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Abstract

Recent advances in molecular approaches and DNA sequencing have greatly progressed the field of ecology and allowed
for the study of complex communities in unprecedented detail. Next generation sequencing (NGS) can reveal powerful
insights into the diversity, composition, and dynamics of cryptic organisms, but results may be sensitive to a number of
technical factors, including molecular practices used to generate amplicons, sequencing technology, and data processing.
Despite the popularity of some techniques over others, explicit tests of the relative benefits they convey in molecular
ecology studies remain scarce. Here we tested the effects of PCR replication, sequencing depth, and sequencing platform
on ecological inference drawn from environmental samples of soil fungi. We sequenced replicates of three soil samples
taken from pine biomes in North America represented by pools of either one, two, four, eight, or sixteen PCR replicates with
both 454 pyrosequencing and Illumina MiSeq. Increasing the number of pooled PCR replicates had no detectable effect on
measures of a- and b-diversity. Pseudo-b-diversity – which we define as dissimilarity between re-sequenced replicates of the
same sample – decreased markedly with increasing sampling depth. The total richness recovered with Illumina was
significantly higher than with 454, but measures of a- and b-diversity between a larger set of fungal samples sequenced on
both platforms were highly correlated. Our results suggest that molecular ecology studies will benefit more from investing
in robust sequencing technologies than from replicating PCRs. This study also demonstrates the potential for continuous
integration of older datasets with newer technology.

Citation: Smith DP, Peay KG (2014) Sequence Depth, Not PCR Replication, Improves Ecological Inference from Next Generation DNA Sequencing. PLoS ONE 9(2):
e90234. doi:10.1371/journal.pone.0090234

Editor: Christina A. Kellogg, U.S. Geological Survey, United States of America

Received November 13, 2013; Accepted January 27, 2014; Published February 28, 2014

Copyright: � 2014 Smith, Peay. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Financial support for this work was provided by National Science Foundation (NSF) Dimensions of Biodiversity grant (DBI 1249341) to KGP. The funders
had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: kpeay@stanford.edu

Introduction

Next generation DNA sequencing (NGS) has changed the face

of microbial ecology in the space of a few years. As a result, we

have gained unprecedented insight into the community dynamics

of morphologically cryptic organisms such as fungi, bacteria and

viruses [1][2][3]. However, the outcome of NGS based ecological

inquiry may be sensitive to technical practices that in many cases

have not been adequately tested. For instance, the assumption that

NGS read counts accurately reflect absolute abundance in

ecological analyses may not be appropriate due to taxon specific

PCR and sequencing biases [4]. These technical practices have

important effects on our view of underlying biological reality, but

also on the allocation of resources (time, money, reagents) that

often define the scope of ecological inquiry.

Early optimization of NGS methods has focused on correcting

platform specific sequencing issues, such as the known homopol-

ymer error rates in 454 pyrosequencing [5], often with bioinfor-

matic solutions. However, potential distortions may also arise prior

to DNA sequencing during sample collection [6], DNA extraction

[7][8], or PCR amplification [9][10]. Recognition of these

problems has led to a loosely knit collection of best lab and

bioinformatics practices that have emerged in the microbial

ecology literature and that are aimed at increasing the robustness

of whole community amplification. Among other things, such

practices include the use of hot-start Taq polymerase, reducing the

number of amplification cycles, and the pooling of multiple PCR

replicates per sample [11]. The necessity of pooling PCR replicates

is thought to arise from stochasticity in the PCR process that

results in variable composition of DNA fragments across individual

PCR reactions. Possible causes for this may be sampling effects

that lead to variation in the initial population of DNA template

used to start the reaction, slight variation in initial conditions, or

priority effects of amplification in the early rounds of PCR. The

few studies that have actually reported results from replicate NGS

of the same sample (e.g. [8][12]) have found sample-to-sample

variance in sequence composition that seem to support the

importance of stochastic PCR effects. However, these studies have

focused on the comparison of individual PCR replicates that were

sequenced separately, and therefore the extent to which their

conclusions rely on PCR or sequencing stochasticity is still

unknown.

Though many studies have suggested pooling PCR replicates

prior to sequencing, to our knowledge no study has directly tested

whether samples comprised of multiple, pooled PCR replicates

capture a more robust sample of the true diversity within the

sample. Because there have been no explicit tests of PCR pooling,
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papers vary wildly in the number of pooled PCR replicates they

use or recommend. While three appears to be a somewhat

canonical number (e.g. it has been adopted by the Earth

Microbiome Project [13]) other studies have used a single PCR

replicate [14], five [15] or even ten [16].

The rapid rise and fall of NGS sequencing platforms also raises

major concerns about portability of data across studies. One of the

major advantages of DNA based community profiling is the

collection of standardized data that can be compared or combined

across studies. However, if the observed structure of a community

is platform dependent it would seriously weaken the additive

nature of sequencing efforts in microbial ecology [17].

In this study our primary goals were (1) to determine

quantitatively the number of pooled PCR replicates that

maximizes ecological inference in NGS studies and (2) to test the

robustness of ecological inferences about community structure

using two different NGS sequencing platforms. We did this using a

two-pronged experimental approach where the same DNA sample

was sequenced from a pool of 1, 2, 4, 8 or 16 separate PCR

reactions using both Roche’s 454 Pyrosequencing (454) and

Illumina’s MiSeq (MiSeq). We then compared patterns of a- and

b-diversity (the primary response variables in most community

ecology studies) among samples and replicates. In addition, we

used both NGS platforms to sequence a larger set of soil samples

taken from Pine forests in geographically distinct parts of North

America where we expected to see differences in community

composition.

Based on previous studies, we hypothesized that increasing the

number of PCR replicates prior to sequencing would increase a-

diversity, reduce b-diversity and increase reproducibility by

averaging out PCR noise. Surprisingly, we found that increasing

PCR replication did not meaningfully change any of our ecological

response variables and may be a poor investment of resources in

molecular ecology studies. By contrast, increased sequencing depth

markedly improved estimates of b-diversity using both NGS

platforms. In addition, we found that community sequencing

results from 454 and MiSeq provide largely similar results,

suggesting that data from the two platforms can be combined in a

meaningful way.

Materials and Methods

Experimental design
We investigated the effects of PCR replication and sequencing

platforms on ecological inference using samples from an ongoing

project to characterize ectomycorrhizal fungal communities across

North America pine forests. To test the hypothesis that pooling

PCR replicates improves ecological inference, we selected three

soil samples taken from two sites in Oregon (42.79u E –121.62u N)

and one in Connecticut (41.82u E, –72.96u N). To test whether

NGS sequencing platform affects ecological inference, we selected

60 samples from two sites in North Carolina (NC1 36.01u E, –

78.97u N, NC2 35.99u E, –79.10u N), two sites in California (CA1

37.84u E, –119.94u N, CA2 37.81u E, –119.91u N), and two sites in

Figure 1. Estimated species richness does not depend on the
number of PCR reactions pooled prior to sequencing. Plots of
independent replicates representing different levels of PCR pooling for
samples CT2, OR1, and OR4 against four different diversity indicators.
Points are colored by sample ID. Dotted lines represent the average
between different replicates of the same sample. The top three lines
represent samples sequenced with Illumina MiSeq and the bottoms
three lines represent the same samples sequenced with 454.
doi:10.1371/journal.pone.0090234.g001
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Alaska (AK1 64.77u E, –148.27u N, AK2 64.76u E, –148.25u N)

(for all sites n = 10).

All sample sites in Oregon and California were located on

United States Department of Agriculture (USDA) National Forest

land. The Alaskan sites were located at the Bonanza Creek Long

Term Ecological Research (LTER) site. Sites in North Carolina

were located on private land owned by Duke University, and sites

in Connecticut were located in the Gold’s Pine State Forest. No

permits were required for any site, and all necessary permissions

were obtained prior to sampling. Soil samples were taken from

either the homogenized organic or mineral layer of a core

approximately 7.5 cm diameter614 cm deep (File S1). Soils were

stored cool until ,0.25 g were extracted using the Powersoil DNA

extraction kit (MoBio, Carlsbad CA). DNA extracts were diluted

1:20 and then 1 ml used for PCR.

Molecular methods
For sequencing using the 454 platform, PCR was carried out

using modified versions of the fungal specific primer set ITS1F

[18] and ITS4 [19]. The 59 end of the ITS1F primer was modified

to include the 454 Lib-L A adapter plus a 10-bp molecular

identification (MID) tag to allow for sample multiplexing as in

[14]. The 59 end of the ITS4 primer was modified to include the

454 Lib-L B adapter.

For sequencing using the Illumina MiSeq platform, we designed

modified versions of the primer set ITS1F and ITS2 [19]. This

primer set targets a shorter section of the fungal ITS region

because of the shorter read lengths possible with MiSeq. The 59

end of the ITS1F primer was modified to include the forward

Illumina Nextera adapter and a two basepair ‘‘linker’’ sequence

designed to mismatch against all major fungal lineages immedi-

ately upstream of the gene primer (Fig S1). The induced

mismatch is designed to decrease potential taxon-specific PCR

bias from downstream matches to the adapter or barcode. The 59

end of the ITS2 primer was modified with the appropriate reverse

Illumina Nextera adapter, linker sequence, and a 12-bp error-

correcting Golay barcode as in [17]. Using the program

NetPrimer (Premier Biosoft, Palo Alto CA) we designed three

custom sequencing primers that demonstrated low dimerization

potential and high thermodynamic compatibility with each other

and with the Illumina-specific PhiX sequencing primer. The Read

1 and Read 2 sequencing primers were designed to anneal to the

gene priming regions of the amplicons and extend further into the

conserved 18S portion of the amplified region, thereby maximiz-

ing the amount of ITS sequence returned by the reads. The Index

sequencing primer was designed to sequence only the 12 bp

barcode of each amplicon.

PCR was carried out in 25 ml reactions including 1 ml genomic

DNA, 0.5 ml of each 10 mM primer, 5 ml of 56OneTaq Standard

Reaction Buffer (New England BioLabs, Ipswitch MA), 0.5 ml of

10 mM dNTPs (New England BioLabs, Ipswitch MA), and 0.63

units Taq polymerase. All PCR reactions were set up on ice and

using Fusion hot start Taq polymerase (New England Biolabs,

Ipswitch MA) to minimize non-specific amplification and primer

dimerization. PCR conditions were: denaturation at 94uC for

1 min; 30 amplification cycles of 30 sec at 94uC, 30 sec at 52uC
and 30 sec at 68uC; followed by a 7 min final extension at 68uC.

PCR products were visualized using gel electrophoresis and

successful samples cleaned using the Agencourt Ampure XP kit

(Beckman Coulter, Brea CA). For the replication experiment, the

three samples were each amplified 1, 2, 4, 8 or 16 times using a

separate MID tag or barcode for each replication treatment (N = 3

samples 65 replication levels = 15). Individual PCR reactions for

a given sample 6 replication treatment were pooled and then

20 ml of each pool cleaned using the Ampure Kit as above.

Cleaned PCR products were quantified using the Qubit hs-DS-

DNA kit (Invitrogen, Carlsbad CA) on a Tecan Infinite F200 Pro

plate reader reading at 485 nm excitation and 530 nm emission.

PCR products to be sequenced with 454 were then pooled in

equimolar concentration and sent to the Duke University Institute

for Genome Sciences & Policy core and sequenced on a J plate

partition using Titanium FLX chemistry. PCR products generated

for Illumina sequencing were pooled at equimolar concentration

and then multiplexed with 44 additional bacterial samples

containing 16S rDNA amplicons used for an unrelated study.

The final pool containing both loci was sent to the Stanford

Functional Genomics Facility for 250 bp paired-end sequencing

on an Illumina MiSeq. Bacterial and fungal sequencing primers

were also pooled for each read before submission to the

sequencing facility. A spike of 30% PhiX was included in the

amplicon library in order to achieve sufficient sample heteroge-

neity. Raw sequence data are deposited at NCBI’s Short Read

Archive under study accession SRP035367. Sample metadata

information is provided as File S1.

Bioinformatics
Sequence de-multiplexing and bioinformatic processing of the

454 and Illumina datasets were performed using aspects of the

QIIME [20] and the UPARSE [21] pipelines. Initial quality

filtering of 454 sequences excluded all sequences ,350 or

.1200 bp, with any primer mismatches, with a homopolymer

run .10 bp, or with a mean quality score below 25. The

remaining sequences were denoised using flowgram clustering

[22]. Pre-filtered forward and reverse reads from the Illumina

Table 1. Analysis of variance tests for an effect of PCR replicate number, sample identity, and sequencing method on fungal
richness from the CT2, OR1, and OR4 samples.

No. PCR Replicates Sample ID Method
Replicates 6Sample
ID Replicates 6Method

F1,22 P F2,22 P F1,22 P F2,22 P F1,22 P

Observed 0.372 0.548 18.748 ,0.001* 646.450 ,0.001* 0.320 0.730 0.261 0.615

Chao1 2.380 0.137 15.480 ,0.001* 717.970 ,0.001* 0.171 0.844 2.428 0.134

Fisher’s Alpha 0.415 0.526 38.256 ,0.001* 490.635 ,0.001* 0.439 0.650 0.430 0.519

Simpson 0.060 0.809 42.190 ,0.001* 17.250 ,0.001* 0.185 0.832 0.000 0.991

Simpson’s E 0.001 0.977 13.502 ,0.001* 137.701 ,0.001* 0.054 0.947 0.001 0.979

Samples were sequenced with both 454 and Illumina MiSeq.
doi:10.1371/journal.pone.0090234.t001
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dataset were 238 bp long and our multiplexing strategy resulted in

high quality sequences for both fungal and bacterial samples. For

the fungal samples analyzed in this study, reads were trimmed with

CutAdapt [23] to the point where the sequence met the distal

priming site, and further trimmed using Trimmomatic [24] to

remove any additional low quality end regions. After quality

trimming forward reads averaged 208 bp and reverse reads

averaged 185 bp. Reads were paired using USEARCH v.

7.0.1001 with a minimum Phred score sequence cutoff threshold

of 3 and a minimum sequence length of 75 bp. Paired reads

averaged 230 bp and were discarded if they contained .0.25

expected errors. The final fasta file containing all sequences used

for analysis is available from the authors upon request.

All final, high-quality sequences from both the 454 and Illumina

datasets were combined and grouped into operational taxonomic

units (OTUs) in USEARCH using the UPARSE-OTU and

UPARSE-OTUref algorithms (which included chimaera detection

and filtering and dropped all global singleton reads) at a 97%

sequence similarity cutoff. OTUs were given taxonomic assign-

ments in QIIME based on a previously published sequence

Figure 2. Taxon abundance is strongly correlated across sequencing runs with different levels of PCR replication. Circles represent
individual taxa, and the relationship between the log10 of their abundance in samples comprised of 16 PCR replicates (y axis) and one PCR replicate (x
axis) for CT2 (top two panels), OR1 (middle two panels), and OR4 (bottom two panels). Dashed lines represent a 1:1 relationship. The left three panels
show samples sequenced with 454 and the right three panels show samples sequenced with Illumina MiSeq.
doi:10.1371/journal.pone.0090234.g002
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database [8] modified for QIIME compatibility as in [25]. To

compare samples on an equal basis all samples were rarefied to

even sampling depths prior to statistical analysis. Rarefaction

depths were determined ad-hoc to maximize the number of

samples included while still maintaining a reasonable number of

sequences. For the replication experiment, the 454 samples were

rarefied to 500 sequences and the Illumina samples to 38,000

sequences. For the larger, cross platform-comparison dataset, 454

samples were rarefied to 1000 sequences and the Illumina samples

to 40,000 sequences.

Statistical analysis
To see how replication affects ecological inference we calculated

a number of common a-diversity (observed richness, Fisher’s

Alpha, Chao 1 and Simpson, Simpson Evenness) and b-diversity

(Jaccard, Bray-Curtis, b-sim) metrics used in community ecology.

We used a linear model to test whether or not the number of PCR

replicates and sequencing platform affected different richness

estimators (S = Replication6Sample ID6Platform). We used a

similar approach to test whether average b-diversity changed in

any predictable way with the number of replicates used to generate

each sample. This was done by calculating b-diversity (Bray Curtis

or Jaccard) for each replication level compared with all other

samples sequenced from those plots.

This dataset also allowed us a unique look at data reproduc-

ibility with repeated sequencing of the same sample. To see how

sequencing depth affects estimates of sample b-diversity, we

calculated within sample b-diversity (that is, b-diversity between

independent replicates of the same sample – hereafter termed

pseudo-b-diversity) at a range of sequencing depths, from 50–1000

(454) and 100 to 80,000 (Illumina). Because there has been much

debate about the handling and validity of low abundance OTUs,

we tested the effect of within sample sequence abundance on the

repeatability with which an OTU is detected across replicate

sequencing of the same sample. We used logistic regression to

model the relationship between log10 transformed mean within

sample abundance and frequency of detection across samples (for

this analysis 0 values were assigned K the minimum observed

value prior to log transformation). We also looked at quantitative

reproducibility by comparing OTU read abundance (log10 X+1

transformed) between the single replication treatment and the 16

replication treatment for each DNA sample.

Finally, with the larger dataset we compared the similarity of

ecological inferences made with different sequencing platforms. a-

diversity estimates were generated for each sample based on

rarefaction to a common sequence depth within each platform.

We used a Mantel test to determine whether community similarity

estimates were similar across platforms. Pairwise sample similarity

across samples and across platforms was visualized using non-

metric dimensional scaling (NMDS), and a perMANOVA tested

for the effect of sequencing platform and geographic origin on

estimates of community similarity. To compare whole community

overlap we generated a Venn diagram to illustrate the proportion

of shared and unique taxa generated with each platform. To look

for taxonomic bias we plotted relative abundance of lineages for

shared and unique OTUs across platforms. Statistics were

performed using the R software package [26] and the Vegan

community analysis package for NMDS and perMANOVA [27].

Several data points were left out of our analyses due to either

insufficient or low-quality sequences or sample mishandling (454

data: the 2 PCRs treatment for OR1, the 8 PCRs treatment for

OR4, and individual points CA1.A5.OH and CA1.A5.AH from

the larger dataset. MiSeq data: the 4 PCRs treatment for OR1 and

individual point NC2.0.OH from the larger dataset).

Results

After quality control, denoising, and chimera removal of the

smaller dataset, sequencing depth for successful samples ranged

from 573–1783 sequences in the 454 dataset and from 38,423–

92,189 sequences in the Illumina dataset. Observed richness at

500 sequences (454 dataset) ranged from approximately 30 to

60 OTUs/sample and at 38,000 sequences (Illumina dataset)

ranged from approximately 200 to 350 OTUs/samples. As

expected for Pine soils the most commonly observed taxa belonged

to lineages of Basidiomycota ectomycorrhizal fungi and sapro-

trophs (data not shown).

Increasing the number of PCR replicates pooled prior to

sequencing had no effect on the estimated a-diversity of a sample

regardless of the sequencing method used (Table 1). This effect

was consistent regardless of the richness metric chosen (Fig 1) and

whether or not an interaction term was included in the model.

Similarly, estimates of b-diversity compared with other samples in

the same site did not show any trends related to the number of

pooled PCR replicates (454 Jaccard ANOVA F1,7 = 0.588,

P = 0.468; Bray-Curtis ANOVA F1,7 = 1.682, P = 0.236; Illumina

Jaccard ANOVA F1,8 = 0.118, P = 0.741; Bray-Curtis ANOVA

F1,8 = 1.685, P = 0.231; Fig S2). That is to say, a sample

sequenced from 1 PCR did not show higher or lower b -diversity

with other samples from the same plot than the same sample

sequenced from 16 PCR replicates. When ordinated the different

replication levels from the same sample clustered together with

little variation from the centroid (Fig S2).

Sequence counts for individual OTUs were highly correlated

across resequencing instances of the same sample. This relation-

Figure 3. Taxa represented by more sequences are observed
most consistently across replicates of the same sample. Plots of
the proportion of samples in which an OTU is observed against the
average number of reads representing that OTU. Zeros were assigned a
value of 0.1 prior to log transformation. Dashed lines represent the
logistic model predicting the relationship. The top panel shows results
from 454 and the bottom panel shows results from Illumina.
doi:10.1371/journal.pone.0090234.g003
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ship was true regardless of the PCR replicate number. Plots

relating the number of sequences per taxon in a sample composed

of 16 PCR replicates to that of a single PCR replicate were

strongly log linear and in almost all cases followed a 1:1

relationship (Fig 2). As a result, per OTU sequence counts were

highly significantly correlated (Pearson’s product moment corre-

lation: 454 dataset CT2 r = 0.84, P,0.001; OR1 r = 0.89,

P,0.001; OR4 r = 0.87, P,0.001; Illumina dataset CT2

r = 0.92, P,0.001; OR1 r = 0.94, P,0.001; OR4 r = 0.96,

P,0.001).

High abundance OTUs were detected more consistently across

replicate sequencing runs. The proportion of samples that an

OTU was observed in increased significantly with average within

sample read depth for that taxon (Fig 3; Overall effects tests: 454

No. reads x2
1 = 1,496, P,0.001, Site x2

2 = 1.0, P = 0.60; Illumina

No. reads x2
1 = 10,742, P,0.001, Site x2

2 = 2.3, P = 0.32). There

were no differences in this relationship across samples and the

same patterns were seen for analyses run with median, maximum

and minimum read depth (data not shown). For both 454 and

Illumina OTUs with mean read abundance .10 sequences were

detected nearly 100% of the time. However, many low abundance

OTUs were also detected with a high degree of regularity.

Pseudo-b-diversity estimates decreased exponentially with

increasing sequencing depth (Fig 4). In the 454 dataset,

Figure 4. Increasing sequence depth reduces pseudo-b-diversity. Plots of the between-sample Bray-Curtis dissimilarity (top two panels) and
Jaccard dissimilarity (bottom two panels) in CT2, OR1, and OR4 against per-sample sequencing depth. Points represent the b-diversity values
between different replicates of the same sample and are colored by sample ID. Dashed lines connect each symbol within a sample. The left two
panels show samples sequenced with 454 and the right two panels show samples sequenced with Illumina MiSeq.
doi:10.1371/journal.pone.0090234.g004
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dissimilarity measures consistently remained above 0.1 (Bray-

Curtis) and 0.3 (Jaccard) at the maximum amount of sequences/

sample recovered. In the Illumina dataset, Bray-Curtis dissimilar-

ity approached zero above 20,000 sequences/sample while

Jaccard dissimilarity remained above 0.3 at the maximum amount

of sequences/sample recovered.

From the larger set of samples, sequencing on the 454 and

Illumina MiSeq platforms resulted in 3,660 total OTUs. Of these

3 (0.08%) were unique to the 454 dataset, 1,798 (49.13%) were

unique to the Illumina dataset, and 1,859 (50.79%) were shared

(Fig S3). Richness was significantly higher for samples sequenced

with Illumina MiSeq than for the same samples sequenced with

454 (Table 2). Regressions of per-sample observed species, Chao1

estimated richness, and Fisher’s Alpha index between the 454

dataset and the Illumina dataset indicated that diversity recovered

with either sequencing method was highly correlated (Fig 5:

Observed slope = 0.2860.03, r2 = 0.67, P,0.001; Chao1

slope = 0.3760.05, r2 = 0.59, P,0.001, Fisher’s Alpha slope

= 0.5760.06, r2 = 0.65, P,0.001).

b-diversity estimates of between-sample dissimilarity were

somewhat affected by sequencing platform (Jaccard perMANOVA

F1,98 = 30.26, r2 = 0.08 P = 0.001; Bray-Curtis perMANOVA

F1,94 = 45.40, r2 = 0.09, P = 0.001; b-sim perMANOVA

F1,94 = 29.30, r2 = 0.05, P = 0.001). However, regressions of b-

diversity between the 454 dataset and the Illumina dataset showed

that between-sample dissimilarity was highly correlated between

the two sequencing platforms (Fig 5: Jaccard slope = 0.8060.01,

Mantel r = 0.94, P = 0.001; Bray-Curtis slope = 0.9360.01, Man-

tel r = 0.96, P = 0.001, b-sim slope = 0.9260.01, Mantel r = 0.92,

P = 0.001). Both sequencing methods recovered the significant

differences in community structure expected between sampling

bioregions (Jaccard perMANOVA F2,98 = 124.40, r2 = 0.62,

P = 0.001; Bray-Curtis perMANOVA F2,98 = 145.32, r2 = 0.61,

P = 0.001; b-sim perMANOVA F2,98 = 204.45, r2 = 0.74,

P = 0.001) which explained an order of magnitude more variation

than did sequencing method. All samples from both sequencing

datasets ordinated primarily by sampling bioregion (Fig 6).

Taxonomic assignment was highly consistent between OTUs

found in the 454 dataset and OTUs found in the Illumina dataset

at the phylum, class, and ordinal levels (Fig 7, Fig S4).

Taxonomic bias between the two sequencing platforms was

primarily limited to low abundance taxa (e.g. relatively more

species of Zygomycota and Chytridomycota taxa found in the 454

dataset), but taxonomic composition of each dataset looked nearly

identical when relative abundance of taxonomic groups was

considered.

Discussion

In this study we compare the effects of different lab, sequencing

and bioinformatic protocols on a number of ecological metrics of

a- and b-diversity. These metrics form the basis for conclusions in

most microbial community studies and so our results should have

important ramifications for how this work is carried out. This is

particularly true because of the limited resources and options that

can be explored in a single study.

Despite the popularity of PCR replication in molecular ecology

studies, we find that increasing the number of PCR replicates that

are pooled prior to sequencing has no meaningful effect on

ecological measures of diversity or community structure and thus

likely no effect on the conclusions of a given study. We present

several lines of evidence to support this conclusion. First, the effect

of PCR replication is highly insignificant in all statistical models

predicting a- and b-diversity of replicates of three soil samples

taken from different pine biomes across North America (Table 1,

Fig 1, Fig S2). Although visually there appears to be a slight

increase in species richness, Chao1 richness, and Fisher’s Alpha

diversity as more PCR replicates are pooled, the trend does not

hold in a linear fashion and is both sample, sequencing method,

and metric-specific (e.g. only seen in the Illumina dataset, only true

for OR1 and OR4, and is most apparent only for Chao1 richness

estimates). On the other hand, sample ID (i.e. sampling location, a

more relevant ecological factor) has a comparably large effect on

a- and b-diversity metrics. In all models tested, sample ID and

sequencing method are the predominant drivers between differ-

ences in diversity and community structure.

Second, the number of sequences observed for each taxon

between low-replicated samples (e.g. 1 PCR replicate) and high-

replicated samples (16 PCR replicates) is highly correlative in a 1:1

relationship (Fig 2), suggesting that pooling more PCR replicates

prior to sequencing does not affect the relative abundances of taxa

found in each sample, and that sequence abundance per taxon in

one PCR can accurately predict sequence abundance per taxon in

a pool of 16 replicates. It is important to note that the relationship

between sequence abundance per taxon in high vs. low replicated

samples is weakest with low-abundance taxa, highlighting the

Figure 5. Patterns of a- and b-diversity are highly reproducible when samples are sequenced on different platforms. Regressions of
diversity found in 55 soil samples sequenced on both platforms. Left three columns: points represent individual samples, and the relationship
between the total richness per sample found when sequenced with 454 (y axis) and Illumina MiSeq (x axis). Right three columns: points represent
pairwise differences in between-sample community composition and the relationship between dissimilarity found with 454 (y axis) and Illumina (x
axis). Dashed lines represent the linear models predicting the relationships.
doi:10.1371/journal.pone.0090234.g005

Table 2. Average per-sample fungal richness for 55 soil samples from pine forests.

454 Avg. Richness/Sample Illumina Avg. Richness/Sample F1,102 P

Observed 79.907 289.000 322.800 ,0.001*

Chao1 125.835 349.610 269.600 ,0.001*

Fisher’s Alpha 21.190 42.522 82.110 ,0.001*

Simpson 0.814 0.819 0.032 0.858

Simpson’s E 0.019 0.005 83.970 ,0.001*

Samples were sequenced with both 454 and Illumina MiSeq.
doi:10.1371/journal.pone.0090234.t002
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importance of adequate sequencing depth for obtaining an

accurate depiction of diversity within samples. Together, these

results suggest that ecological studies focused on comparing

diversity levels and differences between multiple samples across

gradients or treatments varying in space or environmental

conditions will not be improved significantly by using multiple

PCR replicates.

In searching through the literature the origins of this practice are

actually somewhat unclear. In general, most evidence in favor of

PCR replication is based on differences in OTUs detected in

repeated sequencing of single PCR replicates of the same sample

[8][11][12]. However, we would argue that sampling error during

PCR is a small problem compared with sampling error in the actual

sequencing process, in which a few thousand molecules are down

sampled from an overall population of billions. Our data show that

replicates of the same sample sequenced multiple times at low

sequencing depth can lead to higher levels of between-replicate

dissimilarity – i.e. pseudo-b-diversity - than should ideally be the

case. This is most likely due to inadequate sequencing depth or

suboptimal levels of rarefaction making low-abundance taxa

unlikely to be appear in all samples. We find that the proportion

of replicates of the same sample in which an OTU is present

increases logarithmically with the average number of reads

representing that OTU (Fig 3). This is to say that the reproducibility

of taxon coverage and composition of a sample will improve with

increasing sequencing depth per taxon. For both 454 and Illumina,

OTUs represented by an average of .10 sequences are detected

nearly 100% of the time. While many low abundance OTUs are

detected repeatedly across samples and thus likely to be real,

restricting analyses to these core OTUs may restrict the influence of

pseudo-b-diversity due to limited sampling when making ecological

conclusions about similarity of microbial communities.

In addition, we find that pseudo-b-diversity between sequencing

replicates of the same sample decreases with an increasing number

of sequences per sample (Fig 4). Pseudo-b-diversity of abundance

sensitive metrics like Bray-Curtis dissimilarity decreases exponen-

tially as more sequences are added, approaching zero (indicating

little to no difference between replicates of the same sample) at a

depth of .10,000 sequences/sample. In our study, sequencing on

the 454 platform was unable to capture this sequencing depth and

thus dissimilarity between replicates in this dataset remain higher

(.0.1) at the maximum sequencing depth recovered. Sequencing

on the Illumina platform recovered approximately 706 more

sequences per sample and thus easily reaches the lowest Bray-

Curtis dissimilarity values possible between replicates within the

recovered sequencing depth. Interestingly, values of a binary

metric like Jaccard dissimilarity remain higher than might be

desired for multiple replicates of the same sample even at the

maximum sequencing depth recovered for both platforms. This

indicates that rare taxa continue to be detected in low abundance

as more sequences are recovered on either platform, regardless of

the total amount of additional sequences.

The implications of this result are several. First, it could suggest

that extremely low-abundance microbial taxa are always present

in high diversity systems such as soils. As technology progresses to

achieve orders of magnitude more sequences per sample with each

new sequencing platform, microbial ecology studies will tend to

detect more and more rare taxa, perhaps without ever saturating

Figure 6. Broad ecological patterns of b-diversity are recovered
equally well with each sequencing platform. Non-metric multidi-

mensional scaling of fungal communities from 55 soil samples
sequenced with both 454 (circles) and Illumina MiSeq (triangles). Points
are colored by the three regions of sample collection. Ordinations are
based on between-sample dissimilarity calculated with Jaccard (top
panel), Bray-Curtis (middle panel), and b-sim (bottom panel).
doi:10.1371/journal.pone.0090234.g006
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taxa-accumulation curves. Using binary metrics like Jaccard could

lead to artificially high estimates of between sample dissimilarity

given how low-abundance and rare these new taxa are, and thus

should be used with caution. Perhaps more realistically, the rare

taxa that persist in detection at extremely low abundance as

sequencing depth grows could also be a result of sequencing error

and spurious OTU formation during sequence processing

[21][28][29][30]. As a result, the ability to saturate taxa-

accumulation curves by increasing sequencing depth could be

somewhat confounded by subsequent increases in sequencing or

processing errors. However, given that we observed many low-

abundance taxa in different replicates of the same sample (Fig 3),

it is likely that many of these taxa represent real organisms. Again,

we would argue that this should encourage microbial ecologists to

consider relative sequence abundance when examining b-diversity

comparisons between highly diverse samples. While there is no

silver bullet, the right choice of metrics will depend on the relative

risk of pseudo-b-diversity vs. taxon bias in addressing the

particular ecological question at hand.

Our results from the larger dataset of soil samples from three

different North American pine biomes reveal interesting insights

about the influence of sequencing platform on ecological

conclusions and thus the adaptability of microbial ecology studies

to the latest NGS platforms like Illumina MiSeq. Since MiSeq

reads are at present maximum only 300 bp in either direction,

adapting ecological sequencing studies to newer technology

presents challenges for longer loci previously sequenced with

454. Often this means designing new primers or switching loci

altogether, and the degree to which similar patterns and

conclusions can be drawn from sequencing the same organisms

as labs adapt their protocols for the future remains uncertain. In

our study, the 454 dataset and Illumina dataset differ in the reverse

PCR primers used and in the length of the amplicons.

Sequencing of the same samples on the Illumina platform vs. the

454 platform results in a ,406 increase in high quality read

coverage as well as considerably more total OTUs and levels of

richness per sample (Table 2). Encouragingly, the Illumina

dataset finds nearly all OTUs that are detected with 454 but

largely expands the total taxonomic coverage (Fig S3). The only

three OTUs unique to the 454 dataset are identified as taxa in the

genera Trichophaea (Ascomycota), Camarophyllopsis (Basidiomy-

cota), and Amanita (Basidiomycota). Interestingly, eight Tricho-

phaea taxa and 14 Amanita taxa are also present in the Illumina

dataset, indicating no explicit lineage bias of the Illumina primers

against members of these genera. The unique Thrichophaea and

Amanita OTUs found only in the 454 dataset are thus likely due to

sampling effects or error in the OTU clustering step of the

sequencing processing pipeline. Additionally, since the read

pairing step of Illumina processing is designed to correct

sequencing errors from one read with higher-quality base calls

from the other [31], it is possible that the 454-uniqe OTUs simply

represent sequencing error that was not otherwise corrected.

Despite the large increase in diversity recovered with Illumina vs.

454, values of a- and b-diversity remain highly correlative between

the two sequencing platforms (Fig 5). Sample bioregion is the

predominant driving factor in the ordination of all samples from

both sequencing methods (Fig 6), with 454 and Illumina replicates

of the same samples clustering strongly by their sampling location.

Within each bioregion cluster, samples cluster further by sequencing

method. Variation around the centroid is greater for the 454

Figure 7. Taxonomic assignment to OTUs observed between both sequencing platforms is highly consistent. Bar chart indicating the
proportional richness and abundance of taxa identified to the class level in 55 soil samples sequenced with both 454 and Illumina MiSeq.
doi:10.1371/journal.pone.0090234.g007
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dataset, suggesting that b-diversity relationships between samples

will depend slightly on the method used to sequence samples. This is

likely due to differences in sequencing depths and species richness

attainable with the two platforms. Some of the platform-specific b-

diversity differences disappear in the ordination based on the b-sim

metric, which controls for differences in richness between samples

and thus a major difference with varied sequencing depth. It is

important to note, however, that a certain degree of variation in

ordination seen between the two datasets is to be expected given the

different primer sets used for each platform. Still, our results strongly

suggest that larger scale patterns of a- and b-diversity are as equally

and consistently recoverable with newer, Illumina sequencing

technology as with older 454 methods, and that ecologists should

be able to transition their research with little hesitation to newer,

more high-resolution sequencing technology.

Taxonomic assignment to OTUs is also consistent across the

two sequencing platforms (Fig 7, Fig S4). At the phylum level, we

observe almost complete agreement in the number and types of

taxa identified. Differences between taxonomic assignment in the

two datasets are primarily in the number of different Neocalli-

mastigomycota, Glomeromycota, and Chytridiomycota taxa

present. However, these groups represent a proportionally small

amount of the total sequences recovered, and thus differences in

the abundance of each taxonomic group recovered by the two

datasets are accordingly quite small and could be due to

stochasticity rather than bias. This relationship additionally holds

true for the class and order groups.

Despite it’s advent several years ago, amplicon sequencing with

Illumina for higher order eukaryotic organisms like fungi remains

scarce in the literature (but see [12] and [32]). Our results from the

larger pine biome dataset present novel evidence that large scale

ecological patterns of diversity, structure, and taxonomic resolu-

tion are easily attainable with an Illumina-specific fungal ITS

primer set, and that ecological studies have much to gain by

adopting newer NGS methods.

Supporting Information

Figure S1 Primer constructs for the amplification and
sequencing of ITS1 for Illumina MiSeq. a) Sequences of

PCR and sequencing primers designed to amplify and sequence

ITS1, specific to the Illumina MiSeq platform. b) Partial diagram

of the ITS region in fungi (not to scale), with approximate

annealing locations of PCR and sequencing primers. The PCR

primers are designed to generate large amplicons comprising the

variable ITS1 region and conserved 18S and 5.8S regions. The

Read 1 and Read 2 sequencing primers are designed to sequence a

smaller region comprised mostly of ITS1, eliminating most of the

conserved flanking regions. The Index sequencing primer

sequences the barcode on each amplicon.

(TIF)

Figure S2 Pseudo-b-diversity is not significantly affect-
ed by the number of PCR replicates pooled prior to
sequencing. The top four panels show the average between-

replicate dissimilarity between independent replicates of CT2,

OR1, and OR4 plotted against increasing PCR replication level,

as determined by sequencing with 454 and Illumina MiSeq. The

bottom two panels show non-metric dimensional scaling (NMDS)

ordinations of the same dissimilarity values. Different colored

symbols represent the different sample IDs; different shaped

symbols represent the PCR replication level of each replicate.

(TIF)

Figure S3 Sequencing on the Illumina platform greatly
expands the detectable taxonomic diversity. Venn dia-

gram of the total fungal OTUs found from 55 soil samples

sequenced with both Illumina MiSeq (light grey circle) and 454

(dark grey circle). OTUs found only when samples were sequenced

with Illumina or 454 are represented by the non-overlapping

regions of the circles on the left (1798 OTUs) and right (3 OTUs),

respectively. OTUs present in both sequencing runs are

represented by the overlapping region in the middle (1859 OTUs).

(TIF)

Figure S4 Taxonomic assignment to OTUs observed
between both sequencing platforms is highly consistent.
Bar charts indicating the proportional richness and abundance of

taxa in 55 soil samples sequenced with both 454 and Illumina

MiSeq at the phylum, class, and order levels.

(TIF)

File S1 Metadata for all samples collected and se-
quenced for this study.
(TXT)
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