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Abstract

Next-generation sequencers such as Illumina can now produce reads up to 300 bp with high throughput, which is attractive
for genome assembly. A first step in genome assembly is to computationally correct sequencing errors. However, correcting
all errors in these longer reads is challenging. Here, we show that reads with remaining errors after correction often overlap
repeats, where short erroneous k-mers occur in other copies of the repeat. We developed an iterative error correction pipe-
line that runs the previously published String Graph Assembler (SGA) in multiple rounds of k-mer-based correction with an
increasing k-mer size, followed by a final round of overlap-based correction. By combining the advantages of small and large
k-mers, this approach corrects more errors in repeats and minimizes the total amount of erroneous reads. We show that
higher read accuracy increases contig lengths two to three times. We provide SGA-Iteratively Correcting Errors (https://
github.com/hillerlab/IterativeErrorCorrection/) that implements iterative error correction by using modules from SGA.
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Introduction

The use of high-throughput sequencing techniques has
increased greatly over the past decade. Different sequencing plat-
forms are available, such as Illumina, PacBio, 454, IonTorrent and
Nanopore; Illumina is most widely used to date. While being lim-
ited to relatively short read lengths in the past, a single run on an
Illumina MiSeq machine can now produce 15 gigabases (GB) of
paired-end reads as long as 300 bp. The latest Illumina HiSeq
2500 machine can even produce up to 300 GB of paired-end
250 bp reads. This high throughput of long reads is attractive
for genome assembly. Although Illumina data already contain
relatively few errors at a rate of <1% [1], the probability that reads
are completely error-free is low, especially for longer 250 or
300 bp reads.

For genome assembly, it is desirable to use reads that are as
accurate as possible. Therefore, correction of sequencing errors

is an essential preprocessing step. Many tools for error correc-
tion of short read sequencing data exist: BFC [2], BLESS [3], Coral
[4], ECHO [5], EULER [6, 7], Fiona [8], Hammer [9], HiTEC [10],
Karect [11], Lighter [12], Musket [13], MyHybrid [14], Quake [15],
RACER [16], Reptile [17], SGA [18] and SHREC [19], among others.
All rely on errors being infrequent and sequencing coverage
being sufficiently high so that errors can be corrected using
other reads covering the same genomic locus. Most of these
tools can be divided into two categories according to how they
approach the correction of sequencing reads: k-mer-based cor-
rection, which deals primarily with base substitutions, and
overlap-based correction, which can also correct insertions and
deletions. A detailed overview of each approach and the exist-
ing tools is given by Laehnemann et al. [1].

The idea behind k-mer-based correction is that a sequencing
error will result in a k bp long substring of the read (k-mer) that
does not occur in the genome and thus has a low count in the
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input data. Such infrequent k-mers can be detected, and the er-
roneous base can be corrected if substituting it to another base
results in a k-mer that occurs more frequently (solid k-mer).
K-mer-based correction depends on a parameter choice for the
k-mer size, as well as for the count threshold of infrequent and
solid k-mers. The idea behind overlap-based correction is to
build a multiple sequence alignment of similar reads that prob-
ably come from the same genomic locus. Then, sequencing
errors are detected as rare differences in alignment columns
and are corrected with the alignment column consensus.
Overlap-based correction depends on parameters for the min-
imum read similarity, count thresholds for rare differences and
the minimum number of reads supporting the consensus base.

Previous studies have addressed the performance of some of
the error correction tools [20, 21]. Most tools perform well on the
tested data sets, and almost all reads can be corrected for smaller
genomes [20]. However, for complex repeat-rich genomes, such
as the human genome, a substantial proportion of the reads still
have errors after correction. For example, errors remain in 15–
20% of human 100 bp HiSeq reads after correcting with the top-
performing tool (Table 2 in [20]). This performance is even worse
for longer reads. Errors remain in more than half of 250 bp MiSeq
reads from the small Escherichia coli genome (Table 3 in [20]).

There are several possible reasons why sequencing errors
may remain uncorrected. First, reads with many errors are
more difficult to correct because they are not similar to other
reads from the same locus. However, such reads are easy to dis-
card because of many infrequent k-mers present in them.
Second, reads coming from a genomic locus with a low
sequencing coverage might not be corrected because of the lack
of solid k-mers in other reads from the same locus. Third,
sequencing errors might remain undetected if the error results
in a k-mer found elsewhere in the genome, which frequently
occurs in repeat regions. While the first two cases are harder to
address computationally, correction of errors in repeats can be
improved for longer 250 or 300 bp reads.

Here, we show that many reads with uncorrected sequencing
errors after standard correction overlap repeats. In these reads,
short erroneous k-mers occur identically in another repeat copy,
and are thus mistakenly considered correct. To improve error
correction of long Illumina reads, we used modules from the
String Graph Assembler and developed an iterative error correc-
tion pipeline that runs multiple rounds of k-mer-based correction
with an increasing k-mer size, followed by a final round of over-
lap-based correction. We show that this iterative strategy effect-
ively corrects errors in repeats and reduces the total amount of
erroneous reads. We further show that this higher read accuracy
translates into two to three times longer contig assemblies.

Methods
Simulated data sets

To investigate why sequencing errors remain after standard
error correction and to test if iterative error correction improves
read accuracy, we first simulated reads from known genomes.
Simulated data have the advantage that we know the true se-
quence of every sampled read before errors were introduced.
This allows us to accurately measure whether a read is error-
free after each round of error correction.

Our analyses are based on the human chromosome 11
(135 Mb), Anolis carolinensis chromosome 4 (156 Mb) and chicken
chromosome 14 (15 Mb). We first filled assembly gaps and am-
biguous bases (N’s) with random sequences. We then created a

second haplotype by introducing heterozygosity at the known
rate for each species [single nucleotide polymorphism (SNP)
rate 0.001 for human, 0.003 for lizard and 0.0006 for chicken, ac-
cording to [22]; default indel rate 0.0001; no structural variation]
using pirs [23]. Last, we used ART [24] and a MiSeq 2� 300 bp
specific error profile to simulate reads from the three chromo-
somes at 30X coverage each (parameters: 15X coverage for each
haplotype, 550 6 55 bp fragment size). All simulated data sets
and the error-profile are available at http://bds.mpi-cbg.de/hiller
lab/IterativeErrorCorrection/.

Real data

To test our error correction strategy on real data sets, we down-
loaded 2� 250 bp MiSeq reads for the rice strains IR64, DJ123
and Nipponbare (SRX180591, SRX186093 and SRX179262, re-
spectively; http://schatzlab.cshl.edu/data/rice/). We also down-
loaded a human 2� 100 bp HiSeq read data set (Library 1 from
http://gage.cbcb.umd.edu/data/). To be consistent with our
simulations, we down-sampled all data sets to 30X coverage.

Overlap of reads with repeats

We obtained coordinates of interspersed and tandem repeats
for all three chromosomes from the UCSC genome browser
‘rmsk’ tables [25]. All repeats that are at most 10% diverged from
the repeat consensus were downloaded. This set covers 9.5% of
human chromosome 11, 2.3% of lizard chromosome 4 and 1% of
chicken chromosome 14. For completeness, we also analyzed
overlap with all repeats regardless of divergence rate
(Supplementary Table 1).

Error correction strategy

In our iterative error correction pipeline, base substitutions are
corrected in subsequent rounds of k-mer-based correction with an
increasing k-mer size. To also correct remaining small insertions
and deletions, we run a final round of overlap-based correction.

We tested our strategy using the String Graph Assembler [18],
because (i) the SGA code is open source; (ii) it implements both
the k-mer-based and overlap-based correction approaches; (iii)
SGA is modular, allowing us to run only selected steps in the gen-
ome assembly workflow; (iv) SGA works with reads of different
lengths and uses efficient data structures to handle large
amounts of data [26]; and, most importantly, (v) it is one of the
best correction methods for complex repeat-rich genomes [21].

The SGA error correction modules were not designed to
work with large k-mer sizes, where at certain loci only a few
reads might overlap by k bp or more. To avoid mis-corrections
in these regions, for example, by mis-correcting one infrequent
k-mer to a k-mer that has an only slightly higher frequency, we
added the following parameters to SGA:

K-mer-based correction:
–count-offset¼N (default 1): When correcting a k-mer, require

the count of the new k-mer to be at least N higher than the
count of the old k-mer.

Overlap-based correction:
–base-threshold¼N (default 2): Attempt to correct bases in a

read that are seen less than N times in a specific column of
the multiple sequence alignment.

–min-count-max-base¼N (default 4): When correcting a base,
require the count of the new consensus base to be at least N.
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We used these parameters: –count-offset 2, –min-overlap 40,
–error-rate 0.01 and defaults otherwise.

Measuring read accuracy for the simulated data sets

Because we aim at maximizing the number of error-free reads,
we distinguish between ‘correct’ and ‘erroneous’ reads. A read
is considered correct, if its sequence is identical to the genomic
locus of the haplotype where it was sampled from. In contrast,
a read is considered erroneous, if it has at least one mismatch
or insertion/deletion. We also consider a read as erroneous, if
its sequence is identical to the alternative haplotype, which can
occur by mistaking a SNP for an error and correcting it to the
other allele. Our approach is thus more stringent than consider-
ing a read as correct if it is found identically anywhere in the
diploid genome. In addition to counting how many reads are
correct, we determined (i) the total number of sequencing errors
by aligning the sequence of a read to the sequence of the correct
read, and (ii) the percent of the genome covered by� 10/20/30
correct reads from the genomic coordinates where the read was
sampled from.

Measuring read accuracy for the real data sets

We determined the number of error-free reads by counting the
number of reads that map exactly to the reference genome.
Specifically, we ran bowtie2 [27] with default parameters and
counted the number of occurrences of the flag ‘MD:Z:’, followed
by the exact read length in the resulting sam files. It should be
noted that the rice reference genome has assembly gaps, am-
biguous bases (N’s) and only one haplotype, which implies that
not all reads can map exactly, even if they are error-free.

Genome assembly

We used SGA to assemble error-corrected reads into contigs. In
total, six contig sets were separately assembled for (i) reads
after the single best k-mer-based correction, and (ii) reads after
correction with our iterative strategy. Potentially erroneous
reads were filtered out with ‘sga filter’ (parameters: –kmer-
threshold 2, –homopolymer-check, –low-complexity-check; de-
faults otherwise), and an overlap-based string graph was gener-
ated with ‘sga overlap’ (parameters: –min-overlap 75; defaults
otherwise). Contigs were assembled with ‘sga assemble’, and
the minimum overlap between sequences in the string graph
was optimized for each contig set (parameters: –min-overlap
ranging from 75 to 200, –resolve-small 10; defaults otherwise).

We assessed assembly quality by testing how many of the
assembled �400 bp contigs map back to a single continuous
genomic region by using Blat with the parameters -tileSize¼18
-minMatch¼4 -maxIntron¼10. Then, we counted every contig
where at least 98% of its sequence matches with at least 98%
identity to the genome and where the alignment span in the
genome is at most 102% of the contig length. Manual inspection
of several contigs that did not fulfill these criteria showed that
these are short, <1000 bp sequences and match better to the
other chromosome haplotype, which was not used for Blat. To
assess the coverage of complete genes, we used BUSCO [28] in
genome mode with the vertebrate gene set.

Iterative error correction using other methods

For RACER, we set the genome size to the size of human
chromosome 11 (135006516bp). Lighter was run with -K kmer_
length genome_size (-K 32 135006516). For BFC and Musket, we

specified the k-mer size with the -k parameter. All other param-
eters were the default values.

Results
Most uncorrected 300 bp reads overlap repeats

We started by using simulated reads to investigate why error
correction does not correct all errors. Before any correction, 87%
of all reads were erroneous. After k¼ 40 correction, 12.9, 9.6 and
5% of the human, lizard and chicken reads that became correct
overlap repeats, whereas 64.8, 24.2 and 10.5% of the reads that
still contained errors overlap repeats, which is 2- to 5-fold
higher.

These numbers show that errors in repeat regions are par-
ticularly problematic and often remain uncorrected. Because re-
peats have many similar copies in the genome, a sequencing
error in a repeat-overlapping read has a higher probability to
result in an erroneous k-mer that occurs identically in another
repeat copy. K-mer correction with a small k will fail to detect
this erroneous k-mer as infrequent (not solid) because it
is found in reads that come from the other repeat copy.
Consequently, the error will not be corrected. Figure 1 shows an
example from our simulated data set.

Iterative error correction corrects
repeat-overlapping reads

Based on the example in Figure 1, we reasoned that additional
correction rounds with larger k-mer sizes could correct add-
itional reads. To test this, we subjected the simulated data sets
after k¼ 40 correction to additional rounds of correction, with k

increasing up to two-third of the read length (k¼ 75/100/125/
150/175/200) and measured the percentage of erroneous reads.
Consistently, for all three species, additional correction rounds
substantially decreased the amount of erroneous reads (lines in
Figure 2A; Supplementary Table 2). No single correction round
achieved the accuracy of iterative correction, regardless of

whether we used k-mer-based correction with varying ks or
overlap-based correction (crosses in Figure 2A). For example,
while 3.4% of the human reads have errors after the single best
k¼ 75 correction, only 0.82% have errors after iterative correc-
tion until k¼ 200. In agreement with the observed decrease in
the percentage of erroneous reads, subsequent correction
rounds also steadily decrease the total number of errors and in-
crease the percentage of the genome covered by 10, 20 or 30 cor-
rect reads (Supplementary Tables 3 and 4).

We next explored whether iterative error correction helps to
correct errors in repeat-overlapping reads. After each correction
round, we extracted newly corrected reads that were erroneous
in the previous round, and checked for overlap with repeats. We
found that the percentage of repeat-overlapping reads is sub-
stantially higher in each subsequent round compared with the
first k¼ 40 correction round (Figure 2B; Supplementary Table 1).
For the repeat-rich human genome, this percentage reaches
93% after k¼ 125 correction. Taken together, these results show
that iterative error correction can correct substantially more
reads than any single correction round, and that subsequent
rounds with a higher k increasingly correct errors in repeat
regions.
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A final round of overlap-based correction corrects
insertion and deletion errors

While iterative k-mer-based correction minimized substitution
errors, it alone cannot correct the errors that result from small
insertion and deletions. Indeed, 20, 16 and 19% of the erroneous
human, lizard and chicken reads contained insertion and dele-
tion errors after k¼ 200 correction. We therefore ran a final
round of overlap-based correction, which reduced the percent-
age of erroneous reads with insertions and deletions to 9, 7 and
8%. After this final step of the error correction pipeline, only
0.71, 0.93 and 0.81% of the human, lizard and chicken reads are
still erroneous (right-most data points in Figure 2A;
Supplementary Table 2).

Iterative error correction minimizes errors
in real 250 bp reads

To test if iterative error correction also improves read accuracy
in real sequencing reads, we applied this strategy to 2� 250 bp
MiSeq data from three different rice subspecies. After each iter-
ation, we determined the percentage of reads that map exactly
to the reference genome. As shown in Figure 2C, iterative error
correction consistently improved the percentage of exactly
mapped reads (Supplementary Table 2). We conclude that itera-
tive error correction using multiple k-mer-based and a final
overlap-based correction minimizes the total number of errone-
ous reads in both simulated and real data.

Reducing the number of erroneous reads substantially
improves contig assembly

Next, we tested if the reduction in the number of erroneous
reads translates into improved contig assembly for the human,
lizard and chicken data. We applied SGA to assemble contigs
from (i) reads after the single best k-mer-based correction
(k¼ 75 for human and lizard; k¼ 40 for chicken), and (ii) reads
after our iterative error correction strategy. Figure 3 shows the
corresponding NG50 values, where half of the respective
chromosome consists of contigs of at least that length. NG50
values improve 2.1-fold for human, 2.2-fold for lizard and 2.9-
fold for chicken. Thus, the reduction in the number of erroneous
reads, even if just from 3.4 to 0.7% as for human, results in sub-
stantially longer contigs.

To evaluate assembly accuracy and to rule out that the lon-
ger contigs are because of mis-assemblies joining nonadjacent
genomic regions, we aligned the contigs to the genome from
which we sampled the raw reads. We found that virtually all
contigs assembled from iteratively corrected reads map to a sin-
gle continuous genomic region (99.71% for human, 99.89% for
lizard and 100% for chicken). We also used BUSCO [28] to assess
assembly correctness by counting the number of complete sin-
gle-copy genes found in each assembly. BUSCO found more
complete single-copy genes in the assemblies from iteratively
corrected reads (17 versus 15 genes for human, 67 versus 44
genes for lizard and 27 versus 23 for chicken). Together, this
shows that the increase in contig lengths is not because of as-
sembly errors and that the assembly accuracy is high.

Fewer correction rounds reduce runtime while
preserving correction accuracy

While iterative error correction minimizes the number of erro-
neous reads and substantially improves contig assembly, it
clearly requires additional runtime. Compared with the runtime
of the best single k-mer correction, seven iterative k-mer correc-
tion rounds and a final overlap correction run 6–8 times as long
(Supplementary Table 5). Overlap correction, which computes
multiple sequence alignments of reads, takes up to 40% of the
total runtime and needs 1.5 times as much memory compared
with k-mer correction.

For practical considerations, we looked for ways to reduce
runtime while preserving correction performance. We tested
fewer correction rounds with larger step-sizes for k: three
rounds with k¼ 40/125/200 instead of seven rounds with k¼ 40/
75/100/125/150/175/200, both followed by a final overlap-based
correction round. We found that fewer rounds run �5 times as
long as the best single k-mer correction (Supplementary Table
5) and increase the percentage of erroneous reads by only 0.18,
0.27 and 0.04% for human, lizard and chicken (Figure 4,
Supplementary Table 2). This shows that the final achieved
read accuracy is highly similar, irrespective of the k-mer step-
size. Omitting the computationally expensive overlap correction
step further reduces the runtime to just 1.8, 1.9 and 3.4 times at
the cost of an increase of 0.31, 0.42 and 0.16% erroneous reads
for human, lizard and chicken.

Figure 1. Example of a sequencing error in a repeat region that remains undetected during correction with a small k-mer. Forty-mers containing a sequencing error

(arrow) overlap a SINE repeat and are found identically elsewhere on human chromosome 11. Consequently, this k-mer is considered solid, and the error is not cor-

rected in the corresponding read. However, increasing k to 50 or more would recognize this region as infrequent. Thus, longer sequence contexts, which 300 bp reads

provide, allow detecting and correcting such errors in highly similar repeats.
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K-mers larger than two-third of the read length can
correct errors if sequencing coverage is high

In principle, the higher the sequencing coverage, the larger the
k-mer size that can be used for error correction. To explore if
this is indeed the case, we sampled reads with 60X and 100X
coverage from our human simulated genome, in addition to the
30X data set described above. Iterative error correction was run
as before, with the addition of k¼ 225 and k¼ 250 correction
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rounds. After each round, we measured the ratio of correct to
erroneous reads; a ratio> 1 corresponds to more corrections
than mis-corrections.

As shown in Figure 5A, correction with k¼ 225 and k¼ 250
further decreases the percentage of erroneous reads in the
60X and 100X data sets (dashed and dotted lines), but not in
the 30X data set (solid line; see also Supplementary Table 2).
In agreement with this result, we consistently observed more
corrections than mis-corrections in the 60X and 100X data
sets (Figure 5B). In fact, not a single base was mis-corrected
for k� 150 in the 100X data set. In contrast, more mis-correc-
tions than corrections were observed for k� 225 in the 30X
data set.

As mis-corrections in the 30X data set with higher k-mer
sizes are unexpected and unwanted, we explored potential
reasons and found that they almost exclusively represent
‘haplotype conversions’. Ninety-six per cent of the reads mis-
corrected after k¼ 250 correction perfectly aligned to the re-
spective alternative haplotype, that is, the haplotype from
which the read did not originate. These haplotype conversions
can occur if sequencing coverage is low and uneven for the two
haplotypes, such that SNPs are mistakenly considered as errors.
It should be noted that we strictly consider haplotype conver-
sions as mis-corrections, even though removing heterozygosity
is likely advantageous for genome assembly. Taken together,
increasing k beyond two-third of the read length is beneficial for
data sets with high sequencing coverage, even if the further
reduction in erroneous reads is marginal.

Iterative error correction of 120 bp reads improves read
accuracy but not consistently contig assembly

Because many genome assemblies are based on shorter read
data, we also simulated 2� 120 bp reads from all three chromo-
somes at 30X coverage each, and used real human 2� 100 bp
sequencing data to test iterative error correction. Indeed, as for
300 bp reads, iterative error correction consistently reduced the
percentage of erroneous reads (Supplementary Figures 1 and 2).

However, in contrast to 300 bp reads, iterative correction of
120 bp reads improved contig assembly only for chicken, but not
for human and lizard (Supplementary Figure 1B). Two reasons
likely contribute to this. First, shorter 120 bp reads span less re-
peats. For example, given 30X coverage, only 0.6% of the human
Alu repeats are spanned by at least one 120 bp read, while 14.8%
are spanned by at least one 300 bp read. Second, the length of
the reads limits the length of the overlap between reads during
assembly. In principle, longer read overlaps can help to resolve
assembly ambiguities caused by repeats. We compared the
minimum exact read overlap that resulted in the best assembly
with regard to NG50. For both single and iteratively corrected
120 bp reads, the best human and lizard assembly was achieved
with a minimum read overlap of 80 bp. In contrast, a larger min-
imum read overlap resulted in the best assembly of iteratively
corrected 300 bp reads (single versus iterative correction: min-
imum overlap of 80 versus 100 bp for human and 100 versus
130 bp for lizard). Overall, iterative error correction consistently
improves contig assembly only for longer sequencing reads.

Other methods also benefit from
iterative error correction

To test if other error correction tools correct more errors if they
are used in an iterative fashion, we applied musket [13] and BFC
[2] to the human 30X data set. As shown in Figure 6, subsequent
correction rounds decrease the percentage of erroneous reads
for both methods. While Musket and BFC are faster than SGA
(Supplementary Table 5), they do not achieve the accuracy of
SGA. We also tested two other methods that cannot be run it-
eratively because their maximum k-mer size is restricted to
small ks (Lighter [12]) or because k is automatically determined
from the genome size (RACER [16]). We found that both meth-
ods are outperformed by iterative correction with Musket or
SGA (Figure 6). These results show that iterative error correction
is not specific to SGA but rather a general strategy for many
error correction tools.
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Figure 5. K-mers larger than two-third of the read length can correct errors if

sequencing coverage is high. (A) The percentage of erroneous reads in the

human 30X data set (solid line) starts to increase again with k¼225 and k¼250

correction. In contrast, the percentage consistently decreases in the 60X (dashed

line) and 100X (dotted line) data set. (B) In agreement with A, we start to observe

more mis-corrections than corrections after k¼225 and k¼250 correction in the

human 30X data set (ratio below 1), but not in the 60X and 100X data sets

(ratio>1 irrespective of the k-mer size).
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Discussion

As sequencing technologies advance, longer reads will likely be
the first choice for genome assembly projects. Genome assem-
bly from next-generation sequencing data requires sequencing
of a short insert library for contig building. In the past, short
insert libraries were often sequenced with 2� 100 bp reads from
Illumina HiSeq sequencers. Illumina technology now offers to
sequence 2� 250 or even 2� 300 bp reads. Given a short insert li-
brary with a mean fragment size of around 450 bp, these reads
are able to span some classes of repeats. For example, longer
reads will span the up to 300 bp long short interspersed elem-
ents that make up 15% of the human genome and represent a
significant challenge for assembly because of 1.8 million pre-
sent copies [29]. However, longer Illumina reads have the disad-
vantage of being less accurate. Even if the sequencing error rate
is the same, the longer the reads are, the lower is the probability
that reads are completely error-free. Given that error-free read
data are desirable for genome assembly, computational error
correction is essential. Therefore, we developed a strategy for
improving error correction that maximizes accuracy of long
sequencing reads, especially of repeat-overlapping reads.

Existing error-correction tools typically use a single and rela-
tively small k-mer size of <30 bp to correct as many errors as
possible in a single round [1]. Some of the tools determine the
optimal k-mer size as the one that results in the greatest num-
ber of corrections, while other tools let the user chose k.
However, there is an inherent trade-off to the choice of a single,
fixed k-mer size: while a small k allows for more corrections, be-
cause reads have to overlap only by k bp, it can fail to detect
errors if the erroneous k is found elsewhere in the genome [15]

(see also Figure 1). On the other hand, a large k allows for cor-
recting errors in repeats (Figure 1), but fails to detect errors in
low coverage regions and to correct errors in reads with many
errors. Here, we show that iterative error correction combines
the advantages of small and large k-mers to minimize the num-
ber of erroneous reads (Figure 2).

While iterative error correction requires longer runtimes, by
far, more time is spent on genome assembly, subsequent gen-
ome annotation and finally the analysis of the new genome.
Importantly, annotation and analysis critically depend on the
quality of the genome assembly. As shown in Figure 3, improv-
ing the accuracy of long Illumina reads helps to obtain better
assemblies. Hence, read accuracy should be the main consider-
ation. Iterative error correction likely helps genome assembly in
two ways. First, although assemblers like SGA try to discard er-
roneous reads, some of these reads will escape filtering and will
be used for assembly. Indeed, SGA did not discard 34% (155 812
of 456 827) of the erroneous human reads after the single best
k¼ 75 correction, and 62% (97 006 of 155 812) of these non-dis-
carded reads overlapped repeats. These erroneous reads add
spurious branchings in assembly graphs and hamper assembly
contiguity. As shown in Figure 2B, iterative error correction cor-
rects more errors in repeats and thus alleviates the problem of
adding branchings because of sequencing errors in parts of the
assembly graph that are already hard to resolve. Second, itera-
tive error correction increases the number of correct reads in
our data sets by 2.7% for human, 3.4% for lizard and 0.5% for
chicken. While these additional reads may have little effect for
loci with high read coverage, they will help to build contigs
spanning loci with low coverage.

We used SGA to test iterative error correction, because it is
one of the best performing error correction methods for large
genomes [21] and also outperforms other methods. However, as
shown in Figure 6, other tools can benefit from an iterative error
correction strategy. Thus, future error correction tool develop-
ment and benchmarking is likely to benefit from iterative cor-
rection in general.

Practical guidance to the users

To facilitate application of the proposed iterative error correction
by the community, we provide a wrapper script called SGA-
Iteratively Correcting Errors (SGA-ICE) that implements the
pipeline by repeatedly using SGA modules. Just given an input
directory with the fastq files containing the sequencing reads,
SGA-ICE produces an executable shell script that contains all
commands for iterative error correction. By default, SGA-ICE runs
three rounds of k-mer-based correction with a k between 40 and
two-third the read length (which SGA-ICE will determine auto-
matically), followed by a final round of overlap-based correction.
Thus, SGA-ICE eliminates the need for the user to choose a single
k-mer value. Alternatively, the user can specify which ks to use
and whether to run a final overlap-based correction round.

For Illumina sequencing data of large genomes, such as verte-
brate genomes, we recommend the SGA-ICE default strategy of
three k-mer correction rounds, which reduces runtime
while preserving most of the correction accuracy, as shown in
Figure 4. Omitting overlap correction would reduce the runtime
further; however, small insertion and deletion errors would re-
main in the reads. If runtime considerations are not important or
if the genome is smaller, we recommend running more than three
rounds to maximize read accuracy, for example, with k¼ 40/75/
100/125/150/175/200. As suggested by Figure 5, the sequencing
coverage determines the largest k-mer that can be used. For a
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Figure 6. The percentage of erroneous reads also decreases if other error correc-

tion methods are used with an iterative error correction strategy. Three correction

rounds with Musket [13] and k¼40/125/200 and two correction rounds with BFC

[2] and k¼40/63 also reduce the percentage of erroneous 300 bp reads in the

human 30X data set. The SGA curve is reproduced from Figure 4 for comparison.

For BFC, we ran only two rounds because BFC requires k to be at most 63. Please

note that for Musket, the percentage of erroneous reads increases from 2.5%

(k¼ 125) to 3% (k¼200). For comparison, we also tested RACER [16] and Lighter

[12]. We ran Lighter only once because it requires k to be at most 32. RACER was

run only once because it automatically determines the optimal k, given the gen-

ome size (135006516bp) as input. Because RACER does not output the chosen value

for k, we plot the performance (13.18% erroneous reads) arbitrarily at k¼32.
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coverage of �30X, which should be sufficient to build contigs from
long Illumina reads, we do not recommend using k-mers larger
than two-third the read length. However, for high sequencing
coverage of 60X or more, it will be advantageous to use these large
k-mers, as they are able to correct errors in extremely similar gen-
omic repeats that are difficult to bridge during contig assembly.

SGA-ICE is available at https://github.com/hillerlab/Iterative
ErrorCorrection/.

Key Points

• Sequencing errors in reads that overlap highly similar
genomic repeats are hard to correct by k-mer-based
approaches.

• Long 250 or 300 bp Illumina reads provide an oppor-
tunity to correct such errors by using longer k-mers.

• Iterative error correction running multiple correction
rounds with an increasing k-mer size corrects more
errors, particularly in repeats.

• The reduction in the number of erroneous reads im-
proves contig assembly for long Illumina reads.

• Iterative correction eliminates the need for the user to
choose a single k-mer value.

Supplementary data

Supplementary data are available online at http://bib.oxford
journals.org/.
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4. Salmela L, Schröder J. Correcting errors in short reads by mul-
tiple alignments. Bioinformatics 2011;27:1455–61.

5. Kao WC, Chan AH, Song YS. ECHO: a reference-free short-
read error correction algorithm. Genome Res 2011;21:1181–92.

6. Pevzner PA, Tang H, Waterman MS. An Eulerian path ap-
proach to DNA fragment assembly. Proc Natl Acad Sci USA

2001;98:9748–53.

7. Chaisson MJ, Brinza D, Pevzner PA. De novo fragment assem-
bly with short mate-paired reads: does the read length mat-
ter? Genome Res 2009;19:336–46.

8. Schulz MH, Weese D, Holtgrewe M, et al. Fiona: a parallel and
automatic strategy for read error correction. Bioinformatics
2014;30:i356–63.

9. Medvedev P, Scott E, Kakaradov B, et al. Error correction of
high-throughput sequencing datasets with non-uniform
coverage. Bioinformatics 2011;27:i137–41.

10. Ilie L, Fazayeli F, Ilie S. HiTEC: accurate error correction in
high-throughput sequencing data. Bioinformatics 2011;27:
295–302.

11.Allam A, Kalnis P, Solovyev V. Karect: accurate correction
of substitution, insertion and deletion errors for next-
generation sequencing data. Bioinformatics 2015;31:3421–8.

12.Song L, Florea L, Langmead B. Lighter: fast and memory-
efficient sequencing error correction without counting.
Genome Biol 2014;15:509.
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