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Abstract.—Nonparametric population genetic modeling provides a simple and flexible approach for studying demographic
history and epidemic dynamics using pathogen sequence data. Existing Bayesian approaches are premised on stochastic
processes with stationary increments which may provide an unrealistic prior for epidemic histories which feature extended
period of exponential growth or decline. We show that nonparametric models defined in terms of the growth rate of the
effective population size can provide a more realistic prior for epidemic history. We propose a nonparametric autoregressive
model on the growth rate as a prior for effective population size, which corresponds to the dynamics expected under many
epidemic situations. We demonstrate the use of this model within a Bayesian phylodynamic inference framework. Our
method correctly reconstructs trends of epidemic growth and decline from pathogen genealogies even when genealogical
data are sparse and conventional skyline estimators erroneously predict stable population size. We also propose a regression
approach for relating growth rates of pathogen effective population size and time-varying variables that may impact the
replicative fitness of a pathogen. The model is applied to real data from rabies virus and Staphylococcus aureus epidemics. We
find a close correspondence between the estimated growth rates of a lineage of methicillin-resistant S. aureus and population-
level prescription rates of �-lactam antibiotics. The new models are implemented in an open source R package called
skygrowth which is available at https://github.com/mrc-ide/skygrowth.[Antimicrobial resistance; effective population size;
growth rate; MRSA; phylodynamics; skygrowth.]

Nonparametric population genetic modeling has
emerged as a simple, flexible, popular, and powerful
tool for interrogating genetic sequence data to reveal
demographic history (Ho and Shapiro 2011). This
approach has proved especially useful for analysis
of pathogen sequence data to reconstruct epidemic
history, and such models are increasingly incorporated
into surveillance systems for infectious diseases (Volz
et al. 2013). The most commonly used techniques are
derivatives of the original skyline coalescent model,
which describes the evolution of effective population
size as a piecewise constant function of time (Pybus et al.
2000). The basic skyline model is prone to overfitting and
estimating drastic fluctuations in effective population
size, so that numerous approaches were subsequently
developed for smoothing population size trajectories.
Initial approaches to smoothing skyline estimators were
based on aggregating adjacent coalescent intervals
within a maximum likelihood framework (Strimmer
and Pybus 2001). Subsequent development has largely
focused on Bayesian approaches where a more complex
stochastic diffusion process provides a prior for
the evolution of a piecewise constant function of
effective population size (Drummond et al. 2005).
Nonparametric Bayesian approaches are now the most
popular approach for phylodynamic inference, and such
approaches have illuminated the epidemic history of
numerous pathogens in humans and animals (Ho and
Shapiro 2011).

To date, all Bayesian nonparametric models have
assumed that the effective population size (or its
logarithm) follows a stochastic process such as a
Brownian motion (BM) (Minin et al. 2008; Palacios and

Minin 2013). The choice of a process with stationary
increments as prior can have large influence on size
estimates especially when genealogical data are sparse
and uninformative. Genealogies often provide very
little information about effective population size near
the present (or most recent sample), especially in
exponentially increasing populations (de Silva et al.
2012). In such cases, skyline estimators with BM priors
on the effective population size may produce estimates
which stabilize at a constant level even when the true
size is increasing or decreasing exponentially. We argue
that in many situations, a more realistic prior can be
defined in terms of the growth rate of the effective
population size. Below, we describe such a prior based on
a simple autoregressive stochastic process defined on the
growth rate of effective population size. We show how
this prior can lead to substantially different estimates
and argue that these estimates are more accurate in
many situations. When genealogical data are sparse, our
model will retain the growth rate learned from other
parts of the genealogy and will correctly capture trends
of exponential growth or decline. Even though our
approach is nonparametric, we consider its relationship
with parametric models of epidemic population genetics
to show that our estimates of growth rates of pathogen
effective population size are often likely to correspond
to growth rates of an infectious disease epidemic.

Smoothing effective population size trajectories using
a prior on growth rates also have important advantages
when incorporating nongenetic covariate data into
phylodynamic inference (Baele et al. 2016). Recent
work has focused on refining effective population size
estimates using both the times of sequencing sampling
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(Karcher et al. 2016) or using environmental data
which are expected to correlate with size estimates,
such as independent epidemic size estimates based on
nongenetic data (Gill et al. 2016). Existing statistical
models have assumed that the effective population size
has a linear or log-linear relationship with temporal
covariates. However in many cases, a more realistic
model would specify that the growth rate of effective
population size is correlated with covariates, as when
for example an environmental variable impacts the
replicative fitness of a pathogen. We provide a similar
extension of previous skyride models with covariate data
(Gill et al. 2016) to show how such data can be used
to test hypotheses concerning their effect and, when a
significant effect exists, to refine estimates of both the
growth rates and the effective population sizes.

We illustrate the potential advantages of our growth
rate model using a rabies virus data set that has
been thoroughly studied using previous phylodynamic
methods (Biek et al. 2007; Gill et al. 2016). In particular, we
show how our model correctly estimates a recent decline
in epidemic size whereas previous models mistakenly
predict a stabilization of the epidemic prevalence. We
also apply our methodology to a genomic data set
of methicilin-resistant S. aureus (MRSA) that had not
formally been analyzed using phylodynamic methods
(Uhlemann et al. 2014). We show how time series
on prescription rates of �-lactam antibiotics correlate
strongly with growth and decline of the effective
population size, revealing the impact of antibiotic use
on the emergence and spread of resistant bacterial
pathogens.

METHODS AND MATERIALS

We model effective population size through time as
a first order autoregressive stochastic process on the
growth rate. This provides an intuitive link between the
growth rate of effective population size of pathogens and
epidemic size as well as the reproduction number of the
epidemic. We further show how to incorporate time-
varying environmental covariates into phylodynamic
inference.

Previous Bayesian Nonparametric Phylodynamic Models
Several nonparametric phylodynamic models have

been proposed based on BM processes and the Kingman
coalescent genealogical model (Kingman 1982). In
particular, the Bayesian nonparametric skyride model
uses a BM prior to smooth trajectories of the logarithm
of the effective population size (Minin et al. 2008). Let
�(t)= log(Ne(t)) denote the logarithm of the effective
population size as a function of time. The BM prior is
defined as:

�(t+dt)∼�(t)+N (0,dt/�), (1)

where � is an estimated precision parameter, for which
an uninformative Gamma prior is typically used.

This BM prior has been adapted and applied in a
variety of ways to enable statistical inference. In the
skygrid model (Gill et al. 2013), time is discretized, and
� is defined to be a piecewise constant function of time
over a grid with time increments h, and the value �i is
estimated for each interval i. Time intervals do not in
general correspond to coalescent times in the genealogy.
In this case, the BM prior is computed over increments
of �:

p(�1:m|�)∝
m−1∏
i=1

p(�i+1 −�i|�), (2)

where

p(�i+1 −�i|�)=
√

�

2�h
e− �

2h (�i+1−�i)2
.

The genealogical data take the form G = (c1:(n−1),s1:n),
where c and s are respectively ordered coalescent times
(internal nodes of the genealogy) and sampling times
(terminal nodes of the genealogy). In the coalescent
framework, the sampling times are usually considered
to be fixed, so that p(s)=1 and p(G)=p(c|s). Alternatively,
in some variations of this model, a prior p(s|Ne) is also
provided for the sequence of sampling times, making
this approach similar to but more flexible than sampling-
birth-death-models (Volz and Frost 2014; Karcher et al.
2016).

Given a genealogy, the posterior distribution of the
parameters � and �1:m is decomposed as:

p(�1:m,�|G)∝p(G|�1:m)p(�1:m|�)p(�). (3)

The second term is given by Equation 2 and the last term
by the prior on �. To assist with the definition of the first
term, we first denote A(t) to be the number of extant
lineages at time t:

A(t)=
n∑

i=1

I(si> t)−
n−1∑
i=1

I(ci> t), (4)

where I(x) is an indicator function equal to one when
x is true and equal to zero otherwise. The probability
density of the genealogical data given the population
size history �1:m is then equal to (Griffiths and Tavare
1994):

p(G|�1:m)=
2n−2∏
i=1

(
I(ti ∈ci)

(A(ti)
2
)

Ne(ti+1)
e−∫ ti+1

ti
−(A(ti)

2

) 1
Ne(t) dt

+(1−I(ti ∈ci))e
−∫ ti+1

ti
−(A(ti)

2

) 1
Ne(t) dt

)
,

(5)

where t1:(2n−1) =c1:(n−1) ∪s1:n is the set union of sample
and coalescent times in descending order.
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Relationship Between the Growth Rate of Effective
Population Size and Epidemic Properties

Several recent studies have investigated the
relationship between the effective population size
of a pathogen and the number of infected hosts
(Rosenberg and Nordborg 2002; Koelle et al. 2011;
Dearlove and Wilson 2013). A simple link between these
quantities does not exist, since the relationship depends
on how incidence and epidemic size change through
time (Volz et al. 2009), population structure (Volz 2012),
and complex evolution of the pathogen within hosts
(Didelot et al. 2016; Volz et al. 2017). Under idealized
situations, there is however a simple relationship
between the growth rate of effective population size and
the growth rate of an epidemic (Frost and Volz 2010;
Volz et al. 2013).

Let Y(t) and �(t) denote the number of infected
hosts and per-capita transmission rate, respectively, as
functions of time. Note that �(t) may depend on the
density of susceptible individuals in the population, as in
the common susceptible-infected-removed (SIR) model,
in which case �(t)∝S(t)/N (Allen 2008). The coalescent
rate for an infectious disease epidemic was previously
derived under the assumption that within-host effective
population size is negligible and that superinfection
does not occur (Volz et al. 2009; Frost and Volz 2010):

�(t)=
(

A(t)
2

)
2�(t)
Y(t)

. (6)

Equating this rate with the coalescent rate under
the coalescent model �(t)=(A(t)

2
)
/Ne(t) (Kingman 1982)

yields the following formula for the effective population
size:

Ne(t)= Y(t)
2�(t)

. (7)

Differentiating with respect to time (denoting with a
dot superscript) yields:

Ṅe(t)= Ẏ(t)
2�(t)

− �̇(t)Y(t)
2(�(t))2 . (8)

Note that, in general the growth rate of the effective
population size does not correspond to the growth
rate of Y, however if the per-capita transmission rate
is constant (�̇=0), we have Ṅe= Ẏ/(2�)∝ Ẏ. Thus, we
expect that over phases of the epidemic where per-capita
transmission rates are nearly constant there will be close
correspondence between the growth or decline of the
effective population size and the growth or decline of
the unobserved number of infected hosts. This condition
is often satisfied near the beginning of an outbreak
which has an exponential phase. It is also often satisfied
towards the end of epidemics when the epidemic size is
decreasing at a constant exponential rate.

The basic reproduction number R0 describes the
expected number of transmission events caused by a
single infected individual in an otherwise susceptible
population. By extension, we can define R(t) as the

expected number of transmissions by an infected host
infected at time t (Fraser 2007). Assuming that all infected
individuals are equally infectious (as is the case e.g.,
in the SIR model), we have that during periods when
the epidemic growth rate is constant, each infected
individual transmits at rate �(t)=R(t)/�, where � is
the mean duration of infections. With these definitions,
the number of infections Y(t) varies according to the
following differential equation:

Ẏ(t)=Y(t)
R(t)−1
�

(9)

Combining Equations 7, 8, and 9 leads to the following
approximate estimator for the reproduction number
through time:

R̂(t)=1+�Ṅe(t)
Ne(t)

(10)

This estimator makes use of the quantity Ṅe(t)/Ne(t)
which will be estimated in our model below. Equation
10 is likely to be a good estimator over periods of
the epidemic where per-capita transmission rates are
invariant. A special case of this occurs at the start
of an epidemic, in which case Equation 10 can be
used to estimate the basic reproduction number R0, as
previously noted (Pybus 2001).

A Growth Rate Prior for Effective Population Size
We propose a model in which the growth rate of

the effective population size, as opposed to effective
population size itself, is an autoregressive process with
stationary increments. This growth rate is defined as:

�(t)= Ṅe(t)
Ne(t)

. (11)

Note that �(t) is a real-valued quantity, with negative and
positive values respectively indicating an increase and
decrease in the effective population size. In particular,
if the population is exponentially growing or declining
from t=0, then we would have Ne(t)=Ne(0)exp(�t) so
that �(t)=� at every time t≥0. More generally, we model
�(t) using a BM process: �(t)∼BM(�) (cf Equation 1). To
facilitate statistical inference, we work with a discretized
time axis with m intervals of length h as in the skygrid
model (Gill et al. 2013). We define the growth rate in
time interval i as:

�i = Nei+1 −Nei
hNei

. (12)

We use the following approximate model for
p(�i+1|�i):

�i+1 ∼�i +N (0,h/�). (13)

Note that Equation 12 implies �i ∈ (−1/h,∞) since Ne
cannot decline below zero, whereas the approximate
model in Equation 13 assumes support on the entire real
line. We have found performance with this approximate
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model to be superior to exact models on the log
transformation of Ne provided that h is small.

With the above definitions, the prior density of a
sequence �1:m is defined in terms of the increments:

p(�1:m|�)∝
m−2∏
i=1

p(�i+1 −�i|�), (14)

where

p(�i+1 −�i|�)=
√

�

2�h
e− �

2h (�i+1−�i)2
.

This equation can be compared with the skygrid density,
Equation 2.

Incorporating Covariates into Phylodynamic Inference
A simple model was recently proposed

for incorporating time-varying covariates into
phylodynamic inference with skygrid models (Gill
et al. 2016). Suppose we observe q covariates at m time
points denoted X = (X1:m,1:q), and such that observation
times correspond to the grid used in the phylodynamic
model. The following linear model for the marginal
distribution of �with covariate vector 	1:q was proposed:

p(�i|X,	1:q,
)∼N (	0 +Xi,1:q	1:q,
), (15)

where 	0 is the expected mean of � without covariate
effects.

This implies, along with the BM model, the following
marginal distribution of the increments:

p(�i+1 −�i|X,	1:q,�,
)
∼N (Xi+1,1:q	1:q −Xi,1:q	1:q,h/�+2
). (16)

When covariates are likely to be associated with
growth rates of the effective population size instead of
the logarithm of the effective population size, we can
analogously define the density of increments of �:

p(�i+1 −�i|X,	1:q,�,
)
∼N (Xi+1,1:q	1:q −Xi,1:q	1:q,h/�+2
). (17)

When fitting this model, we drop 
 for simplicity (as in
Gill et al. 2016), and estimate a single variance parameter
� along with the regression coefficients 	.

Inference and Software Implementation
Our growth rate model is implemented in an

open source R package called skygrowth , available
from https://mrc-ide.github.io/skygrowth/, and
which includes both maximum a posteriori (MAP) and
Bayesian Markov Chain Monte Carlo (MCMC) methods
for model fitting.

The MCMC procedure uses a Gibbs-within-
Metropolis algorithm that alternates between sampling
the growth rate vector �1:m and sampling of the

precision parameter �. Metropolis-Hastings sampling
is also performed for regression coefficients 	1:q if
covariate data are provided with univariate normal
proposals. The elements of �1:m are sampled in sequence
(from past to present), and multiple Gibbs iterations
(by default 100) are performed before updating other
parameters using Metropolis–Hastings steps.

MAP is used as a starting point for the MCMC. The
MAP estimator alternates between optimization of �1:m
using gradient descent (BFGS in R, Goldfarb 1970) and
univariate optimization of � until convergence in the
posterior is observed. Approximate credible intervals are
provided for the MAP estimator based on curvature of
the posterior around the optimum.

RESULTS

Simulations
We evaluated the ability of the skygrowth model

to infer epidemic trends by simulating partially-
sampled genealogies from a stochastic individual-based
susceptible-infected-removed (SIR) model. Simulated
data were generated using the BEAST2 package
MASTER (Vaughan and Drummond 2013), and
code to reproduce simulated results is available at
https://github.com/emvolz/skygrowth-experiments.
The skygrowth model was also compared to skygrid model
as implemented in the phylodyn R package (Karcher
et al. 2016, 2017) which estimates effective population
size using a fast approximate Bayesian nonparametric
reconstruction (BNPR). The SIR model was density
dependent with a reaction rate �S(t)I(t) of generating
new infections. Figure 1 shows results of a single
simulation with R0 =1.3 and 10,000 initial susceptible
individuals. Additional simulations are shown
in Supplementary Fig. S1 available on Dryad at
http://dx.doi.org/10.5061/dryad.9qh7t9t. Estimates
with skygrowth were obtained using the MCMC
algorithm and an Exponential(0.1) prior on the
precision parameter. We report the posterior means
from both skygrowth and skygrid BNPR. Genealogies
were reconstructed by sampling 200 or 1000 infected
individuals at random from the entire history of the
epidemic. In this scenario, both the skygrowth and
skygrid models reproduce the true epidemic trend,
capturing both the rate of initial exponential increase,
the time of peak prevalence, and the rate of epidemic
decline. However, when sampling only 200 lineages
(Fig. 1B), the genealogy contains relatively little
information about later epidemic dynamics, and the
skygrid estimates an unrealistic levelling-off of Ne.
Estimates using the skygrid BNPR model were highly
similar to results using an exact MCMC algorithm for
sampling the posterior also included in the phylodyn
package.

While the results in Figure 1A and B suggest that Ne(t)
can serve as a very effective proxy for epidemic size, the
degree of correspondence will depend on details of the
epidemic model as discussed in the Methods section.

https://mrc-ide.github.io/skygrowth/
https://github.com/emvolz/skygrowth-experiments
http://dx.doi.org/10.5061/dryad.9qh7t9t
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A B

C

FIGURE 1. Comparison of effective population size estimates using the skygrowth and skygrid models applied to data from a susceptible-
infected-recovered simulated epidemic. Effective population size estimates are also compared to the number of infected hosts through time
under a linear rescaling (red). a) Estimates using a SIR model and simulated genealogy with 1000 sampled lineages and R0 =1.3. b) Estimates
using a SIR model and simulated genealogy with 200 sampled lineages and R0 =1.3. c) Estimates using a SIR model and simulated genealogy
with 200 sampled lineages and R0 =5.

Figure 1C and Supplementary Fig. S2 available on Dryad
show a scenario where estimates of Ne(t) capture the
initial rate of exponential growth but fail to estimate the
time of peak epidemic prevalence, and the skygrid model
also fails to detect that the epidemic ever decreases.
This scenario was based on a higher R0 =5 and only
2000 initially susceptible individuals, such that almost
all hosts are eventually infected and the rate of epidemic
decline predominantly reflects the host recovery rate.
This is easily understood using the formula Ne(t)∝
I(t)/S(t) (cf. Equation 7). When R0 is large, S(t) will
change drastically over the course of the epidemic. In
the later stages, almost all hosts have been infected so
that 1/S(t) is large, producing correspondingly large
effective population sizes. There is a very slight signal
of decreasing growth rate which is detected shortly
following epidemic peak using the skygrowth model. In
the absence of other information, the skygrowth model
retains this growth rate which produces estimates of
decreasing Ne(t).

Rabies Virus
An epidemic of rabies broke out in the late 1970s

in the North American raccoon population, following
the emergence of a host-adapted variant of the virus
called raccoon rabies virus (RRV). By the end of the
1990s, this outbreak had spread to a vast geographical
area including all Northeast and mid-Atlantic US states
(Childs et al. 2000). A sample of 47 RRV isolates has been
sequenced in a previous study (Biek et al. 2007), and
BEAST (Drummond et al. 2012) was used to reconstruct
a dated phylogenetic tree. A standard skyline analysis
(Drummond et al. 2005) was performed, which visually
suggested a correlation between the inferred effective
population size (Ne) and the monthly area newly
affected by RRV (hereafter denoted V), but without
attempting to quantify the strength or significance of this
association.

These data were recently reanalyzed using the
skygrid model with covariates (Gill et al. 2016). No
significant association was found between Ne and V,
but the authors noted that since V is the newly affected
area, V would be expected to be associated with a change
in Ne rather than Ne itself. Since the skyride method is
focused on Ne, like all previous phylodynamic methods,
the authors considered the cumulative distribution of V
and showed that this is slightly associated with Ne [with
a 95% credible interval of (0.18–2.86) on the covariate
effect size, Gill et al. 2016]. However, this approach is
not fully satisfactory. In particular, since V is always
positive, the cumulative distribution of V is always
increasing, whereas Ne is in principle equally likely
to increase or decrease over time. Furthermore both V
and its cumulative distribution were considered on a
logarithm scale, so that the latter flattens over time by
definition.

A more natural solution is to keep the covariate V
untransformed and investigate its association with the
growth rate �(t) rather than Ne(t) as implemented in our
methodology (Fig. 2). For this analysis, we used exactly
the same dated phylogeny as previously published
(Biek et al. 2007) (reproduced in Supplementary Fig. S3
available on Dryad). When the covariate was not used
(red results in Fig. 2), the growth rate was inferred to be
positive but declining progressively to zero from 1973 to
∼1983, then stable around zero up to ∼1990, followed by
a period of positive growth until ∼2000, after which the
growth rate decreased below zero. This implies that the
effective population size increased from 1973 to ∼1983,
then was stable until ∼1990, increased to a peak in ∼1997
and afterwards decreased. Two waves of spread have
therefore been inferred as in previous analyses (Biek et al.
2007; Gill et al. 2016), with the first one starting in the
1970s and ending in ∼1983 and the second one lasting
from ∼1990 to ∼1997.
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FIGURE 2. Results on the rabies application. Top: covariate data, representing the area in km2 newly affected by rabies recorded monthly
between September 1978 and October 1999. Middle: growth rate estimates. Bottom: log effective population size estimates. The middle and
bottom plots show results without (red) and with (blue) the use of the covariate data, and with a solid line indicating posterior means and
shaded areas indicating the 95% credible regions.

Unfortunately the covariate data V start in September
1978 and therefore do not cover the first wave. However,
the covariate data show that the epidemic was spreading
very quickly between 1992 and 1997, much faster than
before or after these dates, and this timing corresponds
fairly precisely to the second wave of spread. When
the covariate data were integrated into phylodynamic
inference, the covariate effect size was found to be
statistically significant but only slightly so, with a large
95% credible interval for the covariate effect size of
(0.03–4.61) and posterior mean of 1.09. The reconstructed
growth rate and effective population size when using the
covariate data (blue results in Fig. 2) were compatible
with results without covariate data. Using additional
informative data tighten the credible interval as would
be expected, except in the second wave during which the
covariate data suggest higher values for both the growth
rate and effective population size. The mean posterior
growth rate reached a value of about 2.5 per year in the
1990s (Fig. 2) and the average generation time of raccoon
rabies has previously been estimated to be around 2
months (Biek et al. 2007). We can use Equation 10 to infer
a reproduction number of R=1.4, slightly higher than a

previous estimate around R=1.1 based on the same data
(Biek et al. 2007).

One of the main novel findings of our analysis is
that we found a significant decline of the effective
population size of raccoon rabies post-2000, whereas
previous phylodynamic studies based on the same data
found this to be constant (Biek et al. 2007; Gill et al. 2016).
Previous methods consider a BM on the logarithm of
Ne, which results in a strong prior that Ne is constant
in recent time. In contrast, our model results in the
growth rate being a priori constant, so that the clear
decline in growth rate started in the mid-1990s is likely
to have continued to the point that the growth rate
became negative and Ne declined. Our result is in good
agreement with Centers for Disease Control surveillance
that shows a clear decline in rabid raccoons after the peak
in the mid-1990s (Monroe et al. 2016).

Staphylococcus aureus USA300
Staphylococcus aureus is a bacterium that causes

infections ranging from mild skin infections to
life-threatening septicemia. In the 1980s and 1990s,
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FIGURE 3. Results on the USA300 application. Top: covariate data, representing the consumption of �-lactams between 1980 to 2012 in the
USA, measured in standard units per 1000 population. Middle: growth rate estimates. Bottom: effective population size estimates. The middle
and bottom plots show results without (red) and with (blue) the use of the covariate data, and with a solid line indicating posterior means and
shaded areas indicating the 95% credible regions.

several variants of S. aureus have emerged that are
resistant to methicilin and other �-lactam antibiotics,
and collectively called MRSA (Chambers and Deleo
2009). MRSA are well known as a leading cause of
hospital infections worldwide, but the MRSA variant
called USA300 differs from most others by causing
infections mostly in communities rather than hospitals.
USA300 was first reported in 2000 and has since spread
throughout the USA and internationally (Tenover and
Goering 2009; Challagundla et al. 2018). A recent study
sequenced the genomes from 387 isolates of USA300
sampled from New York between 2009 and 2011, and
reconstructed phylogeographic spread that frequently
involved transmission within households (Uhlemann
et al. 2014).

The USA300 phylogenetic tree (Uhlemann et al.
2014) was dated using a previously described method
(Didelot et al. 2012) and a clock rate of ∼3 substitutions
per year for USA300 (Uhlemann et al. 2014; Alam et al.
2015). We analyzed the resulting dated phylogeny
(Supplementary Fig. S4 available on Dryad) using
our phylodynamic methodology (Fig. 3). We initially
performed this analysis without the use of any covariate

data (red results in Fig. 3) and found that the growth
rate had been around zero up until 1985, after which
it steadily increased until ∼1995, and subsequently
decreased almost linearly, becoming negative in ∼2002
and continuing to decrease afterwards. The effective
population size was accordingly found to have been very
small until the mid-1990s, to have peaked in ∼2002 and
to have declined since. These results are in very good
agreement with a phylodynamic analysis of USA300
performed using a traditional skyline plot on a different
genomic data set (Glaser et al. 2016), and epidemiological
data also suggest that USA300 may be declining (Planet
2017). The overall MRSA incidence has declined by 31.2%
in the USA between 2005 and 2011 (Dantes et al. 2013),
with some MRSA lineages showing encouraging
signs of reverting to methicilin susceptibility
(Ledda et al. 2017).

We hypothesized that the dynamics of USA300 may be
driven by the consumption of �-lactams in the USA, and
we therefore gathered data on this from three different
sources covering respectively the periods between 1980
and 1992 (McCaig and Hughes 1995), between 1992
and 2000 (McCaig et al. 2003), and between 2000 and
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2012 (CDDEP 2017). There first and second sources
overlapped in the year 1992, and the second and third
sources overlapped in the year 2000. We used these
2 years of overlap to scale the data for consistency
between the three sources. Specifically, the values from
the second source (McCaig et al. 2003) were scaled so
that the 2000 value is equal to the one in the third
source (CDDEP 2017), and values from the first source
(McCaig and Hughes 1995) were then scaled so that the
1992 value is equal to the one in the previously rescaled
second source. The final rescaled data are therefore
measured as in the third source, namely in standard
units of �-lactams (i.e., narrow-spectrum and broad
spectrum penicilins plus cephalosporins) consumed per
1000 population in the USA (CDDEP 2017). These data
show that the consumption of �-lactams almost doubled
between 1980 and 1991 and subsequently decreased
to reach around 2010 levels comparable to the early
1980s (Fig. 3). These trends on �-lactams consumption
therefore appear to be very similar to the ones observed
for the USA300 growth rate without the use of covariates
(red results in Fig. 3). To confirm this observation, we
repeated our phylodynamic analysis with integration
of the �-lactam use as a covariate (blue results in
Fig. 3). We found that the covariate was significantly
associated with growth rate, with a mean posterior
effect of 0.48% and 95% credible interval (0.18–0.71). The
growth rate dynamics inferred when using covariate
data were almost identical to those inferred without
the use of covariate data, except for a clear reduction
of the width of the intervals which reflects the gain in
information when combining two independent types
of data. USA300 is also partly resistant to macrolides
and quinolones, but the consumption of these antibiotics
increased in the USA throughout the 1990s (McCaig et al.
2003), and the subset of sensitive genomes (31.9% for
ciprofloxacin and 6.3% for erythromycin) did not exhibit
different phylodynamic properties compared to resistant
genomes (Uhlemann et al. 2014), so that these antibiotics
could not explain the USA300 growth rate dynamics.

Our analysis therefore suggests that the rise in
�-lactams consumption in the 1980s was responsible
for the emergence of the highly successful USA300
lineage. From the mid-1990s, the use of �-lactams has
declined, both due to an overall reduction in antibiotic
use and a diversification of the type of antibiotics
prescribed (McCaig et al. 2003; CDDEP 2017), and the
growth rate of USA300 has consequently decreased.
Importantly, the consumption of antibiotics is expected
to be associated with the growth rates of resistant
bacterial pathogens, rather than with their effective
population sizes, which here is not at all correlated with
the covariate (Fig. 3). Amongst pairs of genomes sampled
from the same hosts, the distribution of genomic distance
had a mean of 1.4 substitution (Uhlemann et al. 2014).
If we assume that sampling occurred on average in the
middle of the carriage duration (i.e., �/2 time after
infection), the evolutionary time separating the two
genomes is between 0 � depending on the level of
within-host genetic drift (Didelot et al. 2016). Given that

the molecular clock rate of USA300 is approximately 3
substitutions per year (Uhlemann et al. 2014; Alam et al.
2015), the average duration of infections in this outbreak
is therefore around �=1.4×2/3=0.93 year. In the first
half of the 1990s, the growth rate peaked around 1 per
year (Fig. 3) and using Equation 10 we estimate that
the reproduction number was around R=1.93, which
is in good agreement with the recent estimate R=1.5 for
MRSA in the US population (Hogea et al. 2014). The fact
that this estimate is only modestly above the minimum
threshold of R=1 required for outbreaks to take place
could help explain why the USA300 is declining, even
though �-lactams are still widely used. The consumption
level may have lowered below the threshold caused by
the fitness cost of resistance, as previously discussed for
other resistant bacteria (Dingle et al. 2017; Whittles et al.
2017).

DISCUSSION

Many environmental covariates, particularly those
with a mechanistic influence on replicative fitness of
pathogens, are closely related to the growth rate of
epidemic size but not necessarily related to absolute
epidemic size. We have found that these relationships
can be inferred from random samples of pathogen
genetic sequences by relating environmental covariates
to the growth rate of the effective population size.
This enables the estimation of the fitness effect of
environmental covariates as well as the prediction of
future epidemic dynamics should conditions change. We
have found a clear and highly significant relationship
between the growth and decline of community-
associated MRSA USA300 and the population-level
prescription rates of �-lactam antibiotics (Fig. 3).
This relationship is not apparent when comparing
antibiotic usage directly with the effective population
size of MRSA USA300. Our methodology focused on
growth rate is therefore well suited to investigate the
drivers of antibiotic resistance, compared to previous
phylodynamic methods focused on the effective
population size.

The skygrowth model can provide a more realistic prior
for many infectious disease epidemics where the growth
rate of epidemic size is likely to approach stationarity
as opposed to the absolute effective population size.
Conventional skyride and skygrid models are prone to
erroneously estimating a stable effective population
size when genealogical data are uninformative, as for
example when estimating epidemic trends in the latter
stages of SIR epidemics (Fig. 1). The skygrowth model
will correctly predict epidemic decline in this situation.
Moreover, under ideal conditions, the estimated growth
rate can be related to the reproduction number of an
epidemic, and the skygrowth model provides a simple
nonparametric estimator of the reproduction number
through time given additional information about the
natural history of infection (Equation 10). Caution
should be exercised when using the effective population
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size as a proxy for epidemic size, as the relationship
between the two is complex (cf. Simulation results).
In general, there will be close correspondence between
the growth of epidemic size and growth of effective
population size during periods where the growth rate
is relatively constant.

The methods presented here can be applied more
generally to evaluate the role of antibiotic stewardship,
vaccine campaigns, or other public health interventions
on epidemic growth rates. Some environmental
covariates, such as independent prevalence estimates,
may be more closely related to effective population size
rather than growth rates, and future work is indicated
on the development of regression models in terms
of both statistics. More complex stochastic models
can also be considered, such as processes with both
autoregressive and moving average components. A
variety of mathematical models have been developed
to explain de novo evolution of antimicrobial resistance
as a function of population-level antimicrobial usage
(Bonhoeffer et al. 1997; Austin et al. 1999; Spicknall et al.
2013; Whittles et al. 2017), and an important direction
for future work will be the development of parametric
and semiparametric structured coalescent models (Volz
2012) that can be applied to bacterial phylogenies
featuring a mixture of antibiotic sensitive and resistant
lineages. This methodology will allow us to estimate
key evolutionary parameters, such as the fitness cost
and benefit of resistance, or the rate of mutation from
sensitive to resistant status, which are needed to make
well-informed recommendations on resistance control
strategies.
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