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Genome-scale metabolic models of Mycobacterium tuberculosis (Mtb), the causative

agent of tuberculosis, have been envisioned as a platform for drug discovery. By

systematically probing the networks that underpin such models, the reactions that are

essential for Mtb are identified. A majority of these reactions are catalyzed by enzymes

and thus represent candidate drug targets to fight an Mtb infection. Nevertheless, this is

complicated by the limited knowledge on the environment that Mtb encounters during

infection. Modeling the behavior of the bacteria during infection requires knowledge

of the so-called biomass reaction that represents bacterial biomass composition. This

composition varies in different environments or bacterial growth phases. Accurate

modeling of the metabolic state requires a precise biomass reaction for the described

condition. In recent years, additional insights in the in-host environment occupied by

Mtb have been gained as transcript abundance data of interacting host and pathogen

have become available. Therefore, we used transcript abundance data and developed a

straightforward and systematic method to obtain a condition-specific biomass reaction

for Mtb during in vitro growth and during infection of its host. The method described

herein is virtually free of any pre-set assumptions on uptake rates of nutrients, making

it suitable for exploring environments with limited accessibility. The condition-specific

biomass reaction represents the “metabolic objective” of Mtb in a given environment

(in-host growth and growth on defined medium) at a specific time point, and as such

allows modeling the bacterial metabolic state in these environments. Five different

biomass reactions were used to predict nutrient uptake rates and gene essentiality.

Predictions were subsequently compared to available experimental data. Our results

show that nutrient uptake can accurately be predicted. Gene essentiality can also be

predicted but accurate predictions remain difficult to obtain. In conclusion, a viable

strategy to model Mtb metabolism in hard-to-access environments that is virtually free

of pre-set assumptions is provided.
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INTRODUCTION

Constraint-based genome-scale metabolic models (GEMs)
enable prediction of metabolic states. A metabolic state is
defined as a vector of all fluxes or conversion rates (in mmol
h−1) throughout metabolism per weight unit of biomass
(usually 1 gram dry weight, gDw). GEMs comprise linear
equations describing conversions among metabolites, uptake
or secretion processes, and transport processes over different
compartments. These equations are referred to as flux balance
constraints and are founded on an underlying metabolic network
wherein all metabolites are interconnected by conversion and
transport reactions. The flux balance constraints are captured
in a stoichiometric matrix (Kauffman et al., 2003). GEMs may
comprise additional constraints as well, such as reversibility
and capacity constraints. The whole of all possible fluxes that
satisfy all constraints of a GEM is referred to as the solution
space (Bordbar et al., 2014). Additional constraints present
an opportunity to further limit the size of the solution space,
which results in a more accurate calculation of the metabolic
state. A suitable way to increase the amount of constraints is to
measure uptake and/or secretion rates of metabolites/nutrients.
Knowledge of a few of these rates can considerably shrink the
solution space (Reed, 2012).

Given the stoichiometric matrix, the most straightforward
approach for calculating a metabolic state is to simulate
conditions wherein the organism is in a steady state physiological
condition, meaning that there is no net intracellular
accumulation of metabolites. Under this assumption, it is
possible to construct a Flux Balance Analysis (FBA) problem.
FBA finds the optimal (maximum or minimum) value of
a selected function, the so-called objective function, while
satisfying all constraints. Solution of the FBA problem leads to
a vector of reaction fluxes that represents a calculated metabolic
state of the organism. This calculated metabolic state is more
likely to represent the actual metabolic state as the solution space
is shrunk by additional constraints (Raman and Chandra, 2009;
Orth et al., 2010).

The metabolic state is, among others, dependent on the
objective function. Metabolic states have been accurately
predicted for several bacteria in recent years, using objective
functions such as maximizing the flux through the biomass
reaction to represent growth rate, maximizing ATP production
or minimizing enzyme usage among others (Schuetz et al., 2007).

However, in some conditions measuring uptake and/or

secretion rates can be notoriously difficult, if not impossible. Such
is the case for intracellular Mycobacterium tuberculosis (Mtb), a

pathogenic bacterium able to withstand the harsh environment

of the phagosome. Mtb is even capable of halting the maturation
of the phagosome inside immune cells and providing a niche
for the bacterium to thrive (Gengenbacher and Kaufmann, 2012;
Zondervan et al., 2018). Genome-scale metabolic models of Mtb,
have been envisioned as a platform for drug discovery (Jamshidi
and Palsson, 2007; Rienksma et al., 2014).

In addition to uptake rates, other measurements can serve
to estimate or approach (a part of) the metabolic state of a
cell, such as transcript profiles (Hoppe, 2012). For Mtb, a major

difficulty with these measurements is the large size difference
between the eukaryotic host cell and the prokaryotic pathogen,
which results in metabolites and transcripts from the host
vastly outnumbering those of the pathogen (Fels et al., 2017).
With regard to transcript abundance experimental methods
have been developed to increase the ratio of pathogen mRNA
to host mRNA (Mangan et al., 2002). This enrichment in
pathogen transcripts renders differences between intracellular
and extracellular pathogen transcript abundance apparent. We
recently published a dataset of Mycobacterium bovis BCG and
THP-1 cells using a dual RNA-sequencing strategy (Rienksma
et al., 2015). However, such an enrichment method is not
available for metabolites, which are more closely related to
fluxes as compared to transcripts. Moreover, metabolites, unlike
transcripts, cannot be assigned to host or pathogen unless they
only occur in one of said host or pathogen (Zimmermann et al.,
2017).

Transcript abundance data can be used to constrain models
in environments where knowledge regarding nutrient availability
and objective(s) is limited. Methods such as iMAT (Shlomi et al.,
2008), MADE (Jensen and Papin, 2011), GIMME (Becker and
Palsson, 2008), E-flux (Colijn et al., 2009), TRFBA (Motamedian
et al., 2017), and others (Lewis et al., 2012) limit the solution
space by using expression values as a proxy for flux. These
methods allow for the explanation of phenomena that cannot
be derived solely from the models, such as the prediction of
the Crabtree effect in yeast (Rossell et al., 2013). These model
and data integration methods limit the solution space within
the ranges of expression data, thereby effectively generating
condition specific models. Shrinking the solution space by
limiting fluxes based on gene expression seems an obvious choice,
but it is not at all obvious how this should be done. Methods
for model and data integration have been thoroughly evaluated
(Machado and Herrgard, 2014). The evaluation showed that no
method outperforms the others for all testedmodels and datasets.
Finally, this condition-specific model building can hamper
exploration of metabolic states that arise from perturbations
of the environment, from which the gene expression data was
originally derived. These adapted models would only allow
changes to the metabolic state that fit within the boundaries of
what was originally measured. Such a rigid model appears a poor
choice for predictive modeling.

A modeling approach focused on an accurate description of
the objective of Mtb during infection appears to be a better
strategy to make new predictions because it does not limit
the solution space or metabolic flexibility beforehand. Previous
approaches have relied on adapting the biomass reaction
to represent the composition on mycobacterial cells during
infection. Bordbar and colleagues adjusted the biomass reaction
based on differential gene expression (Bordbar et al., 2010). This
approach is biased by the biomass reaction that is present in the
model prior to the tailoring process and the potential synthesis of
other metabolites specifically during infection, is overlooked. Shi
et al. (2010) proposed a biomass reaction comprising trehalose
dimycolate, triacylglycerol (TAG), and polyglutamate/glutamine
to reflect aminimal cell wall composition. The logical assumption
applied was that during a “non-growth state”, Mtb utilizes
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metabolites produced in pathways of which gene expression is
elevated and does not, or to a lesser extent, utilize metabolites
produced in pathways of which gene expression is suppressed.
Shi and colleagues used qPCR to monitor gene expression (Shi
et al., 2010). This requires a pre-selection of target genes based on
experience and experimental output and does not accommodate
unbiased exploration of the transcriptional landscape.

Here, we integrate a constraint-based model of Mtb
metabolism and RNA sequencing data to provide condition-
specific biomass reactions during host infection and during
growth on Middlebrook 7H9 medium. The genome-scale nature
of this approach ensures all known pathways and biomass
precursors are taken into account, whereas the nature of the used
data (RNAseq) ensures unbiased assumptions on the types and
quantities of metabolic precursors. During on-going infection
mycobacterial cells might enter a non-growth state on which
maximal growth rate is not the metabolic objective. However, still
minimal macromolecular components need to be synthesized
and energetic requirements need to be fulfilled to ensure
survival. The condition-specific biomass reaction representing
infection combines both aspects as it reflects the composition
of mycobacterial cells during infection, and it also represents
the metabolic requirements for its survival and interaction with
the host which are incorporated in the RNAseq data as well. To
simulate the metabolic state of the bacteria upon infection, flux
through the condition-specific biomass reaction is maximized,
while the total usage of enzymes is minimized. As Mtb faces
several types of stress and adverse conditions imposed by the
host’s immune system during infection of the host (Fontán et al.,
2008), it is assumed that Mtb does not squander its resources,
and makes optimal use of available enzymes. From a modeling
perspective, this can be seen as a bi-objective optimization
problem wherein two competing objectives, i.e., maximization
of biomass production on the one hand, and minimization of
enzyme usage on the other hand, are simultaneously considered.

The goal of multi-objective optimizations is to find Pareto
optimal solutions (also called non-dominated solutions)
(Papalambros and Wilde, 2000). A solution is Pareto optimal
if no other solution exists that better satisfies all objectives. In
other words, a solution is Pareto optimal if an improvement
in one objective requires a degradation of another. Multiple
methods have been developed to obtain Pareto optimal solutions
in multi-objective optimization problems such as the normal
constraint method (Messac et al., 2003) that has been used to
explore tradeoffs between hepatic metabolic functions (Nagrath
et al., 2007). Here, we tackle the problem by using a weighted
sum method in which weight factors are attributed to each
objective: fb and fe,i, for biomass and enzyme usage for each
of the i = {1, . . . , m} reactions, respectively. This approach
ensures that the obtained solutions are Pareto optimal (Suárez
et al., 2008). Parsimonious enzyme usage FBA (pFBA) has been
proposed to explore the tradeoffs between maximizing growth
and minimizing enzyme utilization (Bordbar et al., 2010). In
pFBA there is an initial maximization of the biomass reaction
followed by a minimization of enzyme usage. In our approach,
this Pareto optimal solution would correspond to the extreme
case on which the weight of the biomass objective is much higher

than that of the enzyme minimization objectives (fb >> fe,i,). By
changing these weight factors, a ratio between these two factors,
fr , is established that enables the prediction of metabolic genes
essential to Mtb within the macrophage as well as metabolites
that are sequestered by Mtb from the phagosome. Comparison of
these predictions with experimentally obtained data (Beste et al.,
2013; Mendum et al., 2015) reveals that by using a condition-
specific objective function inferred from transcript abundance
data the metabolic state of Mtb upon infection can be accurately
predicted.

METHODS

Mtb Metabolic Model
We used our genome-scale metabolic model of M. tuberculosis
called sMtb, in silico M. tuberculosis (Rienksma et al., 2014).
We made some minor corrections to this model regarding
among others the respiration chain, and added six reactions
to improve the functioning of the model. This improved
sMtb model can be found in Supplementary Data Sheet 1

(as systems biology markup language file, SBML) and
in Supplementary Data Sheet 2 (as excel file) together
with a small summary of the aforementioned changes in
Supplementary Data Sheet 3. A list of metabolites that could be
present in the phagosome was collected from literature (Beste
et al., 2013), similarly a list of metabolites in Middlebrook 7H9
medium was collected (Supplementary Table 1).

Constraining sMtb With Gene Expression
Data
Raw sequence read data supporting the results of this article are
available in the EMBL-EBI European Nucleotide Archive under
the Accession No. PRJEB6552, http://www.ebi.ac.uk/ena/data/
view/PRJEB6552 for both M. bovis BCG grown on Middlebrook
7H9 medium andM. bovis BCG cells infecting THP-1 cells. RNA
sequencing reads were aligned to the M. bovis BCG genome as
described before (Rienksma et al., 2015). For each gene present
in sMtb, the number of reads aligning to it was summed. A
cutoff value of 100 counts per million (cpm) was used to identify
lowly expressed genes, that were assigned a count value of zero.
The resulting gene count values were subsequently transferred to
their corresponding reactions, summing the counts for reactions
catalyzed by isozymes. For reactions catalyzed by a protein
complex, the smallest number of counts of every gene that
encodes a part of such a complex was assigned to the reaction.
For reactions that can be catalyzed by several different protein
complexes, the smallest number of counts assigned to one of
the genes encoding a part of each complex was identified and
subsequently the total of all these smallest numbers of counts was
assigned to the reaction. Reactions that received no counts using
this method were not allowed to carry any flux. Afterwards, the
total number of counts assigned to each reaction was normalized
by dividing this total number of counts by the largest number
of counts assigned to any reaction in sMtb, resulting in a value
ranging between 0 and 1 for each enzyme-catalyzed reaction.
This procedure is called the E-flux algorithm and is explained in
greater detail by Colijn et al. (2009).
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FIGURE 1 | Workflow to create a model with a condition-specific biomass

reaction. (A) An exemplary constraint-based genome-scale metabolic model

(GEM) comprising a metabolic network with metabolites (yellow diamonds)

and reactions (arrows), including uptake reactions (green arrows) and secretion

reactions (red arrows), is depicted in a microorganism (rounded square). Gene

expression data (blue wave-shaped lines) is used to constrain maximal flux

values according to the E-flux algorithm (Colijn et al., 2009), to obtain a

condition-specific GEM having a shrunken solution space. (B) The

condition-specific (blue background) GEM is subsequently combined with

nutrient availability data (graph) and uptake of unavailable nutrients is

constrained to zero. (C) Biomass precursor data (bar plot) is used to pinpoint

biomass precursors in the condition-specific GEM with blocked transport

reactions (red crosses), and the flux through the flux limiting reaction for each

precursor is selected by maximizing flux toward each biomass precursor (blue

(Continued)

FIGURE 1 | diamonds) individually. (D) The sum of all precursor fluxes is

normalized to one gram biomass dry weight (1 gDw) and a condition-specific

biomass reaction (green diamond) is obtained. (E) All constraints placed on

the GEM in the previous steps (A–D), are removed and a GEM with a

condition-specific biomass reaction is obtained.

Obtaining Condition-Specific Biomass
Reactions
The workflow applied to model sMtb is generally depicted in
Figure 1. This workflow was applied twice: for gene expression
data of M. bovis BCG grown on Middlebrook 7H9 medium
(medium condition) and for gene expression data of M.
bovis BCG cells infecting THP-1 cells (infection condition).
Firstly, upper bounds on unidirectional (forward) reactions,
and upper and lower bounds on bidirectional reactions were
replaced by the normalized counts assigned to that reaction
(Figure 1A). The resulting sMtb model constrained by gene
expression data was further constrained by setting uptake
rates of unavailable metabolites to zero in the given condition
and allowing unconstrained uptake of available nutrients,
based on nutrient availability data (Figure 1B). The nutrient
availability in the phagosome and in Middlebrook 7H9
medium is given in Supplementary Table 1. Afterwards, a
general list of biomass precursors was obtained from sMtb
(Supplementary Data Sheets 1, 2). For each biomass precursor,
a sink reaction was added and the flux of each of these sink
reactions was individually maximized, effectively maximizing the
flux toward the respective precursor (Figure 1C). Subsequently,
the obtained maximum value for each biomass precursor
was normalized such that the total molecular weight of
these precursors equaled one gram, resulting in a condition-
specific biomass reaction of Mtb during infection, growing in
phagosomal conditions, CSI, and a condition-specific objective
function of Mtb growing in Middlebrook 7H9 medium, CSM
(Figure 1D). These condition-specific objective functions were
subsequently added to sMtb and constraints derived from the
gene expression were removed (Figure 1E).

Calculating Nutrient Uptake for Various
Objective Functions
We compared five different objective functions for their ability to
correctly predict nutrient uptake rates by Mtb in the phagosome.
The following biomass reactions were used: CSI, CSM, the regular
biomass reaction from model sMtb representing growth (REB)
(Rienksma et al., 2014), the biomass reaction from model sMtb
representing in vivo growth (IVB) (Rienksma et al., 2014) and a
reaction representing Mtb in a non-replicative state (NRC) (Shi
et al., 2010).

The bounds on uptake rates of all nutrients representing
phagosomal conditions (Supplementary Table 1) were
unconstrained, with the sole exception of constraining the
oxygen uptake rate to 0.01 mmol gDw−1 h−1. Subsequently,
each of the five objective functions was maximized while the sum
of all other enzymatically catalyzed reactions was minimized
(Equations 1.1 - 1.3). The weight factor for the biomass reaction,
fb, was varied while keeping the weight factor for enzymatically
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catalyzed reactions, fe,i, constant at 0.001 for all reactions i, hence
effectively varying fr , the ratio between fb and the sum of all
fe,i-values (Equation 2). Subsequently, a flux variability analysis
was performed, wherein the maximum objective function value,
w (Figure 2, right panel), was set as a constraint and the nutrient
uptake rates were minimized and maximized individually,
resulting in maximal and minimal uptake rate boundaries for
various nutrients for each objective function (Figures 3–5)
(Gudmundsson and Thiele, 2010; Orth et al., 2010).

Comparison of Gene Essentialities for
Various Objective Functions
At log(fr) > −0.5 flux is channeled through all (condition-
specific) biomass reactions (Figure 2, right panel). At log(fr)
< 0.3 minimizing flux through the sum of all enzymatically
catalyzed reactions is still relevant and the restrictions of the
oxygen uptake threshold are not yet overcome. Beyond this point,
the (condition-specific) biomass reaction weight factor, fb, is so
large as compared to the sum of all fe,i-values, that an optimal
objective function value, w, is obtained by solely minimizing
enzyme usage, and ignoring maximizing flux through the
(condition-specific) biomass reaction. An fr-value of 0.8 was
chosen from Figures 2–5 as asparagine, alanine and glutamate
in addition to glycerol-3-phosphate and CO2 are taken up from
the host, which is likely to occur during infection (Beste et al.,
2013) and this value log(0.8) ≈ − 0.1 is centered between the
boundaries of log(fr) = 0.5 and log(fr) = 0.3. The growth rates
(i.e., the in silico calculated flux of CSI, CSM, IVB, REB, andNRC)
were maximized indirectly by maximizing the aforementioned
bi-objective optimization problem. Each biomass reaction will
always obtain its maximal value using this approach. Thereafter,
using the COBRA toolbox (Schellenberger et al., 2011), genes
and their corresponding reactions where deleted one by one and
the resulting specific growth rates were computed by maximizing
the aforementioned bi-objective optimization problem. These
growth rates were divided by the wild-type growth rate, resulting
in a number between 0 and 1 for each knocked-out gene,
representing the relative specific growth rate. We applied a 95%
reduction in the relative growth rate as a threshold to indicate
essential genes as described before (Rienksma et al., 2014).

Mendum and colleagues infected human dendritic cells with
an Mtb transposon library to identify genes that are required
for in vivo survival after 3 days and after 7 days (Mendum
et al., 2015). These experimentally identified essential genes
were compared to the predicted essential genes using the
aforementioned five different objective functions. Subsequently,
the accuracy, sensitivity and specificity of the predictions,
were calculated for all five objective functions and for both
experimental time points.

RESULTS

We created two condition-specific biomass reactions (CSI and
CSM) based on transcript abundance data in two conditions. The
term “biomass reaction” is perhaps not the most suitable term as
these reactions not only cover synthesis of metabolites used for

biomass production, but also synthesis of excreted enzymes and
small molecules, repair of damaged lipid membranes and other
metabolites involved in host-pathogen interaction. Even though
these processes themselves are largely unknown, transcript
abundance data indirectly reflects these processes and combined
with a GEM can give a picture of required metabolic precursors
for these processes.

Condition-Specific Biomass Reactions
The creation of a condition-specific biomass reaction
requires a GEM, a list of available nutrients in the given
condition, a list of metabolic precursors for synthesis of
macromolecules, and transcript abundance data. We used
model sMtb, a comprehensive model of Mtb metabolism
(Rienksma et al., 2014), with minor corrections and additions
(Supplementary Data Sheets 1–3). Transcript abundance data
was obtained from a dual RNA-sequencing experiment wherein
transcript abundances of M. bovis BCG, a close relative of Mtb
having a highly similar genome (Garnier et al., 2003), were
measured under two conditions (Rienksma et al., 2015). In the
first condition M. bovis BCG infects THP-1 cells, and in the
second condition M. bovis BCG grows on Middlebrook 7H9
medium. The sMtb model was used as a platform to integrate
the expression data and to calculate two condition-specific
biomass reactions of Mtb, CSI (condition-specific infection) and
CSM (condition-specific medium), for both aforementioned
conditions, respectively. A list of all metabolites known or
expected to be present in the phagosome was assembled
(Supplementary Table 1). Availability of these metabolites was
simulated by enabling their free uptake in the model. In addition,
a list of all known biomass precursors was generated based on
the sMtb model (Supplementary Table 2).

The flux toward each biomass precursor was maximized one
by one, while limiting the maximum flux through enzymatically-
catalyzed reactions based on the transcript abundance for the
present condition (Figure 1). The ratio of biomass precursors
obtained for both conditions represents the two condition-
specific biomass reactions (CSM and CSI). The contributions
of each class of precursors to these two biomass reactions are
shown inTable 1 (see Supplementary Table 2 for amore detailed
breakdown). The largest differences in the biomass reactions of
both conditions entails the fraction of amino acids, which is
approximately doubled in the host as compared to in vitro growth
on Middlebrook 7H9 medium, which is in accordance with
previous predictions (Zimmermann et al., 2017). The fraction of
carbohydrates on the other hand, is substantially reduced from
20.1 to 9.9%.

Simulating Mtb Metabolism: Balance
Between Growth and Enzyme Utilization
To predict the in vivo metabolic state, reflecting Mtb’s
intracellular behavior, we compared the performance of five
different biomass reactions: the in vitro biomass growth reaction
(IVB) and a regular biomass growth reaction (REB), both
present in sMtb (Rienksma et al., 2014), a biomass reaction
representing non-replicating cells (NRC) (Shi et al., 2010),
the condition-specific biomass reaction representing growth
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FIGURE 2 | Tradeoff between biomass production (growth rate) and enzyme utilization in the metabolic model. Predicted values of the flux through the biomass

synthesis reaction (left), average flux through all enzymatically catalyzed reactions (middle) and the objective function value (right), i.e., combination of total

enzymatic reaction minimization and biomass reaction maximization for various fr-values. Five different biomass reactions are shown: CSI (green), CSM (blue), IVB

(yellow), REB (red), and NRC (black). The dashed line indicates fr = 0.8.

FIGURE 3 | Predicted amino acid uptake rates. Maximum and minimum predicted uptake rates for alanine, aspartate, asparagine, and glutamate using five different

biomass reactions: CSI (green), CSM (blue), IVB (yellow), REB (red), and NRC (black) for varying values of the biomass weight factor fr . The dashed line indicates fr =

0.8. Two lines of the same color indicate upper and lower limits of the prediction. Note that negative values of uptake rates denote excretion of that metabolite.

on Middlebrook 7H9 medium (CSM) and the condition-
specific biomass reaction representing growth within the host’s
phagosome (CSI).

Simulation of the metabolic state of Mtb in the phagosome
is complicated by a lack of knowledge on the rate at which
nutrients are acquired from the host. However, various studies
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FIGURE 4 | Predicted lipid uptake rates. Maximum and minimum predicted uptake rates for diacylglycerol, glycerol-3-phosphate, and triacylglycerol using five different

biomass reactions: CSI (green), CSM (blue), IVB (yellow), REB (red), and NRC (black) for varying values of the biomass weight factor fr . The dashed line indicates fr =

0.8. Two lines of the same color indicate upper and lower limits of the prediction. Note that negative values of uptake rates denote excretion of that metabolite.

FIGURE 5 | Predicted oxygen, carbon dioxide, and nitric oxide uptake rates. Maximum and minimum predicted uptake rates for oxygen, carbon dioxide, and nitric

oxide using five different biomass reactions: CSI (green), CSM (blue), IVB (yellow), REB (red), and NRC (black) for varying values of the biomass weight factor fr . The

dashed line indicates fr = 0.8. Two lines of the same color indicate upper and lower limits of the prediction. Note that negative values of uptake rates denote excretion

of that metabolite.

TABLE 1 | Composition of the condition-specific biomass reactions.

Weight percentage (g/gDw)

Condition-specific

infection, CSI

Condition-specific

medium, CSM*

Amino acids 33.2 16.1

Nucleic acids 7.6 8.5

Carbohydrates 9.9 20.1

Lipids 32.5 39.0

Other 16.8 16.2

*Note that due to rounding of the percentages, the total may not add up to 100%.

have shown that the phagosomal environment is likely to be
hypoxic (Schnappinger et al., 2003). Therefore, we chose to limit
the oxygen uptake rate at a relatively low value of 0.01 mmol
gDW−1 h−1 while keeping unrestricted the uptakes of all other
nutrients that were assumed to be present in the host. Even with
such a restriction, nutrients were predicted to be taken up in
unrealistically large quantities. This behavior can be traced back
to anaerobic reactions in the model that result in ATP generation,

followed by the artificial generation of oxygen at the cost of high
amounts of energy in the form of ATP to ADP conversion. In
addition, limiting the oxygen uptake rate all the way to 0 mmol
gDW−1 h−1 resulted in zero flux through the (condition-specific)
biomass reaction, and was therefore an unsuitable strategy as
well.

To overcome such difficulty, the assumption was made that
Mtb utilizes its resources parsimoniously when in a hostile
environment. This can be modeled by minimization of enzyme
usage while maximizing the flux through the biomass reaction.
This bi-objective optimization was performed using a weighted
sum method in which the following FBA problem with a
weighted objective was solved:

w = max
{(

∑n

i=1
−fe,i ·

∣

∣ve,i
∣

∣

)

+ fb · vb

}

(1.1)

subject to:

S·v= b (1.2)

l ≤ v ≤ u (1.3)
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Wherein w is the objective function value, ve,i represents the
flux or rate of reaction i catalyzed by at least one enzyme; fe,i
represents the weight factor for reaction i; vb represents the
specific growth rate (or biomass reaction flux value), i.e., the
flux through one of the five aforementioned (condition-specific)
biomass reactions; fb represents the weight factor for the biomass
reaction; n is the total number of reactions catalyzed by at least
one enzyme; S represents the stoichiometric matrix; v represents
a vector with all fluxes (comprising ve,i and vb); b represents a
vector with zeros; l represents a vector with lower bounds for all
fluxes and u represents a vector with upper bounds for all fluxes.
The weight factor ratio, fr , between growth and total enzyme
utilization is given by:

fr =
fb

∑n
i=1 fe,i

(2)

Each reaction in the model catalyzed by one or multiple enzymes
was given the same weight factor (fe) and the weight factor (fb)
of the (condition-specific) biomass reaction was varied such that
log(fr) varied around a value of 0. A log(fr) value of 0 entails that
the numerator and denominator of Equation (2) are of equal size
and reflects a balanced weight distribution betweenminimization
of enzyme usage (i.e., maximization of the negative values) and
maximization of growth. By changing the weight factor ratio, the
relative importance of enzyme usage minimization and biomass
reaction maximization changes (Figure 2). If too much weight is
put on the minimization of enzyme usage, i.e., fr becomes too
low, the biomass reaction flux value, vb, becomes irrelevant and
its value drops to zero, this can be seen at the left hand panel
of Figure 2, where the graphs equal zero. The reason that the
average flux through enzymatically catalyzed reactions, ve, does
not drop to zero when toomuch emphasis is put on enzyme usage
minimization, as can be seen in the middle panel of Figure 2, is
because there is a small (0.1 mmol gDW−1 h−1) growth related
maintenance coefficient enforcing a small minimum flux of ATP
to ADP conversion.

Prediction of Uptake Rates
Figures 3–5 show predicted uptake rates for the five different
biomass reactions. As fr increases, unrealistically high uptake
rates are predicted to overcome the restrictions of the oxygen
uptake threshold (0.01 mmol gDW−1 h−1). As can be seen
in Figure 2 (black line), the graph representing NRC biomass
reaction (non-replicating cells) is slightly shifted as compared
to the other objectives. The reason for this is that the total
molecular weight of biomass precursors for this objective as
obtained from Shi and colleagues is not normalized to one
gram. Its value is actually higher, resulting in a larger objective
function value at a smaller fr-value (Figure 2, right panel).
For the four other biomass reactions a balance exists between
maximization of growth and minimization of enzyme usage
between approximately log(fr) = −0.5 and log(fr) = 0.3 (0.3 ≤

fr ≤ 2.0). Beyond log(fr) = 0.3 the restrictions of the oxygen
uptake threshold are overcome, and vb and vi-values jump to
infinite (for the NRC biomass reaction, this point is reached

earlier). An appropriate value for fr was selected from Figures 2–
5 based on the consideration that uptake of asparagine, alanine
and glutamate in addition to glycerol-3-phosphate and CO2 from
the host is likely to occur during infection (Beste et al., 2013). In
addition, nitric oxide is not produced in high amounts by THP-1
cells, and thus not a likely source of nutrition (Fontán et al., 2008),
further justifying an fr-value >0.3 [log(fr) > −0.5], when hardly
any nitric oxide is predicted to be taken up (Figure 5, right panel).
At fr = 0.8 [log(fr) = −0.1, dashed vertical lines], uptake of
glutamate and glycerol-3-phosphate is predicted for all biomass
reactions except for NRC, the biomass reaction describing non-
replicating cells. For this biomass reaction uptake of glutamate
is not predicted. In addition, at this point (fr = 0.8) uptake
of asparagine is predicted for the condition specific biomass
reaction of infection (CSI) and predicted to be likely (the average
of minimum and maximum uptake rates is above zero) for the
other four objectives. The uptake of alanine at this point is
predicted to be likely for all five objective functions.

As can be seen in Figures 3–5, the predicted uptake rates are
very similar for all five biomass reactions. Therefore, the biomass
reaction itself seems of minor importance for the prediction of
uptake rates. The uptake of glutamate appears as especially high
for a relatively small fr-value, regardless of the chosen biomass
reaction.

Beste and colleagues determined that the amino acids
asparagine, alanine and glutamate are likely taken up during
infection. Acetate- or acetyl-CoA-derived from β-oxidation of
host lipids and CO2 is utilized intracellularly and glycerol-3-
phosphate could be a potential carbon source as well (Beste et al.,
2013). Regardless of the objective used, sMtb is able to reproduce
these observations (Figures 3–5). In general, glutamate is taken
up at low fr-values, while asparagine becomes more important
at higher fr-values. The routes of glutamate toward most
metabolic precursors are shorter than those of asparagine, which
is predicted to be taken up at a higher fr-value. In this way the
change of the uptake rates with the fr-value reflects the metabolic
versatility of each component.

Lipid uptake rates show that glycerol-3-phosphate is likely to
be taken up, while diacylglycerol and triacylglycerol are possibly
taken up. Cholesterol is not predicted to be used as a carbon
source at any fr-value, in contrast to mounting evidence that
cholesterol plays an important role as a nutrient for Mtb in the
host (Wipperman et al., 2014; Rienksma et al., 2015). Currently,
the cholesterol degradation pathway of Mtb is partly unknown,
therefore only a partial degradation pathway exists in sMtb and
the double ringed product (ring C and D of the cholesterol
molecule) can only be excreted in sMtb. Partial degradation
results in suboptimal yield of energy carrying metabolites derived
from the cholesterol molecule compared to other molecules and
therefore it is not predicted to be taken up. As knowledge on the
cholesterol degradation pathway advances, the complete pathway
will eventually be known. Integrating this complete pathway
into sMtb will likely yield different results regarding cholesterol
uptake.

The prediction of CO2 uptake is complicated, as it is a nutrient
that is excreted and possibly taken up, unlike the other nutrients
in Figures 3–5. With FBA only a prediction of the difference
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between CO2 excretion and uptake can be obtained. On average,
CO2 is predicted to be excreted throughout the entire fr range.

Gene Essentiality Within the Host
Gene essentiality predictions are often used to assess the
predictive power of GEMs. Gene essentiality predictions can
be simulated with in silico gene knock out (KO) mutants and
comparing the maximal predicted growth rate of the wild type
strain with the KO mutant. A reduction in the predicted specific
growth rate of 95% or more is generally accepted as a threshold
value for gene essentiality (Beste et al., 2007; Jamshidi and
Palsson, 2007; Rienksma et al., 2014).

Here this approach will not provide satisfactory results, as
there are too few constraints on the uptake rates of individual
nutrients, only on the whole of enzymatically catalyzed reactions,
resulting in an excess of unrealistic metabolic routes that could
circumvent the deficiency caused by the deletion of the gene. We
therefore optimized the aforementioned weighted bi-objective
using fe,i = 0.001 for all i with and without deleting the
corresponding gene. Afterwards, both results were compared and
a reduction of the specific growth rate, vb, by 95% was marked as
an essential gene.

These gene essentiality predictions were performed for each
of the biomass reactions. We subsequently compared these
predictions with experimental data obtained by Mendum et al.
(2015) and evaluated the accuracy, sensitivity and specificity of
the predictions obtained with each of the five biomass reactions
was calculated (Table 2).

DISCUSSION

We have created condition-specific biomass reactions based on
transcript abundance data, thereby ensuring that the obtained
biomass compositions represent the organism’s needs in the
corresponding conditions. By limiting the availability of nutrients
to those known or estimated to be present in the phagosome
and restricting the uptake of all other nutrients, we were able to
capture the metabolic state of Mtb during infection.

TABLE 2 | Gene essentiality predictions made using sMtb with five objective

functions compared with experimental data obtained 3 and 7 days after infection

(Mendum et al., 2015).

CSI CSM IVB REB NRC

3 ds 7 ds 3 ds 7 ds 3 ds 7 ds 3 ds 7 ds 3 ds 7 ds

TP 47 50 45 47 24 29 45 48 9 10

TN 335 346 343 353 352 365 346 357 419 428

FP 100 97 92 90 83 78 89 86 16 15

FN 222 211 224 214 245 232 224 213 260 251

Accuracy 0.54 0.56 0.55 0.57 0.53 0.56 0.56 0.58 0.61 0.62

Sensitivity 0.17 0.19 0.17 0.18 0.09 0.11 0.17 0.18 0.03 0.04

Specificity 0.77 0.78 0.79 0.80 0.81 0.82 0.80 0.81 0.96 0.97

TP, true positive; TN, true negative; FP, false positive; FN, false negative; CSI, condition-

specific infection reaction; CSM, condition-specific medium reaction; IVB, in vitro biomass

reaction; REB, regular biomass reaction; NRC, non-replicating cells reaction.

Methods such as iMAT (Shlomi et al., 2008), MADE (Jensen
and Papin, 2011), or GIMME (Becker and Palsson, 2008), aim at
developing condition specific models maximizing the agreement
between flux predictions and expression measurements methods.
The flexibility of these models is reduced, and this can limit their
predictive power. If, for example, certain reactions are perturbed
by the effect of drugs, perhaps the system shifts to another
metabolic state to accommodate the effect of such perturbation.
However, due to the fitting of the gene expression data, it might
happen that this effect cannot be accounted for, as the predicted
metabolic state is biased to represent the gene expression data. In
our approach, we initially constrain the reaction bounds in the
model with the gene expression data. The constrained model is
used to derive a condition specific biomass reaction. The obtained
coefficients of the biomass precursors contain information on
the network wide impact of the gene expression data. The
constraints in the model are then removed while the newly
defined condition specific biomass reaction is used to provide
an indirect representation of the metabolic state corresponding
to the expression data. Our goal was to retain flexibility in the
model, while incorporating the experimental data.

We reasoned that the enzymes encoded by transcripts and
involved in metabolism, which were present at a given moment
in Mtb, should roughly reflect the flux through these enzymes at
that specific condition and time point. Even though transcript
abundance is not linearly correlated to enzyme abundance
or flux (i.e., the reaction rate of an enzyme) (Bordel et al.,
2010), for larger systems, such as pathways or the entire
metabolism, a correlation is likely to exist. On average, metabolic
transcript abundance data should reflect the optimal quantity of
a given enzyme that is sufficient to perform its metabolic task.
Production of an excess of metabolic enzymes would be a waste of
energy, and thus unfavorable for an organism residing in a hostile
environment.

The synthesis routes toward amino acids are predicted
to carry more flux during host infection as compared to
in vitro growth, which is in agreement with other predictions
(Zimmermann et al., 2017). This is represented in Table 1 by
the higher (doubled) fraction of amino acids required. This
suggests that protein synthesis is increased upon infection.
Mtb is known to excrete proteins during infection, which
could explain this predicted increase (Gengenbacher and
Kaufmann, 2012). At the same time, the predicted lipid synthesis
requirement is lower during infection than during growth
on Middlebrook medium, confirming the lipid-rich diet that
Mtb encounters in the host environment (Schnappinger et al.,
2003; Gengenbacher and Kaufmann, 2012). Another major
difference is the lower carbohydrate synthesis. Following the
same reasoning, carbohydrates should be more abundant in the
host environment, but it is generally assumed that Mtb has poor
access to carbohydrates in this environment (Kalscheuer et al.,
2010; Fullam et al., 2016). A possible explanation could be that
Mtb does not synthesize carbohydrates as the synthesis of other
metabolites are preferred within the host as compared to growth
on Middlebrook medium.

We have used a bi-objective optimization approach to
simultaneously take into account growth requirements and
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parsimonious enzyme utilization. The tradeoff between both
objectives is apparent in Figure 2. Still the comparison between
the uptake profiles in Figures 3–5 led us to conclude that a ratio
between both objectives, fr , of 0.8 [corresponding to log(fr) =
−0.1] is likely to represent the metabolic state in the host. This
suggests that, under these conditions, growth represents a major
sink to cellular resources. Here we have selected an equal fe,i
for all enzymatic reactions i, however this could be modified
to account for differences in enzymes, such as size (molecular
weight), activity or degradation rates.

Finally, it should be borne in mind that the transcriptomics
data do not represent later infectious states, but a single
time point 24 h post infection, before the onset of growth
arrest. As can be seen from Figures 3–5, the profiles of
uptake rates of different nutrients are quite similar for
all five (condition-specific) biomass reactions, even though
these reactions are very different. Production of a variety
of precursors is apparently possible using a more or less
fixed set of nutrients. The predicted combination of nutrients
that Mtb acquires during infection is surprising from a
modeling point of view. As uptake of one nutrient and
subsequent production of energy carrying metabolites (ATP,
NADH), biomass precursor(s), and excretion of byproducts,
will always be more favorable than that of another metabolite
in terms of its potential to sustain growth. The result is
that the one nutrient is always favored above another and
uptake of multiple nutrients normally does not occur without
setting quantitative arbitrary boundaries on uptake rates. This
preferential substrate utilization is often regulated at multiple
levels, and it should be considered that this type of models
does not explicitly account for regulation. Still, the energy and
metabolite precursor gain from each nutrient is very balanced
using sMtb and the bi-objective optimization, which indicates
that enough regulatory information is retained in the transcript
data.

A major advantage of the simulations performed within this
study is that virtually no assumptions on quantitative uptake rates
are required. The only limitation on uptake rates, apart from not
allowing uptake of metabolites that are not known or likely to
be available in the phagosome, is set on the uptake of oxygen.
The phagosome is likely a hypoxic environment (Schnappinger
et al., 2003; Gengenbacher and Kaufmann, 2012) and the oxygen
uptake rate was therefore (arbitrarily) set to 1% (0.01 mmol
gDW−1 h−1) of the rate used in previous predictions on Mtb
metabolism (Jamshidi and Palsson, 2007).

The predictions of essential genes using sMtb and the
five different (condition-specific) biomass reactions are not
overwhelmingly accurate. In general, the specificity (the correct
prediction of non-essential genes) is quite good, but the
sensitivity (the correct prediction of essential genes) is very
poor. This is rather remarkable, as such a long list of biomass
precursors (Supplementary Table 2) is likely to result in a high
number of genes predicted to be essential, as there is ample
opportunity to disrupt synthesis routes toward many precursors
by an in silico knockout. Possibly, there are even more metabolic
precursors that should be taken into account when creating
biomass reactions for Mtb.

Although the biomass reaction representing non-replicating
cells, NRC, has the highest accuracy, its sensitivity is the poorest
of all biomass reactions, due to its low number of biomass
precursors. If one is interested in developing novel therapeutic
intervention strategies, the essential genes are arguably the most
interesting. In general, the amount of genes that are predicted to
be essential is lower than the measured number. This could imply
that the list of 108 biomass precursors is still too short. Given
that there are 2,500 different lipids identified in Mtb up till now
(Sartain et al., 2011), the total number of different metabolites
is probably a lot higher. Even if metabolic intermediates are
omitted, it is still likely that the total number of biomass
precursors is well above 108.

The Mtb genome roughly contains 4,000 genes, of which a
quarter has an unknown function (Qin et al., 2013). Model sMtb
currently contains 930 genes, which is approximately one-third
of the genome having a known function. Extrapolating these
figures would mean that there are still an estimated 300 unknown
genes in the Mtb genome that are involved in metabolism.
So, an estimated quarter of model sMtb is missing. This will
undoubtedly affect predictions made with sMtb.

Another, more fundamental problem lies in the possibility that
Mtb and the host continuously interact and a steady state is not
easily obtained (Garton and Hare, 2013). As the foundation of
constraint-based metabolic models is the stoichiometric matrix,
wherein a steady state (i.e., synthesis and degradation rates for
each metabolite are equal) is assumed for all metabolites, a non-
steady state situation might negatively impact the predictions
made using sMtb.

The poor prediction of genes essential to survival of Mtb
within the host is in stark contrast to in vitro predictions
previously made using sMtb where accuracies of 80% were
reached (Rienksma et al., 2014). Remarkably, the biomass
reactions seem to have limited influence on gene essentiality
predictions within the host. As the general list of biomass
precursors of model sMtb is primarily derived from in vitro data
of Mtb, or close relatives of Mtb, the list of biomass precursors
could be overfitted to in vitro growth conditions.

In addition, the condition-specific biomass reactions
could be incorrectly inferred. As the biomass precursors
are maximized individually one at a time, information
regarding their interdependency is not taken into account.
One could for example envision maximizing the sum of the
flux toward all biomass precursors at the same time, while
minimizing the difference between the overall flux profile and
the gene expression profile, instead of the approach taken here.
Nevertheless, such a strategy is at risk of ignoring precursors
and corresponding synthesis pathways that are relatively lowly
expressed, and ending up only a few precursors in the biomass
reaction.

Another explanation is that important constraints aremissing.
For example, the influence of metal cofactors such as iron and
zinc on the metabolic state is ignored, while these cofactors are
crucial for intracellular survival, andmanymetabolic enzymes do
not function without these cofactors (Zondervan et al., 2018).

Taken together, the lack of predictive power of sMtb regarding
in-host essential gene predictions could be caused by several
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problems, one of the most fundamental problems being the
absence of a steady state situation. The gene essentiality
measurements from Mendum and colleagues show a similar
picture, as only 78–80% of the metabolic genes essential for
survival are shared between 3 days and 7 days after infection
(Mendum et al., 2015). This figure is not strikingly low, but it
does point in the direction of a lack of a steady state situation.
The effect that a non-steady state situation would have on the
predictions of essential genes and the metabolic state is difficult
to quantify.

Although Mtb is very similar to M. bovis BCG, there are
obvious differences. First of all, Mtb is highly pathogenic to
humans, while M. bovis BCG is a relatively safe organism.
From a metabolic point of view, both organisms are highly
similar, although there are some notable differences (Lofthouse
et al., 2013). Moreover, it is not unimaginable that metabolic
differences during infection are highlighted as M. bovis BCG is
eventually eradicated within human immune cells, while Mtb is
able to withstand and thrive within such cells. Another aspect is
that the gene essentiality measurements are made 3 days and 7
days after infection while the dual RNA-seq data is derived from
an experiment 1 day after infection.

We developed a method of modeling the metabolism of
M. tuberculosis during infection of the host’s immune cells.
The method has the advantage that, unlike previously applied
host-pathogen modeling approaches (Bordbar et al., 2010), it
is virtually free from any artificially placed constraints on
metabolite uptake and secretion rates. In addition, our method
does not require a pre-composed biomass reaction. The only
requirements are: knowledge of nutrient availability, a genome-
scale dataset of transcript abundances (such as an RNA-
sequencing dataset), a detailed list of biomass precursors, and a
genome-scale constraint-basedmodel of metabolism. A relatively
small amount of data is required for this method, and it is
therefore suited to explore metabolic states of microorganisms
in difficult to access environments where an efficient usage of
resources is likely to occur.

Our method allows accurate prediction of nutrients from
the host, apart from cholesterol uptake, which was not
predicted to take place, likely due to lack of knowledge

on the complete degradation pathway. A doubled amino

acid synthesis requirement was predicted using our method,
suggesting an increased synthesis rate of proteins relative
to other metabolic precursors during host infection. Lipid
synthesis was predicted to decrease during infection, confirming
the predominant lipid diet encountered by Mtb within the
host.

Flux predictions obtained with the condition specific biomass
reactions, without any further constraints show poor correlation
with the transcriptomics data (lower than 0.1). This value is
similar to the values obtained using the other four biomass
reactions. Poor correlation between transcriptomics data and
proteomics measurements has been shown in a wide number of
publications (Maier et al., 2009; Payne, 2015; Edfors et al., 2016).
In addition, accurate predictions would also require inclusion
of enzyme turnover data (Sánchez Benjamín et al., 2017). This
further confirms that fitting themodel to the gene expression data
might lead to an over-constrained model.

It is important to notice that during the onset of infection
not only the bacterium undergoes metabolic changes, but also
the host environment it thrives in most likely undergoes changes
as the host responds to infection. This interplay between the
host and the pathogen has not been taken into account as
here only the bacterium is modeled. Another reason for the
inaccurate gene essentiality predictions could be that many
enzymes play additional roles in the synthesis of precursors
that are not required during in vitro growth or that the list of
precursors is not comprehensive. The latter explanation would be
plausible, as the predictions on nutrient uptake are quite accurate,
suggesting that nutrient uptake is driven by energy efficiency
constraints.
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