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Abstract

Introduction: Differentiated paediatric epithelial cells can be used to study the role of epithelial cells in asthma. Nasal
epithelial cells are easier to obtain and may act as a surrogate for bronchial epithelium in asthma studies. We assessed the
suitability of nasal epithelium from asthmatic children to be a surrogate for bronchial epithelium using air-liquid interface
cultures.

Methods: Paired nasal and bronchial epithelial cells from asthmatic children (n = 9) were differentiated for 28 days under
unstimulated and IL-13-stimulated conditions. Morphological and physiological markers were analysed using immunocy-
tochemistry, transepithelial-electrical-resistance, Quantitative Real-time-PCR, ELISA and multiplex cytokine/chemokine
analysis.

Results: Physiologically, nasal epithelial cells from asthmatic children exhibit similar cytokine responses to stimulation with
IL-13 compared with paired bronchial epithelial cells. Morphologically however, nasal epithelial cells differed significantly
from bronchial epithelial cells from asthmatic patients under unstimulated and IL-13-stimulated conditions. Nasal epithelial
cells exhibited lower proliferation/differentiation rates and lower percentages of goblet and ciliated cells when
unstimulated, while exhibiting a diminished and varied response to IL-13.

Conclusions: We conclude that morphologically, nasal epithelial cells would not be a suitable surrogate due to a
significantly lower rate of proliferation and differentiation of goblet and ciliated cells. Physiologically, nasal epithelial cells
respond similarly to exogenous stimulation with IL-13 in cytokine production and could be used as a physiological
surrogate in the event that bronchial epithelial cells are not available.
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Introduction

Airway epithelial cells not only provide a physical barrier to

potentially harmful insults but they also play a significant role in

the first line of immunological defence. There is increasing

evidence that allergic diseases such as asthma are associated with

epithelial disorders and, furthermore, that a primary abnormality

of the airway epithelium may be central to disease causation [1,2].

Chronic inflammation and airway remodelling are the main

characteristics of asthma however they have been observed to

occur in young children before asthma has become firmly

established [3,4]. In asthma, bronchial epithelial airway remod-

elling is characterised by goblet cell hyperplasia, reduced ciliated

cell numbers and mucus hypersecretion [5], defective repair and

proliferation [6], increased basal cell number [7] and impaired

barrier function [8,9].

Differentiated ALI cultures using the Transwell system have

recently been shown to be an authentic model representing the

airway epithelium ex vivo [10]. Differentiated ALI cultures from

healthy subjects displayed a polarised pseudostratified multi-layered
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epithelium comprising basal, ciliated and goblet cells whereas

cultures from asthmatic subjects displayed a dysfunctional epithe-

lium consistent with the asthmatic airway in vivo [5]. The cultures

closely mimic in vivo airway epithelial physiology in terms of cilia

coverage and cilial beating, mucus production and formation of

intact tight junctions [5,11].

Samples from the lower airways in children can be obtained at

the time of clinically indicated bronchoscopy but it is difficult to

justify sampling the lower airways in otherwise healthy control

children and in those with milder disease. The nasal epithelium

therefore represents an attractive alternative although it is unclear

how well the nasal epithelium represents the bronchial epithelium

in paediatric asthma. According to the ‘united airway concept’

there is a close connection between the upper and lower airways

[12–16]. This suggests that changes found in the nasal epithelium

might mirror similar changes occurring in the lower airways. The

link between allergic rhinitis and asthma has been underlined by

epidemiological and clinical studies [12–16] which suggest that

upper airway inflammation may reflect and provide an additional

insight into lower airway involvement. Devalia et al have

demonstrated that adult human nasal and bronchial epithelial

cells cultured in vitro resemble the cells in vivo [17]. These studies

involved using samples from adults and extrapolating data from

adult studies cannot accurately represent the paediatric epitheli-

um, especially since functional differences exist between adult and

paediatric epithelium [18]. Several studies have shown similar

morphology and response to cytokine stimulation between nasal

and bronchial epithelium using submerged monolayer cultures,

which only poorly represents the epithelium [19,20]. Differenti-

ated ALI cultures on the other hand are more authentic and can

be analysed for markers of differentiation including MUC5AC (the

major mucus-forming mucin) and SAM-pointed domain contain-

ing Ets-transcription factor (SPDEF) (a transcription factor in the

goblet cell hyperplasia pathway) production as well as for goblet

and ciliated cells and tight junction formation. As a result the

differentiated ALI culture model is the most appropriate platform

with which to conduct a comparison of paired nasal and bronchial

differentiated ALI cultures.

In this study we aimed to compare the morphological and

physiological profiles of nasal differentiated ALI cultures (PNECs)

with bronchial differentiated ALI cultures (PBECs) under basal

unstimulated and IL-13 stimulated conditions to determine the

ability of PNECs to act as an in vitro surrogate for PBECs in asthma

studies.

Methods

Subjects
Children less than 12 years of age (mean age 7.2 years [range: 1

to 12 years]) attending elective surgical procedures at the Royal

Belfast Hospital for Sick Children were recruited. A doctor

administered pro-forma was used to record the clinical history. Of

the nine children with atopic asthma, defined as recurrent

wheezing within the last year, 5 children had asthma plus allergic

rhinitis and 4 children had asthma plus eczema but no allergic

rhinitis (Table 1).

Ethics Statement
Written informed parental consent was obtained. This study

was approved by the Office of the Research Ethics Committees of

Northern Ireland (ORECNI).

Isolation of PBECs and PNECs
Primary bronchial epithelial cells were obtained from asthmatic

children as previously described [21]. Nasal brushings were

performed by rotating an endocervical brush in each nostril.

Asthmatic PBECs and asthmatic PNECs were cultured as

previously described [5]. All brush washings were analysed for

viruses using a multi-viral PCR analysis and only uncontaminated

cultures were used [22].

Differentiated ALI culture
ALI cultures (n = 9) were grown as previously described [5,11].

Briefly, cells from subjects used in this study were grown at ALI at

passage 2 for 28 days. At confluence, ALI was created by removing

the apical medium and restricting the culture feeding to the

basolateral compartment. The culture medium was changed on

alternate days during which the cells differentiated over 28 days to

ensure full differentiation as assessed by the presence of beating

cilia and mucus on the apical surface of the cultures. We sampled

12 patients in total however 3 of the cultures either did not

proliferate due to lack of cells from the initial sample or they did

not form a 100% confluent monolayer prior to differentiation and

so were rejected from the study.

Stimulation of PBECs and PNECs with IL-13
Following the establishment of ALI, cells were fed basolaterally

on alternate days with ALI medium [5] supplemented with

recombinant human IL-13 (PeProTech EC Ltd, UK) at 20 ng/ml

throughout the duration of the cultures (28 days) starting at day 0

ALI [11,23–30].

Transepithelial Electrical Resistance measurements (TEER)
We used TEER as a measure of ‘tight junction’ formation in

epithelial cultures [31]. TEER was measured weekly using an

EVOM meter (World Precision Instruments, FL, USA) [5,11].

Immunocytochemistry (ICC) for goblet and ciliated cell
markers

Cytospin slides were made for the detection of goblet and

ciliated cells from PBEC and PNEC cultures [5,11]. Negative

controls were subjected to routine conditions with the omission of

the primary antibody. The results are expressed as the percentage

differential goblet or ciliated cell count corrected for cell number

from 3 slides per stain per insert per patient.

RNA extraction and Quantitative Real-time PCR for
MUC5AC and SPDEF mRNA

RNA extraction and cDNA synthesis were carried out using the

RNeasy Mini kit (Qiagen, Crawley, UK) and First Strand cDNA

Synthesis Kit (AMV) (Roche, UK) according to the manufactur-

er’s protocol. Quantitative Real time PCR was carried out as

previously described [11].

Measurement of MUC5AC secreted apically using ELISA
Production of MUC5AC secreted mucin in the apical washes

from PBECs and PNECs was measured as previously described

[5,11] using an adapted in-house MUC5AC ELISA [32]. We used

mouse monoclonal antibody to MUC5AC [45M1] clone (Abcam,

UK) as the primary antibody and Goat anti-mouse IgG HRP

secondary antibody (Jackson Laboratories, USA) for detection of

primary antibody binding. Results are expressed as the optical

density corrected for MUC5AC positive control.

Nasal Epithelial Cells for Asthma Studies
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Cytokine Analysis
Apical washings and basolateral supernatants from unstimulated

and IL-13-stimulated PBECs and PNECs were analyzed using a

27-plex bead array assay (Bio-Plex Pro Human Cytokine 27-plex)

(BioRad, UK) as per manufacturers’ instructions. Results are only

shown for analytes that were within the limits of detection (IL-1ra,

IL-6, IL-7, IL-8, IL-12p70, granulocyte colony–stimulating factor

(G-CSF), granulocyte macrophage colony-stimulating factor (GM-

CSF), interferon gamma-induced protein 10 (IP-10), monocyte

chemoattractant protein-1 (MCP-1), regulated upon activation,

normal T cell expressed and secreted (RANTES) and vascular

endothelial growth factor (VEGF).

Statistical Analysis
Comparisons between PBECs and PNECs were made using

paired t-tests and repeated measures ANOVA, with logarithmic

transformation where appropriate. Cytokine concentrations were

corrected for total cell number (pg/cell) and then the fold change

in cytokine secretion following IL-13 stimulation was compared

with unstimulated cytokine secretion (IL-13-stimulated/unstimu-

lated). These results were then plotted on a log axis due to the

varying ranges of all analytes involved. Individual cytokine profiles

are included as supplemental data (Figures S1, S2, S3, S4, S5, S6)

along with additional detail on all of the mentioned methods in the

online data supplement (Methods S1).

Results

It is unlikely given the number of passages the cells go through

along with the length of time from sampling to completion of

culture (7–10 weeks) that there would be any carry-over effect of

inhaled corticosteriods in the following results.

TEER
We detected no overall differences in TEER values over time

under unstimulated conditions between PBECs and PNECs

[Figure 1A]. In contrast, following IL-13 stimulation, there was

a significant difference in TEER values on days 7 (p = 0.02) & 14

(p = 0.02) between PBECs and PNECs with the difference in

resistance becoming similar by days 21 & 28 [Figure 1B].

Total Cell Count
On day 28 we found a significantly higher total cell number

between PBECs [mean 5.76105 cells/ml (SD 1.2)] and PNECs

[mean 3.46105 cells/ml (SD 0.8), (p = 0.002)] under unstimulated

conditions [Table 2]. However there was no significant difference

in the total cell number under IL-13 stimulated conditions [PBECs

[mean 5.36105 cells/ml (SD 0.9); PNECs: mean 4.26105 cells/ml

(SD 1.1)] [Table 2]. All subsequent results have been adjusted for

total cell number.

Goblet Cell Quantification
IL-13 stimulation resulted in a similar increase in the percentage

of goblet cells in both PBECs [43.3% (SD 18.1), p = 0.0036] and

PNECs [19.4% (SD 4.0), p = 0.0001] compared with unstimulated

controls [PBEC: 27.1% (SD 18.4); PNEC: 8.4% (SD 2.4)]

[Figure 2]. In addition there was a significant difference in goblet

cell percentage between PNEC unstimulated and PBEC unstimu-

lated [8.4% (SD 2.4) versus 27.1% (SD 18.4) respectively,

p = 0.033] and PNEC IL-13 stimulated and PBEC IL-13

stimulated [19.4% (SD 4.0) versus 43.3% SD (18.1) respectively,

p = 0.009].

Real Time PCR
SPDEF mRNA was higher in IL-13 stimulated PNECs

(p = 0.013) and IL-13 stimulated PBECs (p = 0.02) compared with

unstimulated PNECs and PBECs demonstrating a similar response

to exogenous stimulation between PBECs and PNECs [Figure 3A].

However under IL-13 stimulation there was a similar level of

MUC5AC mRNA between stimulated and unstimulated PNECs

whereas IL-13 stimulated PBECs had higher levels of MUC5AC

mRNA than unstimulated PBECs (p = 0.04) [Figure 3B].

Measurement of MUC5AC secreted apically using ELISA
Under IL-13 stimulation similar quantities of apically secreted

mucin were measured between PNECs and PBECs [Figure 3C].

Ciliated Cell Quantification
IL-13 stimulated PBECs had lower ciliated cell numbers than

unstimulated PBECs [5.9% (SD 1.6) versus 14.8% (SD 2.5)

respectively, p = 0.005] which was not observed between PNEC

IL-13 stimulated and PNEC unstimulated [2.8% (SD 3.4) versus

3.5% (SD 1.7) respectively] [Figure 4]. There was a significant

difference between PBEC unstimulated and PNEC unstimulated

[14.8% (SD 2.5) versus 3.5% (SD 1.7) respectively, p = 0.0001]

[Figure 4]. In addition there was a significant difference between

PBEC IL-13 stimulated and PNEC IL-13 stimulated [5.9% (SD

1.6) versus 2.8% (SD 3.4) respectively, p = 0.002] [Figure 4].

Table 1. Patient details including clinical status and clinical atopy.

Clinical Status Clinical Atopy (assessed by questionnaire) Serum IgE Concentration (kU/L) Age (y) Gender (M/F) Treatment

Asthmatic Allergic Rhinitis, Allergic Conjunctivitis 2258 6 M ICS/LABA, LTA

Asthmatic Eczema 154 7 M ICS/LABA

Asthmatic Eczema 446 4 F SABA, when required

Asthmatic Eczema, Allergic Rhinitis 5158 12 M ICS/LABA

Asthmatic Allergic Rhinitis 101 9 M ICS/LABA

Asthmatic Eczema 10 2 M ICS, SABA

Asthmatic Eczema 627 7 M ICS/LABA

Asthmatic Eczema, Allergic Rhinitis 100 11 M ICS

Asthmatic Allergic Rhinitis 40 1 M ICS

Current treatment abbreviations are classed as follows: inhaled corticosteroid (ICS), long-acting beta agonist (LABA), short-acting beta agonist (SABA) and leukotriene
antagonist (LTA).
doi:10.1371/journal.pone.0085802.t001

Nasal Epithelial Cells for Asthma Studies
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Cytokine production from PBECs and PNECs
Analytes that were within the limits of detection were IL-1ra,

IL-6, IL-7, IL-8, IL-12p70, granulocyte colony–stimulating factor

(G-CSF), granulocyte macrophage colony-stimulating factor (GM-

CSF), interferon gamma-induced protein 10 (IP-10), monocyte

chemoattractant protein-1 (MCP-1), regulated upon activation,

normal T cell expressed and secreted (RANTES) and vascular

endothelial growth factor (VEGF). The fold change of apically

secreted cytokines after IL-13 stimulation [Figure 5A] showed

there to be no significant difference between PBECs and PNECs.

Similarly, there was no significant difference in basolaterally

secreted cytokines between PBECs and PNECs stimulated with

IL-13 [Figure 5B] demonstrating an overall similar response to IL-

13 stimulation between PNECs and PBECs. Individual cytokine

secretion graphs are included in the supplementary data section of

this paper.

Discussion

Nasal epithelial cells provide an attractive alternative to

bronchial epithelial cells for use in asthma research due to their

accessibility without the need for anaesthesia and intubation

however it is unclear whether differentiated nasal ALI cultures

represent the differentiated bronchial ALI cultures morphologi-

cally and physiologically. We have compared paired nasal and

bronchial epithelial cells differentiated at ALI from asthmatic

children in order to determine whether nasal epithelial cells can

act as a surrogate for bronchial epithelial cells. We have found that

PNECs exhibit different morphological features such as lower

proliferation rates and differentiation of goblet and ciliated cells

compared with PBECs however their physiological response of

secreted cytokines to exogenous stimulation with IL-13, a key

cytokine in the pathogenesis of asthma is strikingly similar when

corrected for cell number.

In considering morphology, unstimulated PNECs do not exhibit

the constitutive goblet cell hyperplasia seen in unstimulated

PBECs [5]. This is to be expected as asthma is a lower airways

disease. Mouse models of allergic rhinitis have reported that a

goblet cell hyperplasia may only exist following stimulation with

ovalbumin [33,34] or TGF-b [35]. IL-13 has been shown to

increase goblet cell hyperplasia in non-asthmatic and asthmatic

paediatric bronchial epithelium [11] and in this study we have

shown that PNECs also respond with a goblet cell increase to IL-

13 stimulation along with a significant increase in SAM-pointed

domain-containing Ets-like factor (SPDEF) mRNA which is

implicated in the goblet cell hyperplasia pathway [36]. Miyahara

and colleagues found that although IL-13 is a major contributor to

the late nasal response it did not induce a goblet cell hyperplasia

[37] however our data is at odds with this finding. The IL-13

mediated reduction of ciliated cells in PBECs is not observed with

IL-13 stimulation in PNECs however.

In a previous study by McDougall et al. which compared

bronchial and nasal epithelial monolayers from adults and

children they found the cells to look morphologically similar

[19]. However, differentiated nasal ALI cultures display notable

morphological differences when compared with the differentiated

bronchial ALI cultures which could not have been detected in

submerged monolayer cultures. We found that PNECs did not

proliferate or differentiate at the same rate as PBECs with a

significant lower total cell number at the end of the culture period

Figure 1. Measurement of Transepithelial Electrical Resistance (TEER). A - TEER of unstimulated PNECs and PBECs cultured for 28 d. Values
are expressed as mean 6 SD. No significant difference was observed in the TEER values between the groups. B - TEER of PNECs and PBECs cultured
with 20 ng/ml IL-13 for 28 d. Values are expressed as mean 6 SD. On days 7 and 14 there was a significant difference in TEER values between PNECs
and PBECs (p,0.02 for each time point) however by the end of the culture period the TEER values were similar between groups.
doi:10.1371/journal.pone.0085802.g001

Table 2. Total cell count on day 28 of ALI culture.

Sample Mean number of cells (6105 cells/ml) Standard Deviation P value Treatment

PBEC(A) 5.7 1.2 0.002 Unstimulated

PNEC(A) 3.4 0.8 Unstimulated

PBEC(A) 5.3 0.9 .0.05 20 ng/ml IL-13

PNEC(A) 4.2 1.1 20 ng/ml IL-13

Under unstimulated conditions there were significant differences between PBECs and PNECs (p = 0.002). However under IL-13 stimulated conditions there were no
significant differences between the same groups.
doi:10.1371/journal.pone.0085802.t002

Nasal Epithelial Cells for Asthma Studies
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Figure 2. Quantification of Goblet Cell Number. Number of
goblet cells from PNECs and PBECs treated with 20 ng/ml IL-13
expressed as the percentage differential goblet cell count corrected for
cell number on d 28 of ALI culture. Comparisons of average values
between groups were performed using paired t-tests. There was a
significant difference seen between unstimulated and IL-13 stimulated
PNECs (p = 0.0001) and in IL-13 stimulated PBECs when compared to
unstimulated PBECs (p = 0.0036). Additionally, there was a significant
difference between PNEC unstimulated and PBEC unstimulated
(p = 0.033) and when cells where stimulated with IL-13, the percentage
of goblet cells was significantly higher in stimulated PBECs compared to
stimulated PNECs (p = 0.009).
doi:10.1371/journal.pone.0085802.g002

Figure 3. Gene expression of SPDEF & MUC5AC mRNA and ELISA for MUC5AC mucin secretion. A - Gene expression of SPDEF mRNA
using comparative quantitation real time PCR in IL-13 stimulated PNECs and PBECs expressed as fold change compared to unstimulated cells. In both
cell types, stimulation with IL-13 caused a significant increase in SPDEF mRNA levels (PNECs: p = 0.013; PBECs: p = 0.02). B - Gene expression of
MUC5AC mRNA using comparative quantitation real time PCR in IL-13 stimulated PNECs and PBECs expressed as fold change compared to
unstimulated cells. There was no significant increase in MUC5AC mRNA levels in PNECs, however, stimulation with IL-13 caused a significant increase
in MUC5AC mRNA levels in PBECs (p = 0.04). C - Relative optical density (OD l= 450 nm) of MUC5AC secreted apically using ELISA corrected for
MUC5AC positive control. There was no significant difference between unstimulated and IL-13 stimulated PNECs or PBECs.
doi:10.1371/journal.pone.0085802.g003

Figure 4. Quantification of Ciliated Cells. Number of ciliated cells
from PNECs and PBECs treated with 20 ng/ml IL-13 expressed as the
percentage differential ciliated cell count corrected for cell number on d
28 of ALI culture. Comparisons of average values between groups were
performed using paired t-tests. In unstimulated conditions, PBEC
cultures contained a significantly higher percentage of ciliated cells
than PNECs (p = 0.0001). However, when stimulated with IL-13, the
percentage of ciliated cells significantly decreased in PBECs (p = 0.005),
but IL-13 had no effect on ciliated cell numbers in PNECs. Additionally,
IL-13 stimulated PBECs had significantly higher numbers of ciliated cells
compared with IL-13 stimulated PNECs (p = 0.002).
doi:10.1371/journal.pone.0085802.g004

Nasal Epithelial Cells for Asthma Studies
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in addition to the differences seen in goblet and ciliated cells under

basal and stimulated conditions. PBECs appeared to exhibit

consistent distinct morphological changes in response to IL-13

stimulation whereas PNECs responded in a variable manner. We

did however observe some similarities between PBECs and

PNECs: TEER measurements, which is at odds with the TEER

data generated by Lopez-Souza and colleagues [38] and

MUC5AC secretion under unstimulated conditions. Taken

together, morphologically there does not appear to be enough

consistency between PBECs and PNECs which would suggest that

for studies focussing on the morphology of the asthmatic bronchial

epithelium, PNECs would not serve as an appropriate surrogate.

In considering physiological response we examined the effects of

an exogenous cytokine, namely IL-13, on cytokine/mediator

release from PBECs and PNECs and found a similar response

profile when corrected for cell number. McDougall et al. found

that constitutive and cytokine-stimulated release of particular

cytokines (IL-6, IL-8, MMP-9 and RANTES) was significantly

higher in nasal monolayer than bronchial monolayer cultures but

that on further analysis nasal and bronchial epithelial cells

responded in the same way showing significant correlation [19].

In a follow-up study from the same group, looking specifically at

mediator release between nasal and bronchial epithelial monolay-

er cultures from children, Pringle and colleagues found that

RANTES, MMP-9, TIMP-1, MCP-1 and VEGF were similar

between nasal and bronchial monolayer cultures whereas IL-6, IL-

8 and G-CSF were higher [20]. The difference in observations of

MMP-9 and RANTES between the studies is proposed to be due

to the first study having a mixed population of adult and paediatric

epithelial cells. We demonstrated a similar finding to McDougall et

al. and Pringle et al. in those cytokines from our panel that were

detectable. Both PNECs and PBECs responded to IL-13

stimulation (corrected for cell numbers) in a similar manner,

albeit with PNECs generally expressing higher levels of cytokine.

This would suggest that physiologically for the cytokines

measured, PNECs could be used as a surrogate for PBECs.

Further studies would hope to confirm this observation however it

would suggest that the similarities seen in monolayer mediator

release are maintained throughout the differentiation process.

In a more recent study using well-differentiated paediatric

asthmatic and non-asthmatic paired bronchial and nasal epithelial

cells, Lopez-Guisa and colleagues also suggested that there was

correlation in mediator release between PBEC and PNEC cultures

[39]. This group showed TGF-b2 and VEGF to be significantly

increased in asthmatic bronchial and nasal epithelium compared

to non-asthmatic under unstimulated conditions. TGF-b2 and

periostin were significantly up-regulated in nasal and bronchial

asthmatic epithelium under unstimulated and following IL-4/IL-

13 stimulation [39]. Unfortunately our study did not have a

sample of non-asthmatic children to perform a similar comparison.

However, our study broadly agrees with Lopez-Guisa et al. in

terms of the similarities observed in mediator release between

nasal and bronchial asthmatic epithelium.

IL-13 resulted in the reduction of the majority of cytokines, with

the exceptions of IL-8 and VEGF, when secreted apically and

basolaterally and GM-CSF when secreted basolaterally. Surpris-

ingly, a number of cytokines that we expected to increase actually

decreased including IL-1ra, GM-CSF and MCP-1 [40–43]. While

there are various studies that have noted increases in these

cytokines under stimulation with IL-13 we would add that many

used different culture systems, stimulation concentrations and

treatment regimens compared to our study, which may go some

way to explaining the unexpected decrease in these mediators. We

believe this is a true reflection of the epithelium as in both PBECs

and PNECs we saw strikingly similar responses to our chronic

stimulation.

Our data confirm that characteristics and responses in

submerged monolayer cultures differ from differentiated ALI

cultures. We believe that our differentiated ALI model authenti-

cally represents the true state of the epithelium in vivo [10]. A

recent study by Ogilvie and colleagues, who compared paired CF

nasal and bronchial epithelial brushings using microarray, found

Figure 5. Cytokine Analysis of Apical Washings and Basolateral Supernatants using Bioplex. A – Apical secretion of cytokines in PBEC
and PNEC cultures. Results were corrected for cell numbers and a fold change ratio was calculated (IL-13 stimulated/unstimulated). In order to
graphically represent all detectable cytokines the results were plotted on a logarithmic axis. There were no significant differences in any of the
detected cytokines secreted between PNECs and PBECs. B - Basolateral secretion of cytokines in PBEC and PNEC cultures. Results were corrected for
cell number and a fold change ratio was then calculated (IL-13 stimulated/unstimulated). In order to graphically represent all detectable cytokines the
results were plotted on a logarithmic axis. There were no significant differences in any of the cytokines secreted between PNECs and PBECs.
doi:10.1371/journal.pone.0085802.g005

Nasal Epithelial Cells for Asthma Studies
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that differences in the global gene expression profiles of CF and

non-CF nasal and bronchial epithelial cells existed. They

recommended not using nasal epithelial cells as a surrogate for

pre-screening prior to lung-directed therapies [44]. Whether nasal

epithelium should be used in place of bronchial epithelium will

inevitably be determined by the focus and design of future studies

and with a growing literature on the many comparisons now

taking place, we will be much better informed of the benefits or

drawbacks of using nasal as a surrogate for bronchial epithelial

cells.

Our study was limited in a number of ways. Firstly, we were

unable to sample a large enough number of non-asthmatic

controls to perform a comparison between health and disease.

Secondly, in terms of stimulation only one cytokine (IL-13) was

used due to the quantity of cells available. It would be interesting

to know if other stimuli in PNECs reflect the response in PBECs.

Additional studies are required to further explore the use of nasal

epithelial cells as a surrogate.

In conclusion, we have demonstrated that our models of

differentiated PNECs and PBECs display notable morphological

differences which would question the use of PNECs as a reliable

and reproducible morphological surrogate, especially in asthma

where characteristic traits such as constitutive goblet cell

hyperplasia are absent in PNECs from asthmatics. However, we

have also demonstrated that physiologically, both PNECs and

PBECs respond in the same way to stimulation with IL-13

suggesting that PNECs could be used as a physiological surrogate

for PBECs in asthmatic studies in the event that bronchial

epithelial cells are not available.

Supporting Information

Figure S1 Cytokine analysis of IL-1ra, IL-6, IL-7 & IL-8
secreted apically. A - Analysis of IL-1ra secreted apically using

the Bioplex system. Results were corrected for cell number and

absolute concentrations plotted in pg/cell. IL-13 stimulated

PNECs and PBECs secreted significantly less IL-1ra compared

with unstimulated PNECs (p = 0.02) and PBECs (p = 0.001).

Additionally unstimulated PNECs secreted higher levels of IL-

1ra compared with unstimulated PBECs (p = 0.04). B - Analysis of

IL-6 secreted apically using the Bioplex system. Results were

corrected for cell number and absolute concentrations plotted in

pg/cell. IL-13 stimulated PNECs and PBECs secreted significantly

less IL-6 compared with unstimulated PNECs (p = 0.02) and

PBECs (p = 0.01). Additionally unstimulated PNECs secreted

higher levels of IL-6 compared with unstimulated PBECs

(p = 0.04). C - Analysis of IL-7 secreted apically using the Bioplex

system. Results were corrected for cell number and absolute

concentrations plotted in pg/cell. IL-13 stimulated PNECs and

PBECs secreted significantly less IL-7 compared with unstimulated

PNECs (p = 0.0003) and PBECs (p = 0.0004). Additionally un-

stimulated PNECs secreted higher levels of IL-7 compared with

unstimulated PBECs (p = 0.04). D - Analysis of IL-8 secreted

apically using the Bioplex system. Results were corrected for cell

number and absolute concentrations plotted in pg/cell. IL-13

stimulated PNECs and PBECs secreted higher levels of IL-8

compared with unstimulated PNECs and PBECs however they did

not reach statistical significance. Additionally IL-13 stimulated

PNECs secreted higher levels of IL-8 compared with IL-13

stimulated PBECs (p = 0.03).

(TIF)

Figure S2 Cytokine analysis of IL-12p70, G-CSF, IP-10 &
MCP-1 secreted apically. A - Analysis of IL-12p70 secreted

apically using the Bioplex system. Results were corrected for cell

number and absolute concentrations plotted in pg/cell. IL-13

stimulated PNECs and PBECs secreted significantly less IL-12p70

compared with unstimulated PNECs (p = 0.007) and PBECs

(p = 0.0009). Additionally unstimulated PNECs secreted higher

levels of IL-12p70 compared with unstimulated PBECs although

this was not statistically significant (p = 0.08). B - Analysis of G-

CSF secreted apically using the Bioplex system. Results were

corrected for cell number and absolute concentrations plotted in

pg/cell. IL-13 stimulated PNECs secreted significantly less G-CSF

compared with unstimulated PNECs (p = 0.03). There was no

significant difference between IL-13 stimulated and unstimulated

PBECs. Additionally unstimulated PNECs secreted higher levels of

G-CSF compared with unstimulated PBECs although this was not

statistically significant. C - Analysis of IP-10 secreted apically using

the Bioplex system. Results were corrected for cell number and

absolute concentrations plotted in pg/cell. IL-13 stimulated

PNECs and PBECs secreted lower levels of IP-10 compared with

unstimulated PNECs (p = 0.006) and PBECs (p = 0.01). Addition-

ally unstimulated PNECs secreted significantly higher levels of IP-

10 compared with unstimulated PBECs (p = 0.047) and IL-13

stimulated PNECs secreted higher levels of IP-10 compared with

IL-13 stimulated PBECs (p = 0.04). D - Analysis of MCP-1

secreted apically using the Bioplex system. Results were corrected

for cell number and absolute concentrations plotted in pg/cell. IL-

13 stimulated PNECs and PBECs secreted lower levels of MCP-1

compared with unstimulated PNECs (p = 0.005) and PBECs

(p = 0.01). Additionally unstimulated PNECs secreted significantly

higher levels of IP-10 compared with unstimulated PBECs

(p = 0.001).

(TIF)

Figure S3 Cytokine analysis of RANTES, VEGF & GM-
CSF secreted apically. A - Analysis of RANTES secreted

apically using the Bioplex system. Results were corrected for cell

number and absolute concentrations plotted in pg/cell. IL-13

stimulated PNECs and PBECs secreted lower levels of RANTES

compared with unstimulated PNECs (p = 0.003) and PBECs

(p = 0.049). Additionally unstimulated PNECs secreted significant-

ly higher levels of RANTES compared with unstimulated PBECs

(p = 0.047). B - Analysis of VEGF secreted apically using the

Bioplex system. Results were corrected for cell number and

absolute concentrations plotted in pg/cell. There was no

significant difference between IL-13 stimulated PNECs and

PBECs compared with unstimulated PNECs and PBECs or

between PNECs and PBECs. C - Analysis of GM-CSF secreted

apically using the Bioplex system. Results were corrected for cell

number and absolute concentrations plotted in pg/cell. IL-13

stimulated PNECs secreted lower levels of GM-CSF compared

with unstimulated PNECs (p = 0.009). There was no significant

change in GM-CSF between IL-13 stimulated and unstimulated

PBECs. Additionally unstimulated PNECs secreted significantly

higher levels of GM-CSF compared with unstimulated PBECs

(p = 0.01).

(TIF)

Figure S4 Cytokine analysis of IL-1ra, IL-6, IL-7 & IL-8
secreted basolaterally. A - Analysis of IL-1ra secreted

basolaterally using the Bioplex system. Results were corrected

for cell number and absolute concentrations plotted in pg/cell. IL-

13 stimulated PNECs secreted significantly less IL-1ra compared

with unstimulated PNECs (p = 0.04). There was no significant

difference between IL-13 stimulated and unstimulated PBECs.

Additionally there was no difference in IL-1ra secretion between

PNECs and PBECs. B - Analysis of IL-6 secreted basolaterally

using the Bioplex system. Results were corrected for cell number
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and absolute concentrations plotted in pg/cell. IL-13 stimulated

PNECs secreted less IL-6 compared with unstimulated PNECs

however, this did not reach statistical significance. There was a

significant difference in IL-6 secretion between IL-13 stimulated

and unstimulated PBECs (p = 0.04). Additionally the IL-13

stimulated PNECs secreted higher levels of IL-1ra compared with

IL-13 stimulated PBECs (p = 0.04). C - Analysis of IL-7 secreted

basolaterally using the Bioplex system. Results were corrected for

cell number and absolute concentrations plotted in pg/cell. IL-13

stimulated PNECs and PBECs secreted less IL-7 compared with

unstimulated PNECs (p = 0.06) and PBECs (p = 0.05) but these did

not reach statistical significance. Additionally there was no

significant difference in IL-7 secretion between PBECs and

PNECs. D - Analysis of IL-8 secreted basolaterally using the

Bioplex system. Results were corrected for cell number and

absolute concentrations plotted in pg/cell. There was no

significant difference in IL-8 secretion between IL-13 stimulated

PNECs and PBECs compared with unstimulated PNECs and

PBECs or between PNECs and PBECs.

(TIF)

Figure S5 Cytokine analysis of IL-12p70, G-CSF, IP-10 &
MCP-1 secreted basolaterally. A - Analysis of IL-12p70

secreted basolaterally using the Bioplex system. Results were

corrected for cell number and absolute concentrations plotted in

pg/cell. There was no significant difference between IL-13

stimulated PNECs and PBECs compared with unstimulated PNECs

and PBECs. However unstimulated PNECs secreted higher levels of

IL-12p70 compared with unstimulated PBECs (p = 0.009). B -

Analysis of G-CSF secreted basolaterally using the Bioplex system.

Results were corrected for cell number and absolute concentrations

plotted in pg/cell. There was no significant difference between IL-

13 stimulated PNECs and PBECs compared with unstimulated

PNECs and PBECs although there was a large decrease in

concentration. However IL-13 stimulated PNECs secreted higher

levels of IL-12p70 compared with IL-13 stimulated PBECs

(p = 0.048). C - Analysis of IP-10 secreted basolaterally using the

Bioplex system. Results were corrected for cell number and absolute

concentrations plotted in pg/cell. There was no significant

difference between IL-13 stimulated PNECs and PBECs compared

with unstimulated PNECs and PBECs. However unstimulated

PNECs secreted higher levels of IP-10 compared with unstimulated

PBECs (p = 0.009). D - Analysis of MCP-1 secreted basolaterally

using the Bioplex system. Results were corrected for cell number

and absolute concentrations plotted in pg/cell. There was lower

MCP-1 secretion between IL-13 stimulated PNECs and PBECs

compared with unstimulated PNECs and PBECs however this did

not reach statistical significance. Unstimulated PNECs secreted

significantly higher levels of MCP-1 compared with unstimulated

PBECs (p = 0.003) as did IL-13 stimulated PNECs compared with

IL-13 stimulated PBECs which was close to reaching significance

(p = 0.05).

(TIF)

Figure S6 Cytokine analysis of RANTES, VEGF & GM-
CSF secreted basolaterally. A - Analysis of RANTES secreted

basolaterally using the Bioplex system. Results were corrected for

cell number and absolute concentrations plotted in pg/cell. There

was no significant difference between IL-13 stimulated PNECs and

PBECs compared with unstimulated PNECs and PBECs or

between PNECs and PBECs. B - Analysis of VEGF secreted

basolaterally using the Bioplex system. Results were corrected for

cell number and absolute concentrations plotted in pg/cell. There

was no significant difference between IL-13 stimulated PNECs and

PBECs compared with unstimulated PNECs and PBECs or

between PNECs and PBECs. C - Analysis of GM-CSF secreted

basolaterally using the Bioplex system. Results were corrected for

cell number and absolute concentrations plotted in pg/cell. IL-13

stimulated PNECs secreted significantly more GM-CSF compared

with unstimulated PNECs (p = 0.039). Additionally there was no

significant difference in GM-CSF secretion between IL-13

stimulated and unstimulated PBECs or between PBECs and

PNECs.

(TIF)

Methods S1 Full descriptions of each method used in
the study are provided in the supplementary methods
section.
(DOC)
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