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AMBAR, an Encouraging Alzheimer’s
Trial That Raises Questions

David A. Loeffler*

Beaumont Research Institute, Department of Neurology, Beaumont Health, Royal Oak, MI, United States

Grifols’ recent Alzheimer Management by Albumin Replacement (“AMBAR”) study

investigated the effects of plasmapheresis with albumin replacement, plus intravenous

immunoglobulin (IVIG) in some subjects, in patients with mild-to-moderate Alzheimer’s

disease (AD). AMBAR was a phase IIb trial in the United States and a phase III trial in

Europe. There were three treatment groups (plasmapheresis with albumin replacement;

plasmapheresis with low dose albumin and IVIG; plasmapheresis with high dose albumin

and IVIG) and sham-treated controls. Disease progression in pooled treated patients

was 66% less than control subjects based on ADAS-Cog scores (p = 0.06) and 52%

less based on ADCS-ADL scores (p = 0.03). Moderate AD patients had 61% less

progression, based on both ADAS-Cog and ADCS-ADL scores, than their sham-treated

counterparts (p-values 0.05 and 0.002), and their CDR-Sb scores declined 53% less

than their sham-treated counterparts. However, ADAS-Cog and ADCS-ADL scores were

not significantly different between actively-treated and sham-treated mild AD patients,

although CDR-Sb scores improved vs. baseline for treated mild AD patients. Patients

administered both IVIG and albumin had less reduction in brain glucose metabolism than

sham-treated patients. Questions raised by these findings include: what mechanism(s)

contributed to slowing of disease progression? Is this approach as effective in mild

AD as in moderate AD? Must IVIG be included in the protocol? Does age, sex, or

ApoE genotype influence treatment response? Does the protocol increase the risk for

amyloid-related imaging abnormalities? How long does disease progression remain

slowed post-treatment? A further study should allow this approach to be optimized.

Keywords: Abeta, albumin, Alzheimer’s, AMBAR, clinical trial, intravenous immunoglobulin, peripheral sink

hypothesis, plasma exchange

INTRODUCTION

The amyloid hypothesis (1) led to efforts to treat Alzheimer’s disease (AD) by reducing brain
Aβ, including vaccination (2), anti-Aβ antibodies (3–7), Aβ aggregation inhibitors (8), β-secretase
inhibitors (9), and γ-secretase modulators (10), and inhibitors (11). The failure of these approaches
to slow AD’s progression [with the possible exception of anti-Aβ antibody Aducanumab, whose
recently released findings are controversial (12)] resulted in increased targeting of tau, the main
component of neurofibrillary tangles (NFTs), by vaccination (13), anti-tau antibodies (14), tau
aggregation inhibitors (15), and kinase inhibitors (16). Other mechanisms which may contribute
to AD’s neuropathology including inflammation (17), oxidative stress (18), and excitotoxicity
(19) have also been targeted, with negative results except for the N-methyl-d-aspartate receptor
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antagonist Memantine HCl. Memantine and cholinesterase
inhibitors are the only treatments currently approved by the
United States Food and Drug Administration for AD; they
provide symptomatic benefits to some patients but are not disease
modifiers (20).

This Perspective will discuss the results, significance, possible
mechanisms, and questions raised by the recently-completed
Alzheimer Management by Albumin Replacement (“AMBAR”)
study (ClinicalTrials.gov ID: NCT01561053) (21) performed by
Grifols (Instituto Grifols, S.A.). AMBARwas registered as a phase
IIb study in the United States and a phase III study in Europe.
The protocol involved plasma removal and its replacement
with therapeutic-grade human albumin, plus supplementation
with intravenous immunoglobulin (IVIG) in some patients. The
rationale for the study was that lowering plasma Aβ levels by this
approach might reduce brain levels of soluble Aβ, as predicted
by the “peripheral sink hypothesis” (22, 23), possibly slowing
AD’s progression.

BACKGROUND

In vitro studies found that albumin inhibited Aβ aggregation
(24) and neurotoxicity (25). However, plasma albumin from
AD patients is more glycated and nitrotyrosinated than plasma
from healthy subjects, reducing its ability to inhibit Aβ

aggregation (26). Grifols theorized that replacing AD patients’
albumin with therapeutic-grade albumin should overcome
this problem. Further, therapeutic-grade albumin should more
effectively bind plasma Aβ and sequester it than plasma
albumin from AD patients. Albumin may protect neurons by
additional mechanisms, including anti-oxidant (27, 28) and anti-
inflammatory (29, 30) activities. Because of albumin’s anti-Aβ

effects, Grifols decided to explore the potential of its human
plasma albumin Albutein R© (31) for treating AD.

The peripheral sink hypothesis is based on the finding that
administration of a monoclonal anti-Aβ antibody to a transgenic
mouse AD model lowered brain Aβ, despite apparent failure
of the antibody to enter the brain (22, 23). This suggested
that lowering plasma albumin might result in reduction of
brain Aβ by increasing movement of soluble Aβ from brain
into peripheral blood. The hypothesis assumes that soluble Aβ

is in equilibrium between brain and peripheral blood. Grifols
theorized that because ∼90% of plasma Aβ is bound to albumin
(32), replacing AD patients’ plasma with Albutein, which does
not contain detectable Aβ (33), should decrease plasma Aβ (34).
The hypothesis predicted that this would result in increased
movement of soluble Aβ out of the brain. Some studies have
supported the peripheral sink hypothesis (35–37) but others have
not (38–40).

PRELIMINARY STUDIES

In 2005 Grifols performed a pilot study (41) with seven mild-
to-moderate AD patients who underwent plasma removal with
Albutein replacement twice weekly for 3 weeks with a 6-
months follow-up period. No clear patterns were detected
for changes in plasma Aβ40 or Aβ42. CSF Aβ40 decreased

slightly during plasma exchange with a greater decrease in CSF
Aβ42, and both Aβ concentrations returned to near baseline
6 months post-treatment. Mini-Mental State Examination
(MMSE) and Alzheimer’s Disease Assessment Scale–Cognitive
subscale (ADAS-Cog) scores changed little, while imaging
suggested increased hippocampal volume and increased frontal
and temporal cortex perfusion. In a 1-year extension of the
study, a more sensitive method for measuring plasma Aβ40
and Aβ42 revealed a “sawtooth” pattern: Aβ decreased after
each plasma exchange, and returned to baseline before the next
procedure. CSF Aβ40 and Aβ42 remained relatively stable during
the extension. Grifols concluded from these findings that the
approach was feasible to consider for treatment of AD patients.

In 2007 Grifols performed a phase II trial (ClinicalTrials.gov
Identifier: NCT00742417) (42, 43) with this approach, involving
19 actively-treated and 20 sham-treated mild-to-moderate AD
patients. The treatment group underwent plasma removal with
Albutein replacement twice weekly for 3 weeks, then weekly
for 6 weeks followed by every 2 weeks for 12 weeks. Control
patients underwent simulated procedures so neither patients
nor study raters knew patient group assignments. Parameters
measured were similar to those in the pilot study, following
patients for 6 months. The adjusted (least-squares) mean CSF
Aβ42 concentration was “marginally higher” (p = 0.07), in the
treatment group compared to the control group, after the last
plasma exchange compared to the mean baseline value, while
the change from baseline in CSF Aβ40 was not significantly
different between groups. A sawtooth pattern for plasma Aβ40
and Aβ42 was again found in the treatment group. MMSE and
ADAS-Cog scores tended to be higher in the treatment group
than in the control group at the end of treatment and follow-
up periods but between-group differences were not significant
(ADAS-Cog p = 0.09 at week 21, MMSE p = 0.08 at week 44).
Higher scores in the treatment group were found for some tests of
language and attention, but worse scores for theNeuropsychiatric
Inventory (NPI) (44). The frequency of adverse events was
similar between groups.

AMBAR

AMBAR was a multicenter, randomized, double-blind, placebo-
controlled study in which patients were treated for 14 months.
The study included 496 patients with mild to moderate AD
(MMSE scores 18–26), divided among three groups of actively-
treated subjects and a sham-treated control group. All actively-
treated patients initially underwent removal of 2,500–3,000mL of
plasma (“high-volume” plasma exchange), replaced by the same
volume of Albutein 5%, weekly for 6 weeks through a peripheral
vein or a central venous catheter placed in the subclavian
or jugular vein. This was followed by 12 months of monthly
“low-volume” plasma exchange in which 650–880mL of plasma
was removed and replaced with 100mL of Albutein 20% (20 g
Albutein), 100mL of Albutein 20% plus 200mL of Grifols’ IVIG
Flebogamma 5% DIF (10 g Flebogamma) (“low albumin/low
IVIG” group), or 200mL of Albutein 20% (40 g Albutein)
plus 400mL of Flebogamma 5% DIF (20 g Flebogamma)
(“high albumin/high IVIG” group). This second stage of
plasmapheresis was performed via a peripheral vein. ADAS-Cog
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and Alzheimer’s Disease Cooperative Study-Activities of Daily
Living (ADCS-ADL) scores were measured at baseline, after
initial plasmapheresis, at 7, 9, and 12 months of second stage
plasmapheresis, and at 14 months after finishing plasmapheresis.
Primary outcome measures were changes in ADAS-Cog and
ADCS-ADL scores between baseline and endpoint. Secondary
outcome measures were changes in cognitive, functional, and
behavioral tests, measures of disease progression, and alterations
in CSF p-tau, total tau, Aβ40, and Aβ42, plasma Aβ40 and Aβ42,
brain structure, and brain glucosemetabolism. Statistical analyses
of changes vs. sham-treated controls in ADAS-Cog and ADCS-
ADL scores were performed on data from pooled treatment
subjects and, in pre-specified analyses, from patients with mild
AD (MMSE 22–26) and moderate AD (MMSE 18–21).

AMBAR’s topline results (45) indicated that treatment groups
averaged 50 to 75% less worsening of ADAS-Cog scores and 42 to
70% less worsening of ADCS-ADL scores than control subjects.
Pooled data from treated subjects showed that these patients
declined, on average, 66% less than control subjects based on
ADAS-Cog scores (p = 0.06) and 52% less based on ADCS-ADL
scores (p = 0.03). Analyses of changes from baseline to endpoint
in patients withmoderate AD found 61% less disease progression,
based on both ADAS-Cog and ADCS-ADL scores, than sham-
treated moderate AD patients (p= 0.05 for ADAS-Cog, 0.002 for
ADCS-ADL). Although some slowing of disease progression was
also found in the treated patients with mild AD, a similar pattern
was unexpectedly seen for sham-treated mild AD patients so the
between-group differences in ADAS-Cog and ADCS-ADL scores
were not statistically significant.

At the 2019 International Congress on Alzheimer’s and
Parkinson’s (AD/PD) (46, 47) Grifols reported significant
differences at endpoint between patients in the high
albumin/high IVIG treatment arm and the control subjects
in tests of memory, language, processing speed, and quality
of life. Actively-treated moderate AD patients performed
significantly better than their sham-treated counterparts on
tests of memory and quality of life, while mild AD patients
performed significantly better than their control counterparts
on tests of language and processing speed. A low rate of
adverse events was reported, occurring mainly during high-
volume plasma exchange. CSF Aβ42 was stable in treated
patients while decreasing in sham-treated patients (results
for Aβ40 were not shown), while CSF phosphorylated and
total tau increased less in treated patients than in controls.
At the 2019 Alzheimer’s Association International Conference
(48) Grifols reported that Alzheimer’s Disease Cooperative
Study-Clinical Global Impression of Change (ADCS-CGIC)
scores had remained stable in all treatment groups, and these
patients had declined, on average, 71% less than controls
on the Clinical Dementia Rating-Sum of Boxes (CDR-Sb)
scale (49, 50). CDR-Sb scores for mild AD patients improved
while moderate AD patients’ scores declined 53% less than
their sham-treated counterparts (51). Final results presented
at the 2019 Clinical Trials on Alzheimer’s Disease (CTAD)
Conference indicated that patients receiving both Flebogamma
and Albutein had less reduction in brain glucose metabolism
than controls.

DISCUSSION

The results from AMBAR are encouraging, in contrast to the
other approaches that have been tried to slow AD’s progression.
A review of AD trials for the period between 2002 and 2012
concluded that the overall success rate was 0.4% (52). No new
drugs have been approved for treatment of AD since 2003,
although Namzaric, which combines Memantine and Donepezil,
received FDA approval in 2014.

Perhaps the most important question raised by AMBAR’s
findings is: what mechanism was responsible for slowing disease
progression? Identifying this mechanism would provide support
for further efforts to slow AD’s progression by means of the same
mechanism. Among the mechanisms that could have contributed
to AMBAR’s slowing of disease progression are reductions
in neurotoxic Aβ species, tau pathology, neuroinflammation,
oxidative stress, microcirculatory deficits, and neurotoxic auto-
antibodies. These will be discussed below.

Reduced Aβ
Although both Aβ40 and Aβ42 were measured in CSF, results
were reported only for Aβ42 (47, 49), whose concentrations were
stable in treated patients while decreasing in control patients.
Whether brain levels of Aβ were lowered is unclear. CSF Aβ42
is reduced in AD (53), possibly due to sequestration of Aβ42
as insoluble fibrils (54). Lowering soluble Aβ42 in brain could
either increase or decrease CSF Aβ42, depending on its rates of
clearance from brain to CSF and from CSF to peripheral blood. A
future study should measure CSF levels of Aβ soluble oligomers,
which may be Aβ’s most neurotoxic conformation (55). An assay
for their measurement in CSF was recently reported (56). To
determine if plaque counts were lowered, PET Aβ imaging could
be performed (57, 58). Post-mortem evaluation of plaques and
NFT should also be considered on subjects who pass away during
a future study with the AMBAR protocol. Plaque densities are
less strongly correlated than NFTs with cognitive loss in AD
patients (59, 60), so even if plaque counts decreased relative
to sham-treated subjects, this would be unlikely to be the sole
mechanism responsible for slowing of disease progression. In
the AN1792 Aβ vaccination trial, for example, despite marked
reductions in plaque counts found in subsequent post-mortem
studies (61, 62), clinical progression was not slowed (2). Finally,
it would be worthwhile to determine the incidence of amyloid-
related imaging abnormalities (ARIA). ARIA refers to imaging
abnormalities (often not associated with symptoms) associated
with increased movement of Aβ from brain after treatment with
anti-Aβ antibodies (5, 63, 64).

Reduced Tau Pathology
The amyloid hypothesis (1) suggests that tau pathology in
AD develops downstream from Aβ deposition; therefore if the
AMBAR protocol reduced brain Aβ levels, this could have
secondarily decreased tau pathology. Total and phosphorylated
tau (p-tau) levels in CSF are increased in AD (65). CSF levels
of total and p-tau increased less in AMBAR’s plasma exchange-
treated patients than in sham-treated patients (47), suggesting
that tau pathology may have been reduced. A future study should

Frontiers in Neurology | www.frontiersin.org 3 May 2020 | Volume 11 | Article 459

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Loeffler AMBAR: Results, Significance, and Questions

examine this issue by PET imaging (66). CSF concentrations of
soluble tau oligomers could also be measured (67).

Reduced Inflammation
Chronic systemic inflammation has been associated with
increased risk for development (68) and progression (69)
of AD. Plasmapheresis removes inflammatory cytokines
from peripheral blood (70), so the AMBAR protocol could
have reduced systemic inflammation via this mechanism,
perhaps decreasing brain inflammation as a consequence.
Inflammatory cytokines and chemokines, as well as complement
proteins and activation fragments, are readily measured
in CSF (71–75), so it would be useful to measure these.
Activated microglia (76) and astrocytosis (77) can be
imaged in the brain via PET, so these procedures should also
be considered.

Reduced Oxidative Stress
Oxidative stress in present in AD and may contribute to its
pathogenesis (78). The AMBAR protocol could have directly
reduced brain oxidative stress due to the anti-oxidant actions of
albumin (79, 80) if CSF levels of albumin were sufficient to exert
these effects. Conflicting reports have been published regarding
the effects of plasmapheresis on oxidative stress (81–84). This
could be examined in a future study by measuring CSF oxidative
stress biomarkers such as 8-hydroxy-2’-deoxyguanosine (85), 8-
isoprostane (86), protein sulfhydryls (87), and total antioxidant
capacity (88).

Reduction of Microcirculatory Deficits
Plasmapheresis with removal of low density lipoproteins is
used to treat conditions such as familial hypercholesterolemia
and peripheral arterial disease. This improves microcirculation
and lowers systemic oxidative stress (81). AMBAR’s inclusion
criteria included diagnosis of AD based on NINCDS-ADRDA
criteria, and imaging showing the absence of cerebrovascular
disease [which includes stroke, transient ischemic attack (TIA),
subarachnoid hemorrhage, and vascular dementia (89)], so
AMBAR’s participants likely did not have vascular dementia.
However, AMBAR’s exclusion criteria did not include lipid
profile abnormalities, so improved microcirculation might have
contributed to slowing of disease progression in some patients.
Correlations between plasma lipid profile components and AD
progression could be examined in Grifols’ next study.

Removal of Autoimmune Antibodies
Plasmapheresis is used to treat some autoimmune disorders
because it removes pathogenic auto-antibodies as well as
complement proteins and cytokines from plasma (90, 91).
Some investigators have suggested that AD may be an
autoimmune disorder (92, 93) although this view is not
generally accepted. If autoantibodies do play a role in AD
pathogenesis, then their removal may have contributed to
AMBAR’s slowing of AD progression, although this scenario
is considered to be unlikely. In the next study with the
AMBAR protocol, the presence and titers of CSF anti-
hippocampal antibodies (94) could be compared in pre- and

post-treatment CSF samples from both actively-treated and
sham-treated subjects.

In addition to these mechanisms, plasma exchange removes
many other proteins (42, 95) so the possibility is not ruled out
that slowing of AD’s progression could have been due to lowering
of brain levels of unidentified proteins (96).

Grifols reported a low rate of adverse events in AMBAR, many
of which occurred during the initial stage of plasmapheresis,
which, for some patients, involved placement and 6-weeks
maintenance of a central venous catheter. In the phase II trial,
anxiety relating to these catheters was suggested to contribute
to worse NPI scores in treated patients than in sham-treated
patients (42). The decision whether to perform the initial plasma
exchange through a peripheral or central vein was “based on
the individual characteristics of the patient” (97). The saw-tooth
pattern of plasma Aβ40 and Aβ42 was found for both the “high-
volume” and “low-volume” stages of plasma exchange, so a future
study should clarify if the high-volume plasma exchange (and
central venous catheter) is actually necessary.

It is unclear if AMBAR’s protocol is as effective in slowing
disease progression in mild AD as in moderate AD; this
needs clarification. Changes from baseline to endpoint in
ADAS-Cog and ADCS-ADL scores indicated significant slowing
of progression in the actively-treated moderate AD patients
compared to sham-treated moderate AD patients, but no
significant differences were found in these scores between
actively-treated and sham-treated mild AD patients; however,
CDR-Sb scores were improved for actively-treated vs. sham-
treated mild AD patients. Although positive effects were reported
for mild AD patients in tests of language and processing speed,
these effects were notably absent for tests of memory.

Two of AMBAR’s treatment groups included Flebogamma.
Disappointing results were obtained with IVIG products in
phase II and phase III AD trials (98, 99) so IVIG is no
longer being considered for AD monotherapy. AMBAR’s most
positive results with regard to slowing of disease progression
were in the high albumin/high IVIG treatment group (46), and
neuroimaging similarly found that less reduction in brain glucose
metabolism vs. sham-treated patients was found “particularly
in patients receiving both albumin and immunoglobulin” (49).
IVIG supplies are limited (100) so the supply of Flebogamma
could be insufficient to meet the demand for it if the
AMBAR protocol receives regulatory approval and the protocol
includes Flebogamma. A further concern with IVIG is that it
increases serum viscosity (101), predisposing to thromboemboli,
particularly in individuals who are immobile or have vascular
disease (102).

Shortages of human albumin have also been reported (103),
raising the question of whether recombinant human albumin
(rHA) could be substituted for human albumin in AMBAR’s
protocol. rHA has been reported to have a safety, tolerability, and
pharmacokinetic/pharmacodynamic profile similar to human
albumin (104).

Additional questions about the treatment approach used in
AMBAR which need to be answered include the influence of
patient age, sex, and ApoE status on slowing of AD progression,
the duration of slowing of cognitive and functional decline once
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treatment is stopped, and whether the protocol is feasible in
the many AD patients who are medically frail, particularly if
maintenance of a central venous catheter is required.

CONCLUSIONS

AMBAR’s findings are encouraging, despite the questions they
raise. A further study offers Grifols the opportunity to address
these issues, and to optimize the protocol.
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