [77] found that FLT1 labels a subset of macrophages
in human breast cancers which are significantly enriched in
metastatic sites. Furthermore, using several genetic models,
they elaborated that macrophage FLT1 is important for
tumor cell seeding and persistent growth during the distal
metastasis. Jiang et al. [78] identified that FLT1 promotes
invasion and migration of glioblastoma cells through the
modulation of sonic hedgehog (SHH) signaling pathway. A
further study has indicated that FLT1 knockdown can pre-
vent the spread of glioblastoma cells in vivo. FLT1 may be a
novel oncogene, and therefore, inhibition of FLT1 may serve
as a potential target for the development of therapies against
metastatic events.

4. Conclusions

This study proposed a computational method for the identi-
fication of latent oncogenes. From seven protein networks,
informative features of proteins were extracted via a powerful
network embedding algorithm. Obtained features were
learned by random forest, thereby setting up the prediction
model. The principle of our method was quite different from
previous methods and provided some novel latent onco-
genes. Some inferred genes can be confirmed to be novel
oncogenes, suggesting that the newly identified oncogenes
can be essential supplements for previous studies. It is hoped
that the new findings reported in this study can promote the
research process of cancers.
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