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Artificial intelligence and capsule endoscopy: unravelling the 
future

Miguel Mascarenhas, João Afonso, Patrícia Andrade, Hélder Cardoso, Guilherme Macedo
Hospital de São João, Porto, Portugal

The applicability of artificial intelligence (AI) in gastroenterology is a hot topic because of 
its disruptive nature. Capsule endoscopy plays an important role in several areas of digestive 
pathology, namely in the investigation of obscure hemorrhagic lesions and the management 
of inflammatory bowel disease. Therefore, there is growing interest in the use of AI in capsule 
endoscopy. Several studies have demonstrated the enormous potential of using convolutional 
neural networks in various areas of capsule endoscopy. The exponential development of the 
usefulness of AI in capsule endoscopy requires consideration of its medium- and long-term 
impact on clinical practice. Indeed, the advent of deep learning in the field of capsule endoscopy, 
with its evolutionary character, could lead to a paradigm shift in clinical activity in this setting. In 
this review, we aim to illustrate the state of the art of AI in the field of capsule endoscopy.
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gastroenterology

Ann Gastroenterol 2021; 34 (3): 300-309

Introduction 

Artificial intelligence (AI) has played an increasing role 
in the technological development of clinical practice and 
biomedical academic activity [1]. The potential of AI has 
applications over a range of different medical specialties, while 
specialties with a strong imaging and diagnostic component 
have assumed a leading position in the implementation of 
this technology [2]. Indeed, there is a growing awareness and 
perception of the innumerable opportunities and disruptive 
nature of AI in clinical practice [3].

AI is defined as the use of computers and technology to 
simulate intelligent behavior and critical thinking comparable 
to that of a human being [4]. The ever growing need to provide 
high-quality and cost-efficient global healthcare has resulted in 
a corresponding expansion in the development of computer-
based and robotic healthcare tools that rely on artificially 
intelligent technologies [5]. In 2016, healthcare was the most 
funded sector regarding AI research, and investment continues 

to pour into this sector [6]. AI, machine learning (ML), and 
deep learning are overlapping disciplines [7], with many 
current applications in the various fields of the healthcare 
sector. With the advent of the big data era, the accumulation of 
a gigantic number of digital images and medical records created 
an unparalleled set of resources for ML [8]. The relationship 
between AI, ML, and deep learning is summarized in Fig. 1.

ML is based on the recognition of patterns that can be 
applied to medical images [9], laboratory medicine [10], drug 
discovery [11], and even clinical practice [12]. ML is based on 
the introduction of algorithms that ingest input data, apply 
computer analysis to predict output values within an acceptable 
range of accuracy, identify patterns and trends within the data, 
and finally learn from previous experience [13]. ML can be 
either supervised or unsupervised.

A supervised ML algorithm uses the available training data 
(images from capsule endoscopy for example) to learn a function 
by mapping certain input variables/features from the training data 
onto a qualitative or quantitative output/target (e.g., identifying 
protuberant lesions in the small bowel) [14]. A frequently used 
example is training a model to differentiate between apples, 
oranges and lemons. The “label” of each type of fruit is supplied 
to the algorithm, along with features such as color, size, weight 
and shape, and by referring to a set of learning data the algorithm 
determines the combinations of features that differentiate the 
fruits [15]. In medical applications, once a model has been 
developed and perfected, it is tested on novel patients whose data 
were not included in the training set, to determine its external 
validity and subsequent applicability to other patients [13].

On the other hand, unsupervised ML methods rely on the 
arbitrary aggregation of unlabeled data sets to yield groups 
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Artificial Intelligence
Machines simulate intellectual
patterns similar to those of the
human brain, namely the ability
to learn and solve new problems

Machine Learning
Computer ability to learn new
tasks through automatic data

analysis - supervised or
unsupervised

Deep learning
Machine learning subtype
through complex neural

networks, based on the biological
functioning of the human brain

Figure 1 Relationship between different levels of artificial intelligence

or clusters of entities with shared similarities that may be 
unknown to the user prior to the analysis [14]. Unsupervised 
ML algorithms are data-driven techniques that automatically 
learn from the relationships between elementary bits of 
information associated with each variable of a dataset [16]. The 
combination of and potential synergy between supervised and 
unsupervised methods of ML holds great promise in the field 
of gastroenterological endoscopy.

Deep learning is a subset of ML. The structure of neural 
networks, organized in multiple layers, allows them to address 
complex tasks [17]. Deep neural networks use the compositional 
hierarchy of signals, in which higher-level features are obtained by 
combining lower-level ones [18]. A convolutional neural network 
(CNN, or ConvNet) is a class of deep neural networks tailored to 
visual imagery analysis. CNNs resemble neurobiological processes, 
emulating the connectivity pattern between neurons [19]. 
In Fig.  2 we can see the similarities between a human neural 

network and a deep learning algorithm. CNNs are a type of feed-
forward artificial neural network inspired by the organization of 
the animal visual cortex, whose individual neurons are arranged 
in such a way that they respond to overlapping regions tiling the 
visual field [20]. Therefore, CNNs require less preprocessing and 
are also less dependent on prior knowledge and human effort. 
CNNs exhibit superior performance when compared to other 
deep learning architectures, namely in terms of object detection 
and recognition [21]. The fields of application of CNNs vary from 
abnormality detection and disease classification to computer-
aided diagnosis [22]. Deep learning and CNNs are disruptive and 
have excelled in the detection of a range of diseases in capsule 
endoscopy [23]. 

Application in capsule endoscopy 

Capsule endoscopy is one of the branches of 
gastroenterology that can benefit the most from the application 
of this type of technology. Indeed, the use of AI in this field 
shows great promise and capsule endoscopy can serve as a 
stepping stone for the broader application of AI in endoscopy 
and gastroenterology. Below, we summarize the state of the art 
regarding the use of AI in capsule endoscopy.

AI and bleeding lesions

One of the fields in which the automation of videocapsule 
diagnostics has undergone enormous advances is in the 
detection of gastrointestinal (GI) hemorrhage, namely from 
ulcers and vascular lesions. In 2007, Lau et al developed a 
model capable of detecting the presence of hemorrhage with 
a sensitivity of 88.3%, using simple color coding. However, 
this model was limited by the very low quality of the analyzed 
video images [24]. In the following year, Giritharan et al 
analyzed 400 frames of GI hemorrhage using a support-vector 
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Figure 2 Similarities between an oversimplified human neural network and a convolutional neural network
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machine (SVM) model and obtained results similar to Lau, 
with a sensitivity greater than 80% in the detection of positive 
bleeding cases [25]. 

In 2009, Li et al took a database of 200 hemorrhage images 
from 10 patients and, using a multilayer perceptron (MLP) 
model, developed an ML algorithm capable of detecting areas 
of bleeding with a sensitivity, specificity and accuracy greater 
than 90%. This study was particularly important because it 
was able to surpass the detection rate of the state-of-the-art 
methods at that time [26]. In the same year, Pan et al developed 
a CNN by analyzing the color and texture of the images. The 
algorithm was tested using 150 full videos of wireless capsule 
endoscopy (WCE), consisting of 3172 hemorrhage images and 
11,458 of normal mucosa. This model achieved a sensitivity of 
93% with a specificity of 96% for the detection of cases. The 
large number of images analyzed contributed to the robustness 
of this experiment [27].

In 2010, Charisis et al developed an SVM using a dataset 
of 40 images of normal mucosa and 40 images of ulcers. This 
model was able to detect positive cases with a sensitivity and 
specificity greater than 95%. However, it was only able to 
detect cases of medium or higher severity, which reduces its 
applicability in real clinical practice [28].

In 2014, Fu et al developed a computer-aided design (CAD) 
method based on SVM, capable of detecting hemorrhage with 
a sensitivity, specificity and accuracy of 99%, 94% and 95%, 
respectively. This method was particularly interesting because 
it introduced a new form of image analysis. The developed 
model analyzed super pixels—grouped sets of pixels of similar 
characteristics in each frame—which made it possible to reduce 
the computation costs compared to the analysis of each isolated 
pixel, while improving the detection capacity compared to the 
overall analysis of a frame [29]. In the same year, Gosh et al 
used 30 videos of WCE and, using 50 images of hemorrhage 
and 200 of normal mucosa for training the model, developed 
an SVM classifier applied to 2000 test images, achieving a 
sensitivity of 93% and specificity of 95% [30].

In December 2015, Hassan et al used 1200 training frames 
and 1720 testing frames to develop a new local texture descriptor 
that was capable of obtaining sensitivities and specificities 
above 98.9%, significantly higher than what had been done to 
date. In addition, this method had a low computational cost, 
making it suitable for real-time implementation [31].

In 2018, Fan et al developed a method for simultaneous 
detection of ulcers and mucosal erosions, with a high accuracy 
of 95.2% and 95.3%, sensitivity of 96.8% and 93.7%, and 
specificity of 94.8% and 96.0% in detecting ulcers and erosions, 
respectively. This study was relevant since it did not evaluate an 
isolated lesion, but instead a set of pathological entities [32].

In January 2019, Leenhardt et al developed a CNN method 
capable of detecting small-bowel angiectasias, using 6360 
still frames from 4166 different videocapsule videos. This 
study, given the large number of patients covered, proved to 
be extremely robust and presented excellent results, with 
a sensitivity of 100% and specificity of 96%, an excellent 
starting point for future automated diagnostic software [33]. 
In fact, angiectasias are the most common lesions diagnosed in 

patients with medium GI bleeding undergoing video capsule 
endoscopy. 

In August of 2019, Pokorelov et al developed a combined 
color and texture algorithm with excellent computational cost 
and efficiency. Using 300 bleeding frames and 200 nonbleeding 
or normal frames for the training dataset (500 frames) and 
500 bleeding and 200 nonbleeding frames (700 frames) for the 
testing dataset, they were able to obtain a sensitivity, specificity 
and accuracy of 97.6%, 95.9% and 97.6%, respectively [34]. 
Also, in August of the same year, Aoki et al developed a 
CNN method that compared the time and effectiveness of 
videocapsule reading by 2 processes: (A) endoscopist-alone 
readings; and (B) endoscopist readings after a first screening by 
the proposed CNN. Mean reading time of small-bowel sections 
by endoscopists was significantly shorter during process B 
(expert, 3.1 min; trainee, 5.2 min) compared to process A 
(expert, 12.2 min; trainee, 20.7 min) (P<0.001). For 37 mucosal 
breaks, the detection rate by endoscopists was not significantly 
lower in process B (expert, 87%; trainee, 55%) compared to 
process A (expert, 84%; trainee, 47%). This study was extremely 
important because it demonstrates the applicability of these 
auxiliary diagnostic methods in daily clinical practice, enabling 
a significant reduction in the video capsule reading time [35].

More recently, in March 2020, Tsuboi et al used 2237 images 
of WCE and created a CNN system capable of detecting small-
bowel angiectasias with a sensitivity of 98.8% and specificity 
of 98.4% [36]. In July 2020, Aoki et al developed a CNN using 
images from 41 patients, with a total of 27,847 images, capable 
of detecting blood in the intestinal lumen with a sensitivity 
of 96.6%, specificity of 99.9% and accuracy of 99.9%. The 
performance of the network was compared with a conventional 
tool (suspected blood indicator) and proved able to outperform 
this tool [37].

AI and protuberant lesions

One of the most profitable areas of investigation in this 
context is the detection and classification of protruding 
structures of the small intestine mucosa, since its analysis 
by other methods is extremely difficult. However, using 
videocapsule images it is also possible to detect abnormal 
structures present elsewhere in the GI tract.

In 2008, Barbosa et al, based on 100 images of normal 
mucosa and 92 images of tumor lesions and using an MLP 
method, developed an algorithm capable of being applied to real 
data, with a sensitivity of 98.7% and specificity of 96.6% in the 
detection of tumors of the small intestine [38]. The following 
year, using the same AI method, Li et al analyzed 300 video 
images from 2 WCE exams and developed a model with an 
accuracy of 86.1% (sensitivity and specificity of 89.8%). The fact 
that they only used data from 2 patients limits the applicability 
of this model in other settings, such as real-life medical practice 
[39]. The same author, in April 2011, applying a model based on 
the color difference between tumor lesions and normal mucosa, 
used a dataset of 1200 images from 10 different patients to 
develop a CAD system that demonstrated a sensitivity of 82.3% 
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and specificity of 84.7% in the detection of GI tumors through 
the analysis of WCE exams [40].

Barbosa et al also carried out a further study in 2011, with 
a more comprehensive dataset (700 tumor frames and 2300 
normal frames). Through the analysis of mucosal textural 
information, they developed a method with sensitivity and 
specificity greater than 93% for the detection of tumors of the 
small intestine [41].

Zhao et al, in the same year, created a dataset of 1120 images 
(560 of polyps and 560 of normal mucosa), with the particularity 
of including a group of consecutive frames of injury and normal 
mucosa, to verify whether the simultaneous analysis of 5 frames 
of the same lesion is superior to the analysis of 1 isolated frame. 
This study was an important innovation, since until then most 
of the methods developed were based on the analysis of only one 
image of each lesion. Zhao demonstrated that a polyp sequence 
can have apparently normal frames and that a normal mucosa 
sequence can have apparently abnormal frames. By analyzing 
several consecutive frames, the number of false negatives and 
false positives in the model can be reduced. In this case, with 
the analysis of consecutive images, they managed to improve 
the specificity and sensitivity of single frame evaluation, from 
91% and 83% to 95% and 92%, respectively [42].

In August 2015, Vieira et al compared a method of SVM and 
one of MLP in the automatic detection of small intestine tumors, 
through the analysis of 700 abnormal frames from 14 patients 
and 2500 normal frames from 19 individuals, concluding 
that the MLP method is superior to the older AI method in 
sensitivity, specificity and accuracy [43]. In 2017, Yuan et al 
developed a CAD method capable of identifying polyps and also 
distinguishing other structures, such as bubbles and the presence 
of cloudy luminal material, with an accuracy greater than 95%. 
This method is particularly important, since it allows the removal 
of luminal content that makes it difficult to evaluate images [44].

In March 2019, Blanes-Vidal et al managed to establish a 
correlation in 255 patients between the detection of colorectal 
polyps in colonoscopy and those detected in WCE in the same 
patients, with a sensitivity of 97.1% and specificity of 93.3%. 
This study represents an important advance in the applicability 
of this technique as a possible method of screening for 
colorectal cancer in the future [45].

In February 2020, Saito et al, through the analysis of a robust 
database of 30,584 images of protruding small intestine lesions, 
developed a CNN method capable of not only identifying lesions 
but also classifying them as polyps, nodules, epithelial tumors, 
submucosal tumors and venous structures, with sensitivities of 
86.5%, 92.0%, 95.8%, 77.0%, and 94.4%, respectively. This study 
was a pioneer in the use of several types of lesions in a single 
model, and allowed these methods to approach more closely 
to real clinical practice, where several pathological changes can 
occur simultaneously and require proper distinction [46].

AI and inflammatory bowel disease

Another medical field where the videocapsule has a 
well-established role is in the evaluation of patients with 

inflammatory bowel disease, particularly those with Crohn’s 
disease (CD), since it allows an assessment of all the small 
intestine mucosa. In addition to being able to assist in the 
confirmation of the CD diagnosis, it also allows the extent of 
disease activity and response to therapy to be assessed, through 
the application of scores such as the Lewis score [47].

In 2010, Seshamani et al, using an SVM-based similarity 
learning method, used videocapsule images of 47 exams of CD 
patients, to manually extract 724 images of injury areas. In this 
way, they developed a model capable of detecting suggestive 
areas of injury with an accuracy of 88%, which allowed to 
drastically reduce the training time of the model, without 
compromising its effectiveness [48].

In March 2020, Klang et al developed a deep-learning 
algorithm, using the analysis of 17,640 endoscopic capsule 
images from 49 patients with CD and healthy individuals, that 
achieved an accuracy greater than 95%, revealing the potential 
of this technology in the prediction of small-bowel findings 
based on videocapsule endoscopy in CD patients [49]. Also, 
in March 2020, Freitas et al assessed the correlation between 
classic videocapsule reading and the use of a new software 
tool of the RAPID Reader®, TOP100, in the application of 
the Lewis score in CD patients. They examined 115 patients 
and showed a strong agreement (89.6% of the cases) between 
the 2 methods of capsule reading. This study is particularly 
important because it demonstrates the clinical applicability of 
this type of diagnostic aid [50].

More recently, in June 2020, Y. Barash, in collaboration 
with the aforementioned E. Klang, developed a neural network 
capable of classifying the severity of ulcers in patients with CD. 
To achieve that, they classified 2598 images containing ulcers 
on a numerical scale of 1-3. They divided the experiment 
into 2 parts. In the first part, they evaluated the interobserver 
agreement between 2 different evaluators, and in the second 
they used a CNN to automatically classify the ulcers. They 
obtained a global human interobserver agreement of 31% (76% 
for grade I-III ulcers) vs. a global neural network agreement of 
67% (91% for grade I-III) [51].

AI and celiac disease

Celiac disease affects around 1% of the world population, 
with an increasing prevalence in recent years. This chronic 
autoimmune disorder, characterized by an immune attack 
on the small intestine mucosa, is triggered by the ingestion 
of gluten in genetically susceptible individuals [52]. The gold 
standard for diagnosis is the presence of duodenal villous 
atrophy in endoscopic biopsies. However, this is an invasive and 
expensive procedure. Therefore, capsule endoscopy appears as 
a more practical approach in some settings and an alternative 
with fewer associated risks [52]. With the increasing use of this 
diagnostic method, computer models have been developed to 
assist doctors in diagnosing this disorder using a videocapsule 
enteroscopy video.

In 2010 Ciaccio et al developed a threshold classifier to 
classify images of patients with celiac disease. Using images 
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from 21 exams (11 of patients with celiac disease and 10 
controls) and through the analysis of 9 different characteristics 
of each frame, they developed a model capable of predicting 
the occurrence of the disease with a sensitivity of 80% and a 
specificity of 96%. Later, in 2014, the same investigation team 
developed a new model capable of predicting the occurrence of 
the disease with a sensitivity of 84.6% and specificity of 92.3%, 
using base images from patients and controls [54].

In 2017, Zou et al, using data from 6 patients with celiac 
disease and 5 controls, developed a CNN to quantitatively 
measure the presence and degree of intestinal mucosa 
damage. Its model, using the latest technology in the field of 
AI, obtained a sensitivity and specificity of 100% in the small 
group tested. In addition, they were also able to classify the 
degree of mucosal injury, opening doors for the future analysis 
of a correlation between the videocapsule images and the 
histological evaluation [55].

More recently, Koh et al developed a computer-aided 
detection system, decomposing the video images of 13 
control tests and 13 patients. This system, with an accuracy 
of 86.5% and a sensitivity and specificity of 88.4% and 84.6%, 
respectively, demonstrates the potential to effectively identify 
patients with celiac disease [56].

In April 2020, Wang et al, using a deep learning method, 
developed a CNN system, based on data from 52 patients and 
55 healthy controls, that demonstrated a remarkable accuracy 
(accuracy, sensitivity and specificity 95.9%, 97.2% and 95.6%, 
respectively). This study was particularly robust given the large 
number of images collected, as well as the type of analysis used [57].

AI and luminal content

AI may also play a key role in locating the capsule in the 
GI tract, as well as in the detection and elimination of artifacts 
that may compromise the mucosal evaluation, thus reducing 
the required examination reading time and also reducing bias 
and interpretation errors. In 2012, Seguí et al developed a 
model capable of detecting, isolating and classifying luminal 
content, to remove it from image view. For this, he resorted to 
images of clean mucosa and images of luminal content, which 
they divided into turbid liquid and bubbles. The proposed 
system was then evaluated using a large dataset. The statistical 
analysis of the performance showed an accuracy above 90%, far 
superior to that of previously existing models. In addition, this 
was the first work to distinguish between the different artifacts 
detected throughout the video capsule examination [58].

In 2013, Ionescu et al analyzed more than 10,000 frames 
from 10 different patients to detect images with artifacts and 
thus reduce the number of images that would have to be 
analyzed by the clinician, thus making the reading process 
faster and more effective. Through a CNN method, they 
managed to develop an algorithm with an accuracy of 88.2% in 
the detection of bubbles and food debris [59].

In 2018, Wang et al proposed to develop a model capable of 
automatically detecting the location of the boundaries between 
the stomach and the duodenum–pylorus. For this, they 

analyzed 42,000 images and randomly selected 3801 images 
from the pyloric region, 1822 pre-pyloric and 1979 post-
pyloric. Using an SVM method, the investigators were able to 
detect the location of the pylorus in 30 real WCE videos, with 
an accuracy of 97.1% and a specificity of 95.4% [60]. All these 
types of analysis can contribute greatly to the optimization of 
the evaluation of videocapsule images, to make the reading 
process less time consuming and considerably more effective.

AI and hookworm

Parasitic infections represent another type of pathological 
entity that can be detected by this diagnostic method. Of all the 
parasites that reach the GI tract, hookworm infection is one 
of the most common and serious, affecting about 600 million 
people worldwide. The hookworm is a helminth that presents 
itself as a tubular structure, with grayish, white or pinkish 
semi-transparent body [61].

In March 2016, Xiao et al used 440,000 images from 
11 patients to develop a mechanism capable of automatically 
detecting these helminths in videocapsule images. This was 
one of the first studies to address this topic. Its model showed 
a sensitivity and specificity close to 78%. The low effectiveness 
of this model is mainly due to the difficulty in correctly 
distinguishing the parasite’s structure from some bubbles and 
intestinal folds. As a way of correcting this low performance, 
they raise the possibility of considering the temporal and 
spatial relationship between consecutive images in future 
works [62]. In May 2018, He et al used 1500 images to create a 
CNN model capable of detecting the presence of hookworms 
with a sensitivity of 84.6% and specificity of 88.6%; these results 
were superior to those previously obtained in this area [63].

The automatic detection of this type of parasite remains 
a very challenging task, since the wide variety of aspects that 
they can present is a huge obstacle to the development of 
effective methods for their detection. Thus, it will be necessary 
to develop more research in order to improve the accuracy 
of these methods in the detection of intestinal helminths. 
Although there are alternative tests available, such as the 
parasitological examination of the stools, this task remains an 
important proof of concept for AI in video capsule endoscopy. 
A summary of all the studies discussed can be found in Table 1.

AI: promises and pitfalls

In several studies AI was able to compensate for the limited 
experience of novice endoscopists and some errors by even 
the most experienced endoscopists. Human nature makes 
their performance variable, and diagnostic performance may 
certainly be impaired by a decrease of awareness and attention, 
or forgetfulness due to fatigue, anxiety, or any other physical 
or emotional stress [64]. The scarcity of human resources 
and the increasing workload can be alleviated with the 
implementation of AI systems. AI may also have a particularly 
important role in the emergency department, where less time 
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Reference 
Author [Ref.]

Field of 
application

Year of 
publication

Proposed goals Number of 
subjects

AI type Results

Ciaccio  
et al [54]

Celiac disease 2010 Evaluate if 
quantitative markers 
could assist in the 
screening for celiac 
disease

11 patients and 
10 controls

Threshold classifier 
(quantitative analysis 
of 9 different frame 
characteristics)

Sensitivity of 80% and 
a specificity of 96% in 
predicting the occurrence of 
the disease

Ciaccio  
et al [54]

Celiac disease 2014 Improve the image-
based detection of 
villous atrophy and 
other abnormality 
in videocapsule 
endoscopy, using the 
grayscale brightness 
of each frame

13 patients and 
13 controls

Threshold classifier 
(quantitative 
analysis of grayscale 
brightness)

Sensitivity of 84.6% and 
specificity of 92.3%

Zou et al [55] Celiac disease 2017 Measure the presence 
and degree of 
intestinal mucosa 
damage

6 patients and 6 
controls

CNN Sensitivity and specificity 
of 100% in the cases tested. 
They were also capable 
to classify the degree of 
mucosal damage

Koh et al [56] Celiac disease 2019 Identify patients with 
celiac disease

13 patients and 
13 controls

SVM Accuracy of 86.5% and a 
sensitivity and specificity 
of 88.4% and 84.6% 
respectively

Wang  
et al [57]

Celiac disease 2020 Identify patients with 
celiac disease

52 patients and 
55 controls

CNN Accuracy of 95.9%, 
sensitivity of 97.2% and 
specificity of 95.6% 

Seshamani  
et al [48]

Inflammatory 
bowel disease

2010 Detecting suggestive 
areas of Crohn’s 
disease injury

47 exams SVM Accuracy of 88%

Klang  
et al [49]

Inflammatory 
bowel disease

2020 Detecting suggestive 
areas of Crohn’s 
disease injury

49 exams Deep learning 
algorithm

Accuracy greater than 95%

Freitas  
et al [50]

Inflammatory 
bowel disease

2020 Assess the correlation 
between classic 
videocapsule reading 
and the use of a 
new software tool in 
patients with celiac 
disease

115 patients NA Agreement on 89.6% of the 
cases between the 2 methods

Barash  
et al [51]

Inflammatory 
bowel disease

2020 Access the 
interobserver 
agreement between 2 
human observers and 
a neural network

49 exams Ordinary neural 
network

Global human interobserver 
agreement of 31% (76% 
between grade I-III ulcers) 
vs. a global neural network 
agreement of 67% (91% 
between grade I-III)

Xiao et al [62] Hookworm 
infection

2016 Automatically detect 
hookworms in WCE 
videos

11 patients Rusboost method Sensitivity and specificity 
close to 78%

He et al [63] Hookworm 
infection

2018 Detect hookworm 
presence

1500 images CNN Sensitivity of 84.6% and 
specificity of 88.6%

Segui et al [58] Luminal 
content

2012 Detect video artefacts Large dataset NA Accuracy above 90% - first 
work to distinguish between 
the different artifacts

Wang  
et al [59]

Capsule 
location

2018 Detect pylorus 
location

3801 images from 
the pyloric region

SVM Accuracy of 97.1% and 
specificity of 95.4%

Table 1 Summary of studies using AI methods to aid videocapsule video analysis

(Contd...)
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Reference 
Author [Ref.]

Field of 
application

Year of 
publication

Proposed goals Number of 
subjects

AI type Results

Barbosa 
et al [38]

Protruding 
structures

2008 Small intestine tumor 
detection

100 images of 
normal mucosa 
and 92 images of 
tumor lesions

MLP Sensitivity of 98.7% and 
specificity of 96.6%

Li et al [39] Protruding 
structures

2009 Small intestine tumor 
detection

WCE videos from 
2 patients

MLP Accuracy of 86.1%, 
sensitivity of 89.8% and 
specificity of 89.8%

Li et al [40] Protruding 
structures

2011 GI tumor detection 10 patients SVM Sensitivity of 82.3% and 
specificity of 84.7%

Barbosa 
et al [41]

Protruding 
structures

2012 Small intestine tumor 
detection

700 tumor frames 
and 2300 normal 
frames

MLP Sensitivity and specificity 
greater than 93%

Zhao et al [42] Protruding 
structures

2012 Verify if using 
consecutive frames 
from the same lesion 
was more effective 
than single frame 
analysis

560 polyp frames 
and 560 normal 
mucosa frames

NA Managed to increase the 
specificity and sensitivity 
of single frame evaluation 
from 91% and 83% to 95% 
and 92% with the analysis of 
consecutive images

Vieira  
et al [43]

Protruding 
structures

2015 Compare a method 
of SVM and one of 
MLP in the automatic 
detection of small 
intestine tumors

700 abnormal 
and 2500 normal 
frames from 19 
patients

MLP vs. SVM The MLP method was 
superior to the older AI 
method in sensitivity, 
specificity and accuracy

Yuan et al [44] Protruding 
structures

2017 Detect polyps and 
distinguish it from 
other structures

3000 normal 
mucosa frames 
and 1000 polyps

Stacked Sparse 
Autoencoder with 
Image Manifold 
Constraint (SSAEIM)

Accuracy greater than 95%

Blaines-Vidal 
et al [45]

Protruding 
structures

2019 Establish a match 
between the colorectal 
polyps detected in 
colonoscopy and 
those detected in 
WCE 

255 patients CNN Accuracy of 96.4%, 
sensitivity of 97.1%) and 
specificity of 93.3%

Saito et al [46] Protruding 
structures

2020 Identify lesions but 
also classify them as 
polyps, nodules, 
Epithelial tumors, 
submucosal tumors 
and venous structures

30,584 images of 
protruding small 
intestine lesions

CNN Sensitivities of 86.5%, 92.0%, 
95.8%, 77.0%, and 94.4% 
for the different types of 
structures

Lau et al [24] GI 
hemorrhage

2007 Detect the presence of 
GI hemorrhage using 
a simple color coding

577 abnormal 
images

NA Sensitivity of 88.3%

Giritharan  
et al [25]

GI 
hemorrhage

2008 Detect the presence of 
GI hemorrhage

400 GI bleeding 
frames

SVM Sensitivity greater than 80%

Li et al [26] GI 
hemorrhage

2009 Detect the presence of 
GI hemorrhage

10 patients (200 
bleeding frames)

MLP Sensitivity, specificity and 
accuracy greater than 90%

Pan et al [27] GI 
hemorrhage

2009 Detect the presence 
of GI hemorrhage 
analyzing the color 
and texture

150 full WCE 
videos

CNN Sensitivity of 93% with a 
specificity of 96% for the 
detection of cases

Charisis  
et al [28]

GI 
hemorrhage

2010 Detect GI ulcers 40 normal 
mucosa and 40 
ulcer images

SVM Sensitivity and specificity 
greater than 95% (only 
cases of medium or higher 
severity)

Table 1 (Continued)

(Contd...)
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Reference 
Author [Ref.]

Field of 
application

Year of 
publication

Proposed goals Number of 
subjects

AI type Results

Fu et al [29] GI 
hemorrhage

2014 Detect GI bleeding 
using super pixel 
analysis

20 different WCE 
videos

SVM Sensitivity, specificity and 
accuracy of 99%; 94% and 
95% respectively

Gosh et al [30] GI 
hemorrhage

2014 Detect GI bleeding 30 WCE videos SVM Sensitivity of 93%, specificity 
94.9%

Hassan  
et al [31]

GI 
hemorrhage

2015 Detect GI bleeding 1200 training 
frames and 1720 
testing frames

SVM Sensitivity and specificity 
above 98.9%

Fan et al [32] GI 
hemorrhage

2018 Simultaneous 
detection of ulcers 
and mucosal erosions

144 full WCE 
videos

CAD method based 
on deep learning 
framework

Accuracy of 95.2% and 
95.3%, sensitivity of 96.8% 
and 93.7%, and specificity 
of 94.8% and 95.9%, in 
detecting ulcers and erosions 
respectively

Leenhardt  
et al [33]

GI 
hemorrhage

2019 Detecting small bowel 
angiectasias

6360 still 
frames from 
4166 different 
videocapsule 
videos

CNN Sensitivity of 100% and 
specificity of 96%

Pokorelov  
et al [34]

GI 
hemorrhage

2019 Develop a color and 
texture algorithm 
with excellent 
computational costs

500 frames for 
the training 
dataset and 700 
frames for the 
testing dataset

SVM Sensitivity, specificity and 
accuracy of 97.6%, 95.9% 
and 97.6%

Aoki et al [35] GI 
hemorrhage

2019 Compare the time 
and effectiveness of 
videocapsule reading 
by endoscopist-alone 
and endoscopist 
readings after the 
first screening by a 
proposed CNN

NA CNN Mean reading time was 
significantly shorter during 
the second process without 
significantly decreasing in 
the detection rate

Tsuboi  
et al [36]

GI 
hemorrhage

2020 Detect small bowel 
angiectasis

2237 WCE 
images

CNN Sensitivity of 98.8% and 
specificity of 98.4%

Aoki et al [37] GI 
hemorrhage

2020 Detect GI bleeding 41 patients, with 
a total of 27847 
images

CNN Sensitivity of 96.6%, 
specificity of 99.9% and 
accuracy of 99.9%

AI, artificial intelligence; CAD, computer aided design; CNN, convolutional neural network; GI, gastrointestinal; ML, machine learning; 
MLP, multilayer perceptron; NA, not applicable; SVM, support-vector machine; WCE, wireless capsule endoscopy 

Table 1 (Continued)

is available for full capsule visualization and a faster view time 
is often necessary.

Despite convincing results and growing evidence of the 
central role of AI in technological evolution in the area of   
digestive endoscopy, the overwhelming majority of studies 
were designed in a retrospective manner. Furthermore, 
inherent bias, such as selection bias, cannot be excluded in this 
situation and real-life clinical application should be carefully 
tested and taken into consideration before validation of the AI 
solution. 

Spectrum bias is another pitfall of the current AI 
application to capsule endoscopy. Spectrum bias occurs when 
a diagnostic test is studied in a range of individuals who are 
different from the intended population for the test. AI systems 

are tailor-made, designed to fit the training dataset, and the 
risk of overfitting should not be ignored. As a matter of fact, 
the efficiency and validity of an AI learning model may not 
be completely applicable to a new dataset, and AI learning 
models are still vulnerable to overfitting issues despite recent 
mitigation efforts.

On the other hand, the efficiency and accuracy of ML 
increases as the amount of data increases. Capsule endoscopy 
produces a considerable quantity of data to feed the growth of 
the ML systems. Additionally, the advent of the big data era 
will inexorably propel the exponential development of AI 
in capsule endoscopy. Despite the many challenges, the fast 
development of AI will ensure a relevant role for AI in capsule 
endoscopy in clinical practice.
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Concluding remarks

The exponential development of the computational capacity 
of new computers, coupled with a greater understanding and 
accessibility of deep learning technologies, has made it possible 
to develop algorithms that are increasingly effective and 
applicable in the most diverse areas. Health, and particularly 
gastroenterology, are no exception. Undoubtedly, the future 
of the analysis of capsule endoscopy videos involves the use 
of auxiliary computerized methods that will not only facilitate 
the analysis of these images, but also improve the accuracy of 
diagnosis.

However, there is a pressing need for more research studies 
proving the usefulness of this technology in a clinical context, 
taking into account the computational costs, efficiency and 
accuracy of the technology. Indeed, there is still a long way 
to go before AI takes its place as an integral part of the daily 
clinical practice of the gastroenterologist.
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