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Abstract

Background: Biofeedback systems that use inertial measurement units (IMUs) have been shown recently to have the ability to
objectively assess exercise technique. However, there are a number of challenges in developing such systems; vast amounts of
IMU exercise datasets must be collected and manually labeled for each exercise variation, and naturally occurring technique
deviations may not be well detected. One method of combatting these issues is through the development of personalized exercise
technique classifiers.
Objective: We aimed to create a tablet app for physiotherapists and personal trainers that would automate the development of
personalized multiple and single IMU-based exercise biofeedback systems for their clients. We also sought to complete a
preliminary investigation of the accuracy of such individualized systems in a real-world evaluation.
Methods: A tablet app was developed that automates the key steps in exercise technique classifier creation through synchronizing
video and IMU data collection, automatic signal processing, data segmentation, data labeling of segmented videos by an exercise
professional, automatic feature computation, and classifier creation. Using a personalized single IMU-based classification system,
15 volunteers (12 males, 3 females, age: 23.8 [standard deviation, SD 1.8] years, height: 1.79 [SD 0.07] m, body mass: 78.4 [SD
9.6] kg) then completed 4 lower limb compound exercises. The real-world accuracy of the systems was evaluated.
Results: The tablet app successfully automated the process of creating individualized exercise biofeedback systems. The
personalized systems achieved 89.50% (1074/1200) accuracy, with 90.00% (540/600) sensitivity and 89.00% (534/600) specificity
for assessing aberrant and acceptable technique with a single IMU positioned on the left thigh.
Conclusions: A tablet app was developed that automates the process required to create a personalized exercise technique
classification system. This tool can be applied to any cyclical, repetitive exercise. The personalized classification model displayed
excellent system accuracy even when assessing acute deviations in compound exercises with a single IMU.

(JMIR Rehabil Assist Technol 2017;4(2):e9)   doi:10.2196/rehab.7259
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Introduction

Background
Exercise rehabilitation for the treatment of musculoskeletal
conditions such as osteoarthritis, following an injury or
orthopedic surgical procedures, is accepted as an essential
treatment tool [1-3]. Resistance training may also be used to
improve one’s muscular strength, hypertrophy, and power in
nonpatient populations [4-6]. However, many people completing
exercise programs encounter a variety of difficulties when
performing their exercises without the supervision of a trained
exercise professional such as a physiotherapist or strength and
conditioning (S&C) coach. One such difficulty is that in many
circumstances, people may execute their exercises incorrectly
[7,8]. Incorrect alignment during exercise, incorrect speed of
movement, and poor quality of movement may have an impact
on the efficacy of exercise and may therefore result in a poor
outcome [7,8]. It is therefore essential that accurate assessment
of exercise performance is available to ensure that people
perform their exercises properly. This is particularly necessary
in cases where an individual completes their exercise program
in the absence of an exercise professional’s supervision, for
example, during home-based rehabilitation programs or S&C
programs where the person performing the exercises cannot
afford a personal trainer.

Recent research has shown inertial measurement unit
(IMU)–based biomechanical biofeedback systems to be an
accurate exercise assessment tool. Biomechanical biofeedback
involves (1) the measurement of one’s movement, postural
control, or force output and (2) the provision of feedback to the
user regarding these measurements [9]. IMUs are able to acquire
data pertaining to the linear and angular motion of individual
limb segments and the center of mass of the body. They are
small, inexpensive, and easy to set up, and facilitate the
acquisition of human movement data in unconstrained
environments [10]. Research in this field has shown the ability
of multiple body-worn IMUs to evaluate exercise quality for a
variety of exercises [11-14]. These range from early-stage
rehabilitation exercises such as heel slides and straight leg raises
[15] to more complex late-stage rehabilitation exercises or S&C
exercises such as bodyweight squats [16], lunges [17], and
single-leg squats [18-20]. More cost-effective and practical
systems using a single body-worn IMU have also been shown
to be effective in the analysis of exercise technique
[17,18,21,22]. Systems that are based on a single IMU are
considered preferential, as they can provide equivalent exercise
analysis quality to multiple IMU setups at a lower cost.

However, in a number of cases, a single IMU setup achieves
lower quality exercise analysis levels than multiple IMU setups.
The ability of a single IMU setup to detect acute naturally
occurring technique deviations in compound late-stage
rehabilitation and S&C exercises such as deadlifts, lunges, and
squats is also largely unknown; although this has been shown
as possible for single-leg squats [18], the reported findings on
lunges and squats pertain to detecting deliberately induced
exercise technique deviations [16,17]. There is also a need to
iteratively improve the accuracy, sensitivity, and specificity of

IMU-based exercise technique biofeedback systems and increase
the number of exercises that can be analyzed with IMUs.
IMU-based exercise biofeedback systems should be able to
assess technique for a comprehensive range of exercises, both
accurately and in a manner that is practical for people
completing the exercises.

There are a number of considerable challenges in the creation
of such biofeedback systems. First, for machine learning
classification algorithms to produce desirable results, they
require large volumes of training data. As such, it is difficult to
collect IMU data on a large variety of exercises in a research
environment. Subsequently, current research has mainly assessed
very commonly completed exercises that span the scope of
musculoskeletal screening, rehabilitation, and S&C. There
remain thousands of exercises for which the ability of IMUs to
assess their technique is unknown. Classification algorithms
such as random forests and logistic regression also require
balanced training datasets, where each class (eg, acceptable or
aberrant) has the same amount of instances in the training data
[23-25]. This provides a huge challenge in creating systems that
aim to detect natural technique deviations that occur
idiosyncratically and at greatly differing frequencies. This
challenge is heightened in circumstances where the intersubject
variation of completing an exercise with acceptable form
exceeds the intrasubject variation between one’s acceptable and
aberrant form.

One solution to combatting the aforementioned challenges may
be to create individualized exercise classification systems. In
this circumstance, a classifier is created using training data
solely from the person whose exercise is to be assessed.
Preliminary research has shown that such classifiers can produce
superior accuracy as compared with global classification systems
[26,27]. Additionally, some global classification systems have
only been developed and evaluated with deliberately induced
technique deviations [16,17]. Personalized systems may allow
for many more exercises to be evaluated for a particular person
performing the exercises and could allow for acute naturally
occurring technique deviations to be detected with a single
body-worn IMU where this has not been previously possible.
The classifiers would also be less memory intensive and more
efficient, as they are developed using smaller training datasets.
However, to the best of the authors’ knowledge, there is a lack
of tools currently available to efficiently capture and label IMU
data during exercise to enable the efficient development of
personalized exercise technique classification systems.

Objectives
Therefore, the purpose of this investigation was to create a tablet
app that enabled efficient creation of personalized single
IMU-based exercise biofeedback systems. We also sought to
investigate the accuracy of this personalized system in a
real-world evaluation using a sample of 4 compound lower limb
exercises (lunges, single-leg squats, squats and deadlifts) in 15
participants. In this paper, an overview of the developed app is
first presented. An experimental evaluation of the system in the
real world is then described.
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Methods

System Overview
In exercise classification with IMUs, there exist a number of
universal steps that allow for the development of exercise
biofeedback systems [28]. First, IMU data must be collected
from participants as they exercise. Each repetition of each
exercise must be labeled by an exercise professional. The signals
collected from the IMU must be filtered to eliminate unwanted
noise, and additional signals may be computed that, for instance,
describe the IMU’s three-dimensional (3D) orientation. The
signals are segmented into epochs, each of which pertains to

one repetition of an exercise. Features are computed from these
segmented signals as described in the upcoming “Feature
Computation and Classifier Creation” section. Finally, a
classification model is trained using both the labels provided
by an exercise professional and the features computed from the
sensor signals that pertain to the same repetitions (Figure 1).
The tablet app, presented in this paper, allows for simultaneous
IMU and video data capture. It then allows labeling of each
IMU data epoch through reviewing its associated video epoch.
Features are then automatically computed from the IMU signal
epochs, and classifiers are built using these features and the
labels provided by the exercise professional.

Figure 1. Steps involved in the development of an inertial measurement unit (IMU)–based exercise classification system.

Overview of Data Collection Tool
The tablet app was developed using Android Studio (Android,
Google) and ran on a Samsung Galaxy S2 tablet. It contains a
number of tabs that enable a vast degree of functionality to
enable the automated creation of personalized classification
systems. Figure 2 demonstrates the processes involved and
highlights the need for data labeling from an exercise
professional. The various tabs within the app are demonstrated
in Figure 3. The system can connect to a maximum of 5
Shimmer (Shimmer sensing) IMUs [29] and stream
synchronized data from them simultaneously. All IMUs were
automatically configured to stream triaxial accelerometer (±2

g), gyroscope (±500 °/s), and magnetometer (±1.9 Ga) data at
51.2 Hz. These values were chosen, as they have previously
been shown to be appropriate for the analysis of rehabilitation
exercise with IMUs [15,18,19]. However, the sampling rate and
sensor ranges may be insufficient for faster exercises such as
jumping or plyometric exercises. Future iterations of the system
will address this by allowing the exercise professional to select
sampling rate and sensor ranges based on exercise type before
data collection. For this study, the IMU was calibrated by the
lead investigator of this study. This took roughly 10 min.

The app then allows for the automation of all the aforementioned
steps in the development of an exercise technique classifications
system as shown in Figures 1 and 2.

Figure 2. Schematic demonstrating the flow and functionality of the tablet app.
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Figure 3. Home screen of tablet app, demonstrating its variety of functions.

Video and IMU Data Collection
Following sensor set up, navigating to the “Record a New
Session” tab allows an exercise professional to take a video of
their client as they exercise, as data from the IMUs are

simultaneously collected. The video is captured at the tablet’s
natural sampling rate, and IMU data are collected at 51.2 Hz
(Figure 4). The exercise professional may choose to record their
client from the frontal or sagittal plane depending on the exercise
being evaluated.

Figure 4. Data capture part of the app that allows IMU (inertial measurement units) data and video to be captured simultaneously.

Signal Processing and Segmentation
Following the recording of a set of a particular exercise, a
number of steps were completed by the app in processing the
IMU data. To ensure that the data analyzed applied to each
participant’s movement and to eliminate unwanted
high-frequency noise, 6 signals were low-pass filtered at fc=20
Hz using a Butterworth filter of order n=8. Nine additional
signals were then calculated. The 3D orientation of the IMU

was computed using the gradient descent algorithm developed
by Madgwick et al [30]. The resulting quaternion values (W,
X, Y, and Z) were then converted to pitch, roll, and yaw signals.
The pitch, roll, and yaw signals describe the inclination,
measured in radians, of each IMU in the sagittal, frontal, and
transverse planes, respectively. The magnitude of acceleration
was also computed using the vector magnitude of accelerometer
x, y, and z. The magnitude of acceleration describes the total
acceleration of the IMU in any direction. This is the sum of the
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magnitude of inertial acceleration of the IMU and acceleration
due to gravity. Additionally, the magnitude of rotational velocity
was computed using the vector magnitude of gyroscope x, y,
and z. Although these magnitude signals do not allow for
specific body segment planes to be analyzed, they can aid in
capturing detection of aberrant movement when deviations are
very pronounced or occur in multiple planes.

The signals and video data were then programmatically
segmented into epochs that relate to single full repetitions of
the completed exercises. Many algorithms are available to
segment human motion for rehabilitation exercises, including
the sliding window algorithm [31]; top-down, bottom-up
algorithms [32]; zero velocity–crossing algorithms;
template-base matching methods [33]; and the combination
algorithms of the above [34]. These algorithms have advantages
and disadvantages. For the purpose of the creation of a
functioning classifier creation tool, a simple peak-detection
algorithm was used on the gyroscope signal with the largest
amplitude for any particular exercise. The start and end points
of each repetition can then be found by looking for the

corresponding zero-crossing points of the gyroscope signal
leading up to and following the location of a peak in the signal.
Figure 5 demonstrates example results of the segmentation
algorithm used on the gyroscope Z signal, from an IMU
positioned on the left thigh during 3 repetitions of the deadlift
exercise.

Following the signal processing and segmentation of the IMU
data, the video was cut into epochs based on the start and end
points of repetitions found in the IMU data. The session name,
exercise name, repetition number, IMU data, and video data for
each individual exercise repetition were stored as objects in a
database.

The specific signal processing and segmentation processes
selected were chosen based on their demonstrated capability in
similar research [16-19]. In future iterations of the app, a variety
of additional signal processing and segmentation options may
be presented to the exercise professionals using the system, or
the functions will be updated to match the emerging state of the
art.

Figure 5. Plot showing detection of peak, start, and end points of repetitions through identifying neighboring zero-crossing values to the peak locations.
The signal shown is the gyroscope Z signal from the left thigh during 3 repetitions of a deadlift.

Data Labeling
The app enables a number of different functionalities regarding
data labeling. The exercise professional using the tablet app
first has the ability to add new exercises and technique
deviations as possible labels for the stored and segmented data.
These labels also become available to the exercise professional
when they record new exercise sessions.

The exercise professional then has the option of labeling the
videos, repetition-by-repetition, through viewing them according
to the filter criteria “session name” or by “exercise type.” The
default class for all repetitions is “Acceptable” until they are
labeled as “Aberrant” or as a specific deviation from an
acceptable technique. An unlimited number of possible labels
can be created for each exercise.

Once data have been collected for each exercise, there is also
an “Auto-label” function. This function uses data already labeled
by the exercise professional to build a random forests classifier,
which estimates the class for currently unlabeled data. As shown
in Figure 6, the app then presents the classifier’s predicted label
with the video of the repetition and allows the exercise
professional to either keep the prediction or ignore the
prediction. If the prediction is ignored, the repetition can then
manually be labeled in the “review by exercise” or “review by
session” tab. The database can also be manually updated at any
time, allowing the exercise professional to remove particular
repetitions or edit the current label for it. Figure 6 highlights
the app’s various data-labeling functionalities.
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Figure 6. Various data labeling functionalities of the app.

Feature Computation and Classifier Creation
Once the data have been labeled as desired by the exercise
professional, the app can then build the personalized exercise
technique classification objects for each client and each exercise
they completed. A separate classifier is created for each different
exercise.

Time-domain and frequency-domain descriptive features are
computed to describe the pattern of each of the 18 signals when
the 5 different exercises were completed. These features were,
namely, “Mean,” “RMS,” “Standard Deviation,” “Kurtosis,”
“Median,” “Skewness,” “Range,” “Variance,” “Max,” “Min,”
“Energy,” “25th Percentile,” “75th Percentile,” “Level Crossing
Rate,” “Fractal Dimension” [35], and the “variance of both the
approximate and detailed wavelet coefficients using the
Daubechies 5 mother wavelet to level 7.” This resulted in 17
features for each of the 18 available signals, producing a total
of 306 features per IMU. Training data are balanced to ensure
the developed classifiers are unbiased. This is done by removing
random observations of overrepresented classes until all classes
have an equal number of observations. For instance, if a labeled
dataset of squat repetitions has 50 “acceptable” repetitions and
40 “aberrant” repetitions, 10 “acceptable” repetitions, which
are chosen randomly using a programmatic method, will not be
used to train the classifier. Finally, the app builds random forests
classifier objects with 400 trees.

The choice of features computed, balancing of training data,
and use of a random forests classifier all replicate recently
published work in the field [15-18]. Similar to signal processing
and segmentation, these processes can be updated in future
iterations of the app to match the emerging state of the art in
exercise technique classification with IMUs.

The developed classifier objects can then be exported from
within the tablet app to individual’s exercise biofeedback apps
on their mobile phones for use in monitoring their rehabilitation
exercise programs.

System Evaluation

Participants
Fifteen volunteers currently not undergoing any rehabilitation
participated, whereby no participant had a current or recent
musculoskeletal injury that would impair their exercise
performance. Participants were recruited via poster
advertisements on notice boards in the local area and were,
therefore, a sample of convenience. Of these, 5 participants
were beginner exercisers who had been screened to have
naturally aberrant technique and were untrained in the exercises
in the study, whereas 10 participants were experienced with the
exercises and were required to deliberately mimic aberrant
technique at appropriate times during the experiment. Each
participant signed a consent form before completing the study.
The University College Dublin Human Research Ethics
Committee approved the study protocol.

Experimental Protocol
The testing protocol was explained to the participants upon their
arrival at the research laboratory. Their gender was recorded
and their weight was measured using a weighing scale. Height
was then measured with a stadiometer. All participants
completed a 5-min warm-up on an exercise bike, during which
they were required to maintain a power output of 100W and
cadence of 75 to 85 revolutions per minute. Following the
warm-up, an investigator placed a single IMU on the participant
at the midpoint of the left femur (determined as halfway between
the greater trochanter and lateral femoral condyle). The
orientation and location of the IMU was consistent across all
study participants. The IMU sampling rate and sensor range
settings used were identical to those described in the “Overview
of tool” section.

Video and IMU data were then simultaneously collected as the
participant completed 4 of the following exercises: bodyweight
left leg, single-leg squats; bodyweight lunges; bodyweight or
barbell squats; and barbell deadlifts. These exercises were
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chosen pragmatically, as they represent compound lower limb
exercises that span both the late-stage rehabilitation (knee, kip,
and ankles) and S&C domains. They also cannot be easily
analyzed by any existing systems. Forty repetitions of each
exercise were collected; 20 repetitions were completed with
“acceptable” form, whereas 20 repetitions were completed with
“aberrant” form. The “aberrant” repetitions from the 5 beginners
were naturally occurring, whereas the 10 experienced
participants deliberately induced their “aberrant” form.
Following these data collection, the IMU was removed from
the participants’ left thigh.

As the participant rested, the exercise professional then used
the segmented videos to label all exercise repetitions of the 4
exercises as being “acceptable” or “aberrant” technique (160
repetitions per participant). For each participant, 4 binary
random forests classifiers were then created, each pertaining to
1 of the 4 aforementioned exercises. These random forests
objects were imported into a biofeedback app. The data labeling
and classifier creation took a maximum of 30 min per
participant. The biofeedback app entitled “Formulift” (Figure
7) allows a person performing the exercises to connect to a
Shimmer IMU, select each of the above exercises, and have
their repetitions of each exercise be classified as “acceptable”
or “aberrant.”

Following the creation of their personalized biofeedback system,
the participants first secured the IMU to their left thigh by

themselves and connected the wireless Shimmer IMU to the
mobile app. These steps took roughly 1 min. They then
completed 2 sets of 10 repetitions for each of the 4 exercises.
In the first set of each exercise, they were instructed to exercise
with their best possible technique, and in the second, they were
asked to try and replicate the mistake they had made before
being coached by the exercise professional. The video of the
whole session was simultaneously taken, and the classifier’s
predictions of the participants’ technique were stored in the
background storage folders on the tablet.

Data Analyses
Following the participants’ use of their personalized biofeedback
app, the system’s predicted labels (acceptable or aberrant) for
each repetition of each exercise were stored. The videos of each
repetition of each exercise were then labeled by an S&C coach
with more than 5 years’ experience in visual analysis of the
exercises. They were labeled as acceptable or aberrant in a
systematic format. The S&C coach could view the repetitions
as many times as necessary to make a clear judgment on the
label. Labeling all data for each beginner participant took under
25 min and was quicker for the experienced participants as their
aberrant form was deliberately induced. Example types of
aberrant form that the exercise professional was looking for
included knee valgus, knee varus, and asymmetry as used in
similar recent research [16-19].

Figure 7. Screenshot from the “Formulift app,” which uses the classifiers developed from the tablet app to analyze whether a person’s exercise technique
is acceptable or aberrant as they complete squats, deadlifts, lunges, and single-leg squats.
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Figure 8. Formulae for: a) accuracy, b) sensitivity, and c) specificity.

The personalized, classifiers-predicted labels were then
compared with the exercise professional’s labels, which were
considered to be ground truth for each repetition of each exercise
from each participant. Where the exercise professional had
labeled a repetition as “acceptable” and the classifier predicted
“acceptable,” this was counted as a true positive (TP). However,
if the classifier predicted “aberrant,” in this circumstance a false
negative (FN) was counted. If the exercise professional and
classifier both deemed a repetition to be “aberrant,” it was
counted as a true negative (TN). However, if the exercise
professional deemed a repetition to be “aberrant” and the
classifier predicted it as “acceptable,” this was counted as a
false positive (FP).The scores used to measure the quality of
classification were total accuracy, sensitivity, and specificity.
Accuracy is the number of correctly classified repetitions of all
the exercises divided by the total number of repetitions

completed. This is calculated as the sum of the TPs and TNs
divided by the sum of the TPs, FPs, TNs, and FNs. Sensitivity
measures the effectiveness of a classifier at identifying a desired
label, whereas specificity measures the classifier’s ability to
detect negative labels. These three metrics were used to assess
the classification quality of each individual participant for each
of the 4 exercises completed. The formulae for accuracy,
sensitivity and specificity are shown in Figure 8.

Results

Participant Demographics
The demographics of the participants were as follows: 12 males,
3 females, age: 23.8 [standard deviation, SD 1.8] years, height:
1.79 [SD 0.07] m, body mass: 78.4 [SD 9.6] kg. Each
participant’s characteristics are shown in Table 1.

Table 1. Participant characteristics.

Weight, in kilogramsHeight, in metersAge, in yearsGenderType

66.51.6820MaleBeginner

681.7525MaleBeginner

761.7622MaleBeginner

861.7426FemaleBeginner

651.726FemaleBeginner

851.8523MaleExperienced

72.51.7721FemaleExperienced

861.8824MaleExperienced

741.8325MaleExperienced

631.726MaleExperienced

831.7523MaleExperienced

841.80525MaleExperienced

861.9322MaleExperienced

841.77524MaleExperienced

971.8825MaleExperienced

78.4 (9.6)1.79 (0.07)23.8 (1.8)Mean (SDa)

aSD: standard deviation.
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System Evaluation Results
Table 2 demonstrates the mean accuracy, sensitivity, and
specificity scores for all participants using their 4 personalized
classifiers for each exercise under study, in the real-world
evaluation as described in the “System Evaluation” section. The
mean results for the 5 beginner participants who had naturally
aberrant technique and for the more experienced participants
who had deliberately induced technique mistakes are shown.

The system was more accurate for the experienced exercisers’
group (98.59%) than the beginners’ group (88.00%) for the
deadlift exercise but was otherwise more accurate for the
beginners. This is particularly interesting as the beginner’s
technique aberrations were naturally occurring, and the
experienced group’s aberrations were deliberately induced. The
system was least accurate for lunges (84.14%) and most accurate
for single-leg squats (97.26%) across all participants. Accuracy

varied considerably for each individual in the lunge and squat
exercises, as can be seen in the presented standard deviations
(Table 2). The range of accuracies across all participants was
less variable for the single-leg squat and deadlift exercises.

For the single-leg squat exercise, the mean sensitivity was 98%
and the mean specificity was 93%. This means the system was
better at detecting acceptable single-leg squat technique than
aberrant technique or that 7% of aberrant exercise repetitions
were misclassified as acceptable. The system had relatively
similar sensitivity and specificity in classifying lunges and
deadlifts. Therefore, it would not appear biased to either the
“acceptable” or “aberrant” class to an exerciser using the system.
However, for the squat exercise there was a 13% chance that
an acceptable repetition may be classified as aberrant and a 17%
chance that an aberrant repetition may be classified as
acceptable.

Table 2. Mean accuracy, sensitivity, and specificity of personalized classifiers for the binary evaluation (acceptable or aberrant technique) of each
exercise and each participant.

Specificity, mean (SD), %Sensitivity, mean (SD), %Accuracy, mean (SDa), %ParticipantsExercise

Single leg squats

98.33 (3.73)100.00 (0.00)99.17 (1.86)Beginners (N=5)

90.41 (15.24)97.00 (4.83)95.98 (6.69)Experienced (N=10)

93.03 (19.09)98.00 (4.00)97.26 (5.54)All (N=15)

Lunges

88.70 (16.36)96.67 (7.45)92.63 (10.5)Beginners (N=5)

83.82 (32.17)74.07 (3.19)77.77 (21.26)Experienced (N=10)

85.78 (20.85)83.11 (27.49)84. 14 (18.96)All (N=15)

Squats

95.00 (5.00)75.00 (35.47)84.83 (16.58)Beginners (N=5)

74.44 (32.01)90.98 (15.25)82.71 (15.43)Experienced (N=10)

82.67 (29.00)87.06 (27.53)84.53 (16.38)All (N=15)

Deadlifts

90.00 (2.00)84.00 (16.25)88.00 (8.16)Beginners (N=5)

98.99 (2.86)98.15 (3.55)98.59 (2.71)Experienced (N=10)

95.78 (14.35)93.10 (13.35)94.81 (7.93)All (N=15)

aSD: standard deviation.

Discussion

System Development
The tool described in this paper successfully automates the
process of creating personalized IMU-based exercise technique
classification systems. The previously laborious sequence of
data collection, data labeling, and data analyses in software such
as MATLAB (MathWorks, Natwick) has been streamlined as
an Android tablet app that can be used by an exercise
professional. The app eliminates the need for a data analysis
professional to develop the classification systems by automating
the common steps in the development of such systems (Figure
1). A key benefit of this tool for exercise professionals is that
it allows rapid development of personalized exercise feedback

systems tailored to their client’s exercise needs and specific
movement patterns.

There are a number of notable benefits to taking an
individualized analysis approach to the development of
IMU-based exercise technique analysis systems. Recent work
has shown such systems to be more accurate and
computationally efficient than global classifiers [27]. The
development of global classifiers is extremely time-intensive
and requires hundreds of hours of data collection and analysis
by researchers. Data must be collected in such fashion for any
exercise for which a technique classifier is desired. This means
that, currently, there exist only a handful of exercises that have
been proven to be possible to assess with IMUs. The system
described in this paper should allow for the creation of a
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personalized exercise classifier for any rehabilitation or S&C
exercises that are cyclical and repetition based. Therefore,
clinicians would not be limited in their exercise choices when
designing specific programs to meet their clients’ needs. The
app described in this paper could be conceivably used by a
clinician during a patient’s visit to their clinic, and then the data
labeled from this session could be used to create a functioning
analysis tool for their program, which they may complete in the
absence of professional supervision.

System Evaluation
The preliminary evaluation of the system also suggests that the
accuracy, sensitivity, and specificity of the personalized exercise
technique classifiers may exceed that of global exercise
technique classification systems. This reflects other similar
research that compared sensor setups and classification
methodologies for the barbell squat and deadlift exercises [27].
Although it is difficult to make direct comparisons with the
previous research, it can be noted that a single IMU positioned
on the left thigh has been demonstrated as capable of assessing
acceptable or aberrant lunge technique with 77% accuracy [17]
and single-leg squat technique with 75% accuracy [18]. These
values were computed using leave-one-subject-out
cross-validation. The personalized systems, evaluated in the
real world, achieved 84% and 97% accuracy for the same
analysis of lunges and single-leg squats, respectively. The binary
classification of squat technique has previously been shown to
be 80% accurate in a global classification system using a single
lumbar-worn IMU [16]. The individualized systems described
in this paper ranged from 50% to 100% accuracy and had a
mean value of 85% across the 15 participants. It can also be
noted that the deviations collected from the 5-participant
beginner group used for analysis in this paper were naturally
occurring, whereas in the aforementioned lunge and squat global
classifiers, the deviations from correct technique were
deliberately induced by study participants. This may make
individualized classifiers more functional and usable in the real
world. This paper’s deadlift accuracy result of 95% exceeds
recently published work on binary classification of the deadlift
with a left thigh IMU where 84% accuracy was achieved [27].
This is likely because there was more training data for each
individual in this study. The personalized classification systems
used in this preliminary evaluation of the tablet app were
developed using 4 sets of each exercise (a total of 40 repetitions).
Increasing the amount of training data used for each individual
would likely further improve the accuracy of their personalized
exercise technique evaluation system [24,25].

Limitations
There are a number of contextual factors to this study that should
be considered. Most notably, although the tool described allows
for the efficient creation of an IMU-based exercise technique
classifier for any cyclical, repetition-based exercise, it is not as
simple as using a global classification system for exercises for
which they exist. The tool described requires at least one
recorded session with an exercise professional and requires the
exercise professional’s time and expertise to label the video
data. However, the tool described could be conceivably used to
fill in the gaps in a client’s exercise program where a global

classifier is not yet available. Moreover, the labeled data can
all be stored in a database, and the data that were initially used
to create individualized classifiers can be pooled together to
make a global classifier. The exercise professional could switch
to this global classifier when they deem it accurate enough to
negate the benefits of creating an individualized classifier for
each of their clients.

A key area that limits the findings of the evaluation study is that
it was small scale, and the participants were not balanced in
experience or gender. Moreover, the study participants were
relatively homogenous in the evaluation study, and it is not yet
understood whether the results found would be generalizable
to other populations such as older, obese, or underweight people.
In particular, the system evaluation was completed with
individuals not currently undergoing rehabilitation. Future work
should investigate the system with individuals undergoing
rehabilitation. It is foreseen that it should still work, provided
the exercise professional can label the data appropriately for
each individual’s needs. The authors also acknowledge that
more work is required to assess the capabilities of classifiers
created with this new tool, particularly in the detection of exact
deviations in exercise technique. The capabilities of a multiple
IMU setup must be examined. However, the results presented
show excellent potential for a single IMU setup to assess
complex compound lower limb exercises when using
personalized classifiers.

Future Work
It should be noted that this paper only describes the development
of this new tool and its first evaluation. It is not yet fully
understood how it will be incorporated into clinical practice.
Future work should investigate the influence of the exercise
professional’ s experience level, when labeling the data, on
system accuracy. The usability of the system and how it may
best be incorporated into a clinician’s use of time should also
be investigated. Only 1 exercise professional labeled the data
in the evaluation study. The coding was not compared with
other professionals; this should be investigated in future studies.
Finally, the tool described only replicates current state of the
art in the field, and the signal processing, feature computation,
and classification methods ought to be iterated as the field
progresses.

Conclusions
In this paper, a tablet app that streamlines the creation of
IMU-based exercise technique analysis systems is presented.
The tool replicates the data analysis pathways that have been
used in recently published research [16-19]. It also allows an
exercise professional to record video data simultaneously to
IMU data and label it efficiently, following a session with a
client. The app then creates personalized exercise technique
classifiers for the client based on the labeled IMU data. These
personalized classifiers are less memory-intensive and more
accurate than equivalent global classifiers for the exercises used
in this study. In addition to this, data collected with the tool
could ultimately be used to train new global classification
systems with increased accuracy because of the increased
amount of training data available.
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