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Abstract: Purpose: Cardiovascular disease (CVD) is a major worldwide health burden. As the risk
factors of CVD, hypertension, and hyperlipidemia are most mentioned. Early stage hypertension in
the population with dyslipidemia is an important public health hazard. This study was the application
of data-driven machine learning (ML), demonstrating complex relationships between risk factors
and outcomes and promising predictive performance with vast amounts of medical data, aimed to
investigate the association between dyslipidemia and the incidence of early stage hypertension in a
large cohort with normal blood pressure at baseline. Methods: This study analyzed annual health
screening data for 71,108 people from 2005 to 2017, including data for 27 risk-related indicators,
sourced from the MJ Group, a major health screening center in Taiwan. We used five machine
learning (ML) methods—stochastic gradient boosting (SGB), multivariate adaptive regression splines
(MARS), least absolute shrinkage and selection operator regression (Lasso), ridge regression (Ridge),
and gradient boosting with categorical features support (CatBoost)—to develop a multi-stage ML
algorithm-based prediction scheme and then evaluate important risk factors at the early stage of
hypertension, especially for groups with high-density lipoprotein cholesterol (HDL-C) and low-
density lipoprotein cholesterol (LDL-C) levels within or out of the reference range. Results: Age, body
mass index, waist circumference, waist-to-hip ratio, fasting plasma glucose, and C-reactive protein
(CRP) were associated with hypertension. The hemoglobin level was also a positive contributor
to blood pressure elevation and it appeared among the top three important risk factors in all LDL-
C/HDL-C groups; therefore, these variables may be important in affecting blood pressure in the early
stage of hypertension. A residual contribution to blood pressure elevation was found in groups with
increased LDL-C. This suggests that LDL-C levels are associated with CPR levels, and that the LDL-C
level may be an important factor for predicting the development of hypertension. Conclusion: The
five prediction models provided similar classifications of risk factors. The results of this study show
that an increase in LDL-C is more important than the start of a drop in HDL-C in health screening of
sub-healthy adults. The findings of this study should be of value to health awareness raising about
hypertension and further discussion and follow-up research.

Keywords: health data-driven; high-density lipoprotein cholesterol (HDL-C); low-density lipoprotein
cholesterol (LDL-C); hypertension; machine learning
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1. Introduction

Cardiovascular disease (CVD) is a major worldwide health burden today. Several large
cohort studies, including the Framingham Heart Study, demonstrate that hypertension
and dyslipidemia (high LDL cholesterol (LDL-C) and low HDL cholesterol (HDL-C)) are
important risk factors of future CVD [1]. A systemic review and meta-analysis suggest
that the lowering of blood pressure to the normotensive range should be considered for
the prevention of CVD [2]. Hypertension and dyslipidemia have an additive effect on the
incidence of coronary heart disease in subjects with both conditions compared to those
with only one or the other [3]. In modern management of coronary heart disease and
cerebrovascular disease, the lowering of both blood pressure and LDL-C is important [4–6].

In recent years, the definition of normotensive has become more stringent (less than
130/85 mmHg) [7], because raised blood pressure is the leading cause of death glob-
ally [8]. Several studies have found an association between CVD and early stage hyperten-
sion [9–11]. In addition, there is a positive association between abnormal serum cholesterol
levels and hypertension [12,13]. It is noteworthy that early prediction of hypertension is
an important issue for individuals with dyslipidemia. However, the relationship between
early stage hypertension (or prehypertension) and dyslipidemia remains unclear [14]. The
medication of blood statin effect pressure-lowering has been confirmed by a meta-analysis
published paper [15], which showed a small reduction (−2.62 mmHg) in systolic blood
pressure (95% CI: −3.41 to −1.84; p < 0.001). In addition, Borghi et al. [16] also found
that better control of LDL-C is associated with lower antihypertensive treatment in a large
cohort study. These studies suggested that LDL-C is associated with hypertension and
early stage hypertension. The association between HDL-C and hypertension is poorly
understood. The Framingham Heart Study considered HDL-C to have a cardio-protective
effect. The relationship between HDL-C and blood pressure is less clear. A positive linear
relationship has been reported [17], but some reports have shown a slightly U-shaped
relationship, or an inverted J-shaped relationship [18,19].

As the risk factors of CVD, both hypertension and dyslipidemia are mostly mentioned.
Blood pressure is an important leading indicator of health hazards, especially for CVD or
other related chronic diseases. Predicting the presence of early stage hypertension could be
provided the possibility to prevent future CVD or chronic diseases. As mentioned above,
the result of most studies demonstrated the correlation between BP and either LDL-C
or HDL-C. It means that there is a potential relationship between BP and dyslipidemia.
Dyslipidemia and high LDL-C and/or low HDL-C are associated with atherosclerosis and
could lead to a change in blood pressure. This study aimed to investigate the association
between dyslipidemia and the incidence of early stage hypertension in a large cohort with
normal blood pressure at baseline.

The application of data-driven machine learning (ML) algorithms to the analysis of
healthcare data and/or medical records is not uncommon, and there is even an increasing
trend in publications introducing artificial intelligence technology [20–23]. The advantages
of ML algorithms include the effective investigation of complex relationships between risk
factors and outcomes, and promising predictive performance with vast amounts of medical
data [22–26]. Our study used five ML techniques—stochastic gradient boosting (SGB),
multivariate adaptive regression splines (MARS), least absolute shrinkage and selection
operator logistic regression (Lasso), ridge logistic regression (Ridge), and gradient boosting
with categorical features support (CatBoost)—to develop a multi-stage ML algorithm-based
prediction scheme.

SGB is a model creates multiple additive regression trees with the decision tree algo-
rithm by combining bagging and boosting techniques [27]. MARS is a nonlinear spline
regression and a non-parametric form of the regression analysis algorithm [28]. Lasso
and Ridge are both improved conventional logistic regression models using shrinkage
regularization techniques [29]. CatBoost is an algorithm of integrating gradient boosting
and multiple categorical variables based on gradient boosting decision tree framework. [30].
These five ML methods have been widely used in various healthcare and/or medical
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informatics applications [31–40] as they could generate more effective predictive models
than classical logistic regression model. They have also successfully been applied the field
of predicting hypertension [41–44]. For example, Chang et al. [41] constructed a multiple
predictive model for hypertension and hyperlipidemia using MARS. Lee et al. [38] used
CatBoost method to predict intracranial hypertension and arterial blood pressure in patients
with acute phase traumatic brain injury. Ang et al. [42] applied Lasso method to predict
non-contact hypertension by the facial characteristics data of subjects. Shan et al. [43]
utilized the ridge method to evaluate intracranial hypertension in traumatic brain injury
patient. Chai et al. [44] used SGB and CatBoost methods to develop adolescent hyperten-
sion prediction model based on anthropometric measurements data. This study aimed to
investigate the association between dyslipidemia and the incidence of early stage hyperten-
sion in a large cohort with normal blood pressure at baseline. The proposed scheme was
used for each of four subgroups grouped by HDL-C and LDL-C criteria to predict early
stage hypertension, evaluate relatively important risk factors, and then integrate feature
selection results.

2. Materials and Methods
2.1. Data

The subjects of this study were data tracked continuously for a long time in Taiwan. It
belongs to the annual health examination data of sub-health groups. The data is of excellent
quality and dozens of international journal papers have been published successively. In
this study, health screening was applied to the data of sub-healthy adults. The research
results are more helpful to provide government health units with policy directions for
preventive population health and health promotion. The data sets used were sourced
from the MJ Group (Taipei, Taiwan)—a major health screening center in Taiwan—for
the years 2005 to 2017. Many studies from Taiwan published in international journals
have used the MJ Health Checkup-Based Population Database (MJPD) and are collated in
http://www.mjhrf.org/main/page/resource/en/#resource07 (accessed on 18 April 2022).
These include studies on metabolic syndrome [45–47] and chronic kidney disease [24,48].
The MJPD database includes data collected from four MJ clinics that carry out periodic
health examinations of the center’s approximately 71,000 members. The database can be
accessed by academic researchers on request. All the data sets used in this study were
authorized by and received from the MJ Health Research Foundation (Approval No.:
MJHRF-2016005A). The data application procedures are described at http://www.mjhrf.
org/main/page/release1/en/#release01 (accessed on 18 April 2022). In the case of ethical
issues regarding the use of data in the database, the protocol of this study was evaluated
and deemed acceptable by the Research Ethics Review Committee of Far Eastern Memorial
Hospital (FEMH-IRB-107127-E, Protocol Version1, 15 February 2022) and the MJ Health
Research Foundation, and approved by ClinicalTrials.gov (ID: NCT05225454). The study
was conducted according to the guidelines of the Declaration of Helsinki and fulfilled the
Institutional Review Board ethics requirements by anonymizing all data before analysis.

Figure 1 shows the subject identification process of this study. The data consisted of
the health examination indices and questionnaire records of the 71,108 members in the
MJPD database from 2005 to 2017. Table 1 shows the 27 health examination indices and
questionnaire variables developed in this study. Because every member may have multiple
records, only the latest records were analyzed for subjects who had undergone multiple
health examinations. In all, 40,853 subjects were removed because they had missing data
for certain variables. After data processing, 30,255 eligible subjects remained. Table 2 shows
the demographics and statistical analysis of subjects’ characteristics.

http://www.mjhrf.org/main/page/resource/en/#resource07
http://www.mjhrf.org/main/page/release1/en/#release01
http://www.mjhrf.org/main/page/release1/en/#release01
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Figure 1. The enrollment flowchart for subject identification.

Table 1. Characteristics or laboratory indices of participants for predicting early stage hypertension.

Abbreviation Variable (Unit) Description/Reference Range (RR)

SEX Gender (sex) (1) Male; (2) Female

Age Age (y/o) Number; Years old (y/o)

MS Marital status (1) Single; (2) Married, remarried, cohabiting; (3) Divorced;
(4) Widowed

EL Education level (1) No formal education; (2) Elementary school; (3) Secondary school;
(4) High school; (5) College; (6) University; (7) Graduate school

FI Family income (NTD)
(1) Unwaged; (2) ≤200,000; (3) 200,001–400,000; (4) 400,001–800,000;
(5) 800,001–1,200,000; (6) 1,200,001–1,600,000; (7) 1,600,001–2,000,000;

(8) >2,000,000

BMI Body mass index (kg/m2) Number; Body weight/Body height2

BF Body fat (%) Number; Data collection from ©OMRON: HBF–702t

WC Waist circumference (cm) Number; WC measured with a tape measure by SOP.

HC Hip circumference (cm) Number; HC measured with a tape measure by SOP.

WHR Waist-to-hip ratio (%) Number; Waist circumference/Hip Circumference

Hb Hemoglobin (g/dl) Number; RR: Male: 13.5 < Hb < 17.5; Female: 12.0 < Hb < 16.0

FPG Fasting plasma glucose (mg/dL) Number; RR: 70 < FPG < 100

TG Triglycerides (mg/dL) Number; RR: TG ≤ 150

T-Cho Total cholesterol (mg/dL) Number; RR: 130 < T-Cho < 200

FT4 Free thyroxine 4 (ng/dL) Number; RR: 0.70 < FT4 < 1.48

TSH Thyroid-stimulating hormone (µIU/mL) Number; RR: 0.47 < TSH < 5.00

CRP C-reactive protein (mg/dL) Number, RR: CRP < 0.5

UP Urine protein Qualitative test;
(1) none (2) trace (+/−) (3) + (4) ++ (5) +++ (6) ++++

CS Current smoker (1) Never; (2) Passive smoking; (3) Quit; (4) Occasional; (5) Addicted

AD Alcohol drinker (1) Never; (2) Quit; (3) 1–2 times a week; (4) 3–4 times a week;
(5) 5–6 times a week; (6) Addicted
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Table 1. Cont.

Abbreviation Variable (Unit) Description/Reference Range (RR)

CBN Chews betel nut (Areca catechu) (1) Never; (2) Quit; (3) 1–3 times a week; (4) 4–5 times a week;
(5) Addicted

MB Mealtime behavior (0) Irregular; (1) Regular

ET Excise time (hours) Time spent exercising in the past two weeks. (1) <0.5; (2) 0.5–1; (3) 1–2;
(4) >2

ST Sleep time (hours) Average sleeping time at night. (1) <4; (2) 4–6; (3) 6–7; (4) 7–8; (5) 8–9;
(6) >9

HDL-C High-density lipoprotein cholesterol (mg/dL)
Number; RR: Male: HDL-C > 40; Female: HDL-C > 50.

IRR–HDL and/or ORR–HDL: the different RR values for males and
females were considered.

LDL-C Low-density lipoprotein cholesterol (mg/dL) Number, RR: LDL-C < 130

HTN
Hypertension in early stage #

SBP: Systolic blood pressure (mmHg)
DBP: Diastolic blood pressure (mmHg)

(0) Normal subjects: SBP < 120 and DBP < 80
(1) HTN subjects: SBP ≥ 120 and DBP ≥ 80

Note: The laboratory data in the subject databases were obtained using the same biochemical examination
apparatus (an automatic biochemical analyzer was provided by Hitachi Medical Device Co., Ltd., ©Hitachi-7600,
Tokyo, Japan). HDL: IRR and/or ORR, meaning data were within the reference range (IRR) and/or data were
out of the reference range (ORR). #: Hypertension in the early stage, the criterion refers to the guidelines of the
American Heart Association (AHA).

Table 2. The demographics statistical analysis of subjects’ characteristics.

Ordinal Variable (Unit) N (%) Ordinal Variable (Unit) N (%)

Gender
Male 15,628 (51.65%)

Chews betel nut
(Areca catechu)

Never 28,784 (95.14%)
Female 14,627 (48.35%) Quit 1053 (3.48%)

Marital status

Single 4906 (16.22%) 1–3 times a week 264 (0.87%)
Married, remarried,
cohabiting 22,948 (75.85%) 4–5 times a week 50 (0.17%)

Divorced 1144 (3.78%) Addicted 104 (0.34%)

Widowed 1257 (4.15%)
Mealtime behavior

Irregular 8384 (27.71%)

Education level

No formal education 438 (1.45%) Regular 21,871 (72.29%)

Elementary school 1958 (6.47%)

Excise time (hours)

<0.5 8361 (27.64%)
Secondary school 1251 (4.13%) 0.5–1 13,513 (44.66%)
High school 5655 (18.69%) 1–2 6409 (21.18%)
College 6394 (21.13%) >2 1972 (6.52%)

University 9362 (30.94%)

Sleep time (hours)

<4 471 (1.56%)
Graduate school 5197 (17.18%) 4–6 7375 (24.38%)

Family income (NTD)

Unwaged 1787 (5.91%) 6–7 14,787 (48.87%)
≤200,000 2878 (9.51%) 7–8 6499 (21.48%)
200,001–400,000 NA 8–9 NA
400,001–800,000 6950 (22.97%) >9 NA

800,001–1,200,000 8256 (27.29%) Interval Variable (Unit) Mean ± SD

1,200,001–1,600,000 4008 (13.25%) Age (y/o) 47.25 ± 12.41
1,600,001–2,000,000 2601 (8.60%) Body mass index (kg/m2) 23.66 ± 3.59
>2,000,000 3775 (12.48%) Body fat (%) 26.76 ± 6.86

Urine protein

none 29,364 (97.06%) Waist circumference (cm) 78.84 ± 10.17
trace (+/−) 521 (1.72%) Hip circumference (cm) 95.37 ± 6.31
+ 254 (0.84%) Waist-to-hip ratio (%) 0.83 ± 0.08
++ 87 (0.29%) Hemoglobin (g/dL) 14.14 ± 1.51
+++ 29 (0.10%) Fasting plasma glucose (mg/dL) 103.2 ± 19.35
++++ NA Triglycerides (mg/dL) 115.79 ± 89.01

Current smoker

Never 22,339 (73.84%) Total cholesterol (mg/dL) 196.99 ± 34.40
Passive smoking 1066 (3.52%) Free thyroxine 4 (ng/dL) 1.08 ± 0.15
Quit 2450 (8.10%) Thyroid-stimulating hormone (µIU/mL) 1.73 ± 1.77
Occasional 1062 (3.51%) C-reactive protein (mg/dL) 0.21 ± 0.39

Addicted 3338 (11.03%)
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Table 2. Cont.

Ordinal Variable (Unit) N (%) Ordinal Variable (Unit) N (%)

Alcohol drinker

Never 24,832 (82.08%) Control Variable (Unit) Mean ± SD

Quit 650 (2.15%) High-density lipoprotein cholesterol (mg/dL) 59.01 ± 14.92
1–2 times a week 3225 (10.66%) Low-density lipoprotein cholesterol (mg/dL) 118.77 ± 32.2

3–4 times a week 1045 (3.45%) Dependent Variable (Unit) N (%)

5–6 times a week NA Hypertension in
early stage (HTN)

SBP < 120 and DBP < 80 23,180 (76.62%)
Addicted 503 (1.66%) SBP ≥ 120 and DBP ≥ 80 7075 (23.38%)

Using the HDL-C and LDL-C reference ranges of the American Heart Association as
baseline values, the data were then categorized into four subgroups based on whether the
HDL-C and LDL-C values were within the reference range (IRR) or out of the reference
range (ORR). An irregular HDL value was identified based on the reference range for the
individual’s gender. The ORR values of HDL-C for men and women are more than 40 and
50 mg/dL, respectively. The ORR value of LDL is below 130 mg/dL. The four subgroups
analyzed were as follows: 17327 HDL–IRR and LDL–IRR subjects (G1); 9492 HDL–IRR and
LDL–ORR subjects (G2); 2525 HDL–ORR and LDL–IRR subjects (G3); and 911 HDL–ORR
and LDL–ORR subjects (G4).

Past studies have not investigated whether the HDL/LDL indicators are normal or not
divided into four groups, and have not applied the multivariate and different algorithms
of machine learning tools.

2.2. Proposed Multi-Stage Machine Learning Algorithm-Based Scheme

This study developed a multi-stage hypertension prediction framework based on
the machine learning algorithms for the four subgroups (G1, G2, G3, and G4) to identify,
integrate, and examine the key risk factors for hypertension prediction in each subgroup.
The overall procedure of the multi-stage machine learning algorithm-based scheme is
shown in Figure 2. In the prediction framework, the first step was to collect the subjects’
health examination data from the MJPD database for analysis. The second step was to
define the risk variables, identify subjects, and distinguish between the subjects in the
four subgroups. The third step was to use the five learning algorithms (SGB, MARS, Lasso,
Ridge, and CatBoost) to develop the prediction model for each subgroup in Table 1 using
24 risk factors as predictor variables (excluding HDL-C, LDL-C, and HTN) and the HTN as
the target variable.

SGB implementation process sequentially generates many decision trees that are weak
learners through multiple iterations so that each tree is trained based on the residual
of the previous iteration [27,49]. The iterative process continues until the guideline of
the maximum number of iterations or the convergence condition is reached. Finally, the
cumulative results of many trees are obtained by weighed summation, and then the final
robust model is determined.

MARS uses multiple piecewise linear segments (splines) with differing gradients. Its
concept considers each sample as a knot and divides it into several sections for successive
linear regression of the data within each section [28]. In the process for determining knots,
a forward algorithm is used to select all possible basic functions and their correspond-
ing knots, and a backward algorithm eliminates all basic functions to generate the best
combinations of existing knots.

The Lasso Ridge methods share the same basic concept. The Lasso principle integrates
the least absolute selection and shrinkage operator with L1 regularization, which can force
compression of the coefficients of covariates making a minor contribution to the model to
exactly zero to attain lower variance to reduce the problem of overfitting [50,51]. The main
difference is the use of the L2 regularization technique to shrink model coefficients in Ridge.
L2 regularization does not eliminate the coefficients or encourage sparse models. The
addition of appropriate L2 penalties to the model shrinks all the coefficients to a nonzero



Diagnostics 2022, 12, 1965 7 of 20

value or a value approaching zero, and then minimizes the sum of squared error, and
further controls the trade-off between bias and variance to reduce overfitting [52].

Figure 2. Proposed multi-stage machine learning algorithm-based scheme.

The CatBoost process is constructed using random multiple permutations generated
to obtain gradients and correlations with the category variable [30]. As decision trees are
weak learners, gradient boosting is successively fitted to each decision tree, where each
tree is developed with a smaller loss compared to the previous one. Finally, it integrates all
combinations and classification variables of the current tree into a sequence to generate the
final model. CatBoost uses the ordered method of gradient boosting, which overcomes the
prediction shift of the gradient estimation, and thus improves the algorithm’s accuracy and
generalization [30,53].

When constructing each model, the data set was randomly partitioned 80% for the
training data set and 20% for the testing data set. Model hyperparameter tuning and
validation were executed using a 10-fold cross-validation approach on all the samples
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available in the training data set. The model with the best hyperparameter was chosen as
the final model. The predictive performance of the models was assessed using the following
measures: sensitivity, specificity, and area under the receiver operating characteristic (ROC)
curve (AUC). However, the models were highly influenced by data class distribution of
these measures. Therefore, we also computed balanced accuracy (BA) and g-mean (GM)
because they can be excellent measures for evaluating skewed data in any data class [54–57].

The used five ML models were implemented using R software of version 3.6.2 and
RStudio software of version 1.1.453 (http://www.R-project.org; accessed on 25 May 2022;
https://www.rstudio.com/products/rstudio/; accessed on 25 May 2022). Each algo-
rithm was performed based on the related R packages. SGB, MARS, Lasso, Ridge, and
CatBoost were implemented in “gbm” R package version 2.1.8 [58], “earth” R package
version 5.3.1 [59], “glmnet” R package version 4.1-4 [60], and “catboost” R package ver-
sion 1.0.6 [61], respectively. For developing efficient and exact SGB, MARS, Lasso, Ridge,
and CatBoost models, the “caret” R package version 6.0-92 was used for all models to
estimate the best hyperparameters [62].

In the fifth step, after obtaining the effective prediction models for all four subgroups
as derived by SGB, MARS, Lasso, Ridge, and CatBoost, the relative importance of variables
generated by each algorithm for each risk factor was also obtained. The variable importance
of the most and least important risk factors was 100 and 0, respectively. Values can be
repeated, that is, two or more variables can have similar variable importance. Because
different machine learning algorithms have different model development principles and
features, the variable importance values generated by the five algorithms for a single
risk factor can differ. Within the same subgroup, a single robust and complete value for
variable importance can be generated for each risk factor in order to facilitate subsequent
comparison of variable rankings and identification of important risk factors. We generated
a single consolidated value of variable importance based on the mean value of variable
importance derived from the five machine learning models.

In the sixth step, we compared the important variables in G1 to G4 in order to examine
and discuss their similarities and differences. The seventh and final step was to propose
the conclusions of this study.

3. Results

Table 3 presents the model prediction performance of SGB, MARS, Lasso, Ridge,
and CatBoost in relation to the four subgroups (HDL–IRR & LDL–IRR [G1], HDL–IRR &
LDL–ORR [G2], HDL–ORR & LDL–IRR [G3], and HDL–ORR & LDL–ORR [G4]). Figure 3
presents the subgroup performance of the five models using ROC curves. To compare the
predictive performance of the five methods in each of four subgroups, the DeLong’s test
was used in this study to compare AUC values between the five ML models. DeLong’s
test is one of the useful methods to determine if there is a statistically significant difference
between the performances of the methods based on AUC values [63]. Table 4 shows
pairwise comparisons of AUC values of the five used ML methods in all subgroups using
DeLong’s test. It can be observed that the performance of any two ML methods is not
significant different as all p-values in the table are above 0.05. That is, the prediction
performances of the models were similar for each of the four subgroups

Table 3. Model performance in predicting hypertension for HDL and LDL IRR/ORR subgroups.

Subgroup, Total N = 30,255 Method Sensitivity Specificity AUC BA GM

IRR–HDL & IRR–LDL
(G1) n = 17,327 (57.27%)

SGB 0.625 0.770 0.762 0.698 0.694
MARS 0.659 0.732 0.762 0.695 0.694
Lasso 0.645 0.755 0.762 0.700 0.698
Ridge 0.668 0.725 0.761 0.696 0.696

CatBoost 0.605 0.791 0.764 0.698 0.692

http://www.R-project.org
https://www.rstudio.com/products/rstudio/
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Table 3. Cont.

Subgroup, Total N = 30,255 Method Sensitivity Specificity AUC BA GM

IRR–HDL & ORR–LDL
(G2) n = 9492 (31.37%)

SGB 0.595 0.715 0.705 0.655 0.652
MARS 0.567 0.735 0.707 0.651 0.645
Lasso 0.691 0.617 0.705 0.654 0.653
Ridge 0.713 0.594 0.705 0.653 0.650

CatBoost 0.682 0.613 0.703 0.648 0.647

ORR–HDL & IRR–LDL
(G3) n = 2525 (8.35%)

SGB 0.642 0.695 0.702 0.668 0.668
MARS 0.660 0.649 0.685 0.655 0.655
Lasso 0.572 0.733 0.688 0.653 0.648
Ridge 0.583 0.718 0.687 0.650 0.647

CatBoost 0.575 0.741 0.693 0.658 0.652

ORR–HDL & ORR–LDL
(G4) n = 911 (3.01%)

SGB 0.581 0.702 0.658 0.642 0.639
MARS 0.728 0.575 0.649 0.651 0.647
Lasso 0.706 0.596 0.653 0.651 0.649
Ridge 0.478 0.787 0.653 0.633 0.613

CatBoost 0.456 0.809 0.650 0.632 0.607

Note: SGB: stochastic gradient boosting; MARS: multivariate adaptive regression splines; Lasso: least absolute
shrinkage and selection operator; Ridge: ridge regression; CatBoost: gradient boosting with categorical features
support. IRR–HDL & IRR–LDL: subjects whose HDL and LDL data were within the reference range; IRR–HDL &
ORR–LDL: subjects whose HDL data were within the reference range and LDL data were out of the reference
range; ORR–HDL & IRR–LDL: subjects whose HDL data were out of the reference range and LDL data were
within the reference range; ORR–HDL & ORR–LDL: subjects whose HDL and LDL data were both out of the
reference range.

Figure 3. ROC curves of the five algorithms for each subgroup.
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Table 4. Pairwise comparisons of AUC values of the five used ML methods in all subgroup using
DeLong’s test.

Subgroup Methods SGB MARS Lasso Ridge

IRR–HDL & IRR–LDL
(G1)

SGB –
MARS 0.467 –
Lasso 0.286 0.716 –
Ridge 0.164 0.517 0.085 –

CatBoost 0.068 0.350 0.647 0.912

IRR–HDL & ORR–LDL
(G2)

SGB –
MARS 0.643 –
Lasso 0.874 0.778 –
Ridge 0.957 0.711 0.494 –

CatBoost 0.589 0.410 0.588 0.664

ORR–HDL & IRR–LDL
(G3)

SGB –
MARS 0.273 –
Lasso 0.319 0.857 –
Ridge 0.288 0.933 0.477 –

CatBoost 0.436 0.653 0.742 0.933

ORR–HDL & ORR–LDL
(G4)

SGB –
MARS 0.774 –
Lasso 0.899 0.904 –
Ridge 0.906 0.910 0.992 –

CatBoost 0.865 0.967 0.960 0.957
Note: The numbers in table are the corresponding p-values.

However, the results differed between subgroups. For G1, the AUC of each algorithm
was greater than 0.761 and was the highest among the subgroups. This shows that model
prediction accuracy was highest for G1. Specifically, the Ridge algorithm had the highest
sensitivity at 0.668, CatBoost had the highest specificity at 0.791 and the highest AUC
at 0.764, while Lasso generated the highest values for BA and GM at 0.700 and 0.698,
respectively. Lasso was comparatively the best prediction algorithm for G1.

For G2, the AUC of each algorithm was greater than 0.703 and was the second highest
among the subgroups. Specifically, the Ridge algorithm had the highest sensitivity at 0.713,
MARS had the highest specificity at 0.735 and the highest AUC at 0.707, SGB had a high
BA at 0.655, and Lasso had the highest GM at 0.653. MARS was comparatively the best
prediction algorithm for G2.

For G3, the AUC of each algorithm was greater than 0.68 and was the third highest
among the subgroups. Specifically, the MARS algorithm had the highest sensitivity at 0.660,
CatBoost the highest specificity at 0.741, and SGB the highest AUC, BA, and GM values at
0.702, 0.668, and 0.668, respectively. SGB was comparatively the best prediction algorithm
for G3.

For G4, the AUC of each algorithm was greater than 0.649 and was the lowest among
the subgroups. This shows that prediction of G4 was more difficult compared to the other
subgroups. Specifically, the MARS algorithm had the highest sensitivity and BA values
at 0728 and 0.651, respectively; CatBoost had the highest specificity at 0.809; SGB had the
highest AUC at 0.658; and Lasso had the highest BA and GM values at 0.651 and 0.649,
respectively. Lasso was comparatively the best prediction algorithm for G4.

In general, even though the overall prediction performance differed between sub-
groups, all five machine learning algorithms had promising and similar performance in
hypertension prediction.

The variable importance generated by the five machine learning algorithms provides
high reference value because of the similarity in prediction performance of the models.
However, the variable importance of the same risk factor differed between algorithms. To
account for the variable importance generated by every algorithm, we derived the mean
importance of each risk factor based on the five variable importance values.
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Figure 4 shows the individual variable importance values generated by the five al-
gorithms for each risk factor in the four subgroups. The 10 risk factors with the highest
variable importance are presented for each subgroup in decreasing order of mean impor-
tance. For example, in G1, SGB, MARS, Ridge, and Lasso chose waist-to-hip ratio (WHR) as
the most important variable, with an importance value of 100. On the other hand, CatBoost
determined WHR to be of moderate importance at 41.7, although it is the most important
risk factor in G1, with a mean importance of 88.3. Similarly, the second most important
risk factor in G1 was age, with a mean variable importance of 46.4. Among the five models,
age was chosen by CatBoost as the most important variable, with an importance value of
100, while SGB and MARS determined it to be of moderate importance at 67.7 and 64.5,
respectively. However, Ridge and Lasso determined age to be the least important variable,
with an importance of 0. In general, age remained the second most important variable in
G1. Using the same concept and method, we were able to derive the ranking of variable
importance for each of the four subgroups, as shown in Table 5.

Table 5 shows that the ranking of variable importance differs between subgroups.
For example, the three most important variables (in decreasing order of mean variable
importance) in G1 were WHR, age, and hemoglobin (Hb), whereas in G2 they were body
mass index (BMI), Hb, and triglycerides (TG), in G3 they were BMI, Hb, and WHR, and
in G4 they were Hb, C-reactive protein (CRP), and BMI. The similarities and differences
between the 10 most important variables in the four subgroups will be elaborated in the
Discussion section.

To distinguish between subgroups, the overall degree of similarity between the im-
portance rankings of all 24 prediction variables in the four subgroups was represented by
the correlation coefficients (R) of variable importance ranking, as shown in Table 6. The
closer the R value was to 1, the more similar were the variable importance rankings of two
subgroups and the more distant R was from 1, the less similar were the variable importance
rankings of the subgroups.

Table 5. Ranking of the top ten most important variables of the four subgroups.

Rank\Subgroup IRR–HDL &
IRR–LDL (G1)

IRR–HDL &
ORR–LDL(G2)

ORR–HDL &
IRR–LDL (G3)

ORR–HDL &
ORR–LDL (G4)

1 WHR BMI BMI Hb

2 Age Hb Hb CRP

3 Hb TG WHR BMI

4 BMI WHR Age WC

5 FPG Age FPG WHR

6 WC CRP TG Age

7 FT4 FPG WC HC

8 UP UP UP FPG

9 AD WC FI ET

10 CS CS TSH FT4
Note: AD: alcohol drinker; BMI: body mass index; CRP: C-reactive protein; CS: current smoker; ET: excise time; FI:
family income; FPG: fasting plasma glucose; FT4: free thyroxine 4; Hb: hemoglobin; HC: hip circumference; TG:
triglycerides; TSH: thyroid-stimulating hormone; UP: urine protein; WC: waist circumference; WHR: waist-to-hip
ratio. Note: G1: group whose LDL-C and HDL-C were all within the reference range; G2: group whose LDL-C
started to rise but HDL-C was still within the reference range; G3: group whose HDL-C started to decrease
but LDL-C was still within the reference range; G4: group whose HDL-C and LDL-C values were out of the
reference range.



Diagnostics 2022, 12, 1965 12 of 20

Figure 4. The variable importance generated by the generated by the five algorithms for each risk
factor in the four subgroups.
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Table 6. Correlation coefficients (R) of the variable importance ranking orders of the four groups.

Subgroup IRR–HDL &
IRR–LDL (G1)

IRR–HDL &
ORR–LDL(G2)

ORR–HDL &
IRR–LDL (G3)

ORR–HDL &
ORR–LDL (G4)

IRR–HDL & IRR–LDL (G1) 1
IRR–HDL & ORR–LDL (G2) 0.622 1
ORR–HDL & IRR–LDL (G3) 0.633 0.899 1
ORR–HDL & ORR–LDL (G4) 0.371 0.707 0.602 1

Note: G1: group whose LDL-C and HDL-C were all within the reference range; G2: group whose LDL-C started
to rise but HDL-C was still within the reference range; G3: group whose HDL-C started to decrease but LDL-C
was still within the reference range; G4: group whose HDL-C and LDL-C values were out of the reference range.

The results of the analysis showed that the group whose LDL-C began to rise but
whose HDL-C was still within the reference range (IRR–HDL & ORR–LDL [G2]) had a
risk factor ranking similar to that of the group whose HDL-C began to decrease but whose
LDL-C was still within the reference range (ORR–HDL & IRR–LDL [G3]), and the types
of data were also similar (R = 0.899). However, in the comparison of G2 and G3 with the
group whose HDL-C and LDL-C values were outside the reference range (ORR–HDL &
ORR–LDL [G4]) shows that the correlation coefficient for G2 vs. G4 (R = 0.707) was higher
than that for G3 vs. G4 (R = 0.602). This means that the group with abnormal LDL-C (G2)
was more similar to the group with abnormal HDL-C and LDL-C (G4) than the group with
abnormal HDL-C (G3); therefore, the beginning of abnormal LDL-C is a leading indicator
and the start of the rise in LDL-C has reference value for prediction of prehypertension.

4. Discussion

This study identified risk factors that have utility in the prediction of hypertension
in different dyslipidemia groups. We applied several predictive models using machine
learning algorithms, and the results obtained with the different models were similar.

Hypertension is a worldwide health burden, with high prevalence in those with
cardiovascular disease. According to the World Health Organization, about 17 million
people die from CVD worldwide, and about 9.4 million die from hypertension. The
prevalence of hypertension is about 29% worldwide and is expected to increase from 26%
in 2000 to 29.2% in 2025. Several studies have advanced an association between early stage
hypertension (or prehypertension) and CVD, but the relationship between blood pressure
and mortality is controversial [64–67]. The inconsistent results may be related to the age
of participants, associated metabolic risk factors (e.g., abnormal lipid profiles), and the
definition of early stage hypertension (prehypertension). As there is a positive association
between blood pressure and cardiovascular morbidity or mortality [2], the definition and
management of hypertension should be more aggressive [4–7]. It is well known that
positive associations between CVD and high blood pressure (BP) or dyslipidemia were
identified as early as half a century ago in the Framingham Heart Study. Dyslipidemia,
either an increase in LDL-C or a decrease in HDL-C, also plays an important role in the
development of CVD. Meanwhile, the biological interrelation between hypertension and
LDL-C [13,68] or HDL-C [12,69,70] has been documented. The structural and functional
change in LDL-C and HDL-C, inflammation, and oxidative stress may be associated with
vascular atherosclerotic processes, and lead to elevation of blood pressure [71].

The relationships between HDL-C concentration categories and blood pressure are
U- or J-shaped [69,70,72–74]. In the Kanagawa Investigation of Total Checkup Data from
the National Database-9 study, Nakajima et al. [70] found inverted J-shaped relationships
between HDL-C and odds ratios for hypertension (≥140/90 mmHg) using the logistic
regression analysis method, and both low and extremely high HDL-C concentrations are
associated with high blood pressure within both sexes. In the South-West Seoul (SWS) Study,
the elderly population with prehypertension combined with low HDL-C showed a twofold
higher risk of all-cause mortality (HR: 2.01; 95% CI: 1.11–3.64) [69]. These studies showed
that low HDL-C concentration is positively related to high blood pressure, but a linear
relationship under extremely high HDL-C is not found. In clinical trials with cholesteryl
ester transfer protein (CETP) inhibitors, a substantial increase in HDL-C concentration did
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not show a protective effect against CVD events. In addition, a slight increase in systolic
blood pressure of 1.2–5.4 mmHg has been shown after intervention [72,73]. The tendency
to develop hypertension is correlated with HDL-C subfraction (HDL-3 concentration) and
total HDL-C concentration [74]. As mentioned above, it is difficult to predict early stage
hypertension with only HDL-C. In health screening data for sub-healthy adults, the group
in which HDL-C was beginning to decrease but LDL-C remained within the reference range
was smaller than the group in which LDL-C was beginning to rise but HDL-C remained
within the reference range. In this study (Table 6), we found that LDL-C is a leading
indicator, and rising LDL-C is a reference for predicting prehypertension. This finding
agrees with the results of previous studies that showed that the relationship between
HDL-C concentration and blood pressure is U- or J-shaped.

It is basic knowledge that the higher the LDL-C level will increase the risk of de-
veloping cardiovascular disease (CVD). With intervention medical trials, using lipid-
lowering agents to reduce LDL-C had shown consistent reductions in major CVDs [4–6].
Otsuka et al. [75] showed the development of hypertension according to LDL-C quintiles
in Asian populations. Their results indicated the risk of hypertension was 1.27 times higher
in the highest quintile compared to the lowest quintile [75]. Most previous studies identi-
fied a relationship between LDL-C and CVD, but really did not make sure the incidence
of hypertension.

This is the first study demonstrating an association between dyslipidemia and the risk
of incident hypertension. Otsuka et al. proposed several mechanisms for dyslipidemia and
the increased risk of hypertension. First, dyslipidemia, may impair endothelial function
and regulation of blood pressure by disrupting the production of nitric oxide. Second, by re-
ducing baroreflex sensitivity, dyslipidemia may predispose individuals to the development
of hypertension. Third, dyslipidemia decreases the distensibility of large elastic arteries.
This decrease may reduce the wind vessel effect, and then increase systolic blood pressure.
Fourth, a lack of physical activity or regular exercise and a high-fat daily diet promotes
obesity. The adipose tissue excessively secretes adipocytokines, and the cytokines result
in insulin resistance and subsequent activation of the sympathetic nervous system and
the renin-angiotensin system in obese individuals. Those biological changes have been
confirmed and reported to increase blood pressure and raise incident hypertension.

The presence of dyslipidemia in subjects with early stage hypertension (prehyperten-
sion) can significantly increase the risk of cardiovascular mortality [69]. Individuals with
dyslipidemia and elevated blood pressure have metabolic syndrome. In previous studies,
metabolic syndrome was associated with a higher risk of CVD mortality in middle-aged
or elderly populations [76,77]. In subjects with type 2 diabetes, a target blood pressure of
120 mmHg, compared to 140 mmHg, did not reduce the rate of fatal and nonfatal CVD
events in the ACCORD study [78]. However, in subjects without diabetes, the prognostic
benefit of blood pressure control was clarified in the SPRINT trial [79]. In the same study,
with a target SBP of less than 120 mm Hg, compared to less than 140 mm Hg, the results
showed that in lower rates of fatal and nonfatal major cardiovascular events and all-cause
death. During the follow-up period (median, 3.26 years) of this clinical trial, 25% of subjects
showed a lower relative risk of cardiovascular-related outcomes, including the compos-
ite outcomes of myocardial infarction, stroke, acute coronary syndrome not resulting in
acute or chronic myocardial infarction, acute decompensated heart failure, death from
cardiovascular causes, etc. Additionally, the rates of lots other important outcomes in the
treatment group, including death from cardiovascular causes (reduce 43% relative risk),
heart failure (reduce 38% relative risk), and death from any cause (reduce 27% relative
risk), was lower than the control group [79]. These results indicate that it is valuable to
aggressively treat individuals with early stage hypertension. In addition, subjects with
early stage hypertension and dyslipidemia are at a greater risk of mortality, suggesting that
it is reasonable to treat this specific group to improve their prognosis.

Several factors (Table 5) are associated with early stage hypertension, including age,
BMI, waist circumference (WC), Hb, CRP, etc. The correlation between hypertension and
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age, BMI, WC, or WHR is well known. The Hb level is also a positive contributor to
blood pressure elevation and was one of the top three important risk factors in all four
groups. In a large cohort study, Atsma et al. reported that systolic blood pressure increased
by 0.7 mm Hg for every 0.9 mm Hg per millimole per liter increase in the hemoglobin
level, and the results for diastolic blood pressure were comparable [80]. There was no
gender difference in the study. Several mechanisms for the association between hemoglobin
and blood pressure have been proposed. Hemoglobin is positively associated with pulse-
wave velocity, an indicator of arterial stiffness, and increased systolic and diastolic blood
pressure [81]. Nitroxide (NO), produced in the blood vessel endothelial cells, relaxes
vascular smooth muscles, and thereby controls blood pressure. Acellular Hb may bind
to NO and cause vessel constriction and elevation of blood pressure [82]. Increased Hb
levels may lead to increased blood viscosity, and increased blood viscosity may worsen
cardiovascular function, but the production of NO may also increase. In this study, blood
viscosity was not measured; therefore, we do not know the influence of viscosity on
blood pressure.

C-reactive protein is a biomarker of systemic inflammation. In hypertensive indi-
viduals, CRP levels are associated with cardiovascular events and end-organ damage
because CRP is correlated with vascular stiffness and severity of atherosclerosis [83]. CRP
appeared in the out-of-reference-range LDL-C groups (G2 and G4) and was one of the top
two important variables in the ORR–HDL & ORR–LDL group. However, in normotensive
individuals, genetic variability may influence circulating levels of CRP. A predictive associ-
ation between changes in blood pressure and the development of hypertension remains
controversial [83,84]. In this study, a residual contribution to blood pressure elevation is
found in groups with increased LDL-C, which suggests that LDL-C levels are associated
with CPR levels and that the LDL-C level may be a more important factor for predicting
the development of hypertension.

Raised blood pressure is the leading cause of death globally [8]. The association
between CVD and early stage hypertension is documented in several studies [9–11]. An
individual with hypertension or dyslipidemia is predicted to be at lower risk for CVD than
one with both of them. Predicting the probability of hypertension in dyslipidemia individu-
als with normal blood pressure is an important clinical issue. Because non-pharmacological
methods, such as body weight control, aerobic exercise, salt restriction, and the DASH diet,
are recommended to effectively prevent the development of hypertension. The machine
learning model provided the possibility for early detection of the individual with early
stage hypertension. In order to prevent future CVD, it would be valuable to suggest they
modify their lifestyle aggressively. In addition, several other cofactors of early stage hy-
pertension are also found in the ML model. It suggested that correcting those factors may
be important for the development of hypertension. Meanwhile, the application of the ML
model could be another method to establish a new direction for future studies to detect
early stage hypertension. The implications of the model synthesized to clinical should be
helpful and predictable in the public health practice.

The correlation between metabolic syndrome-related variables, including age, BMI,
WC, WHR, fasting plasma glucose, and hypertension, is well known. The hemoglobin level
is also a positive contributor to blood pressure elevation and it was one of the top three
important factors in all four LDL-C/HDL-C groups in this study; therefore, it may be an
important variable that affects blood pressure in the early stage of hypertension. A residual
contribution to blood pressure elevation is found in groups with increased LDL-C. This
suggests that LDL-C levels are associated with CPR levels, and that the LDL-C level may
be a more important factor for predicting the development of hypertension. Even though
this project is not a longitudinal study design, it may have confounding effects, but the
cause of the huge amount of data, and the results were in line with clinical manifestations,
so it still had application value in preventive medicine. Using directed acyclic graph to
discuss the logical connective or confounding effects of the identified important risk factors
is worth of further research.
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5. Limitations

The main limitations of this study were the use of a single data set without comparing
it to data from other countries and the lack of continuity of data analysis. In addition, this
study was similar to previous studies that used cross-sectional data in that we estimated
the influencing factors and speculated on the possible effects without providing a causal
inference. To avoid the selected variables having logical connectors or confounding effects,
the following research should be used the prospective or retrospective cohort study to prove
the clinical significance. Another limitation of our study is that our inferences may not be
suitable for outpatients or inpatients who are already ill. In addition, older patients, those
with abnormal extreme values, or those using a physician’s prescription for an extended
period were excluded from this study.

6. Conclusions

The five prediction models (SGB, MARS, Lasso, Ridge, and CatBoost) provided a
similar classification of risk factors in this study. Based on the results of this study, we
suggest that BMI, WHR, Hb, and CRP should be the important indicators of early stage
hypertension in sub-healthy adults. A rise in the LDL-C level appears to be a signal and is
more important than the start of a decrease in HDL-C. Raising awareness of hypertension
is crucial in government health promotion activities, and the findings of this study should
be of value for further discussions and follow-up research.
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