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Newborns demonstrate innate abilities in coordinating their sensory and motor

systems through reflexes. One notable characteristic is circular reactions consisting of

self-generated motor actions that lead to correlated sensory and motor activities. This

paper describes a model for goal-directed reaching based on circular reactions and

exocentric reference-frames. The model is built using physiologically plausible visual

processing modules and arm-control neural networks. The model incorporates map

representations with ego- and exo-centric reference frames for sensory inputs, vector

representations for motor systems, as well as local associative learning that result

from arm explorations. The integration of these modules is simulated and tested in a

three-dimensional spatial environment using Unity3D. The results show that, through

self-generated activities, the model self-organizes to generate accurate arm movements

that are tolerant with respect to various sources of noise.

Keywords: sensorimotor learning, cognitive modeling, developmental robotics, perception-action coupling,

reaching

1. INTRODUCTION

Reaching for a desired target in space is a fundamental human sensorimotor ability. Many processes
are involved in this ability, including stereovision to recover the position of the target in the
three-dimensional space, motor control to move the arm, and visuospatial sensorimotor learning
to coordinate sensory and motor representations (Mackrous and Proteau, 2016). Goal-directed
reaching involves the detection and recognition of the object of interest among surrounding objects
in space, determining its spatial position, and finally guiding the arm toward that position.

Goal-directed reaching has many applications in robotics and has been approached both from
the perspective of physical modeling (forward and inverse arm kinematics) (Goldenberg et al., 1985;
Manocha and Canny, 1994; Parikh and Lam, 2005; Mohammed and Sunar, 2015; Srisuk et al.,
2017; Reiter et al., 2018) as well as from the perspective of biological-system modeling. Physical
modeling approaches rely heavily on the accurate and explicit model of the arm (length of limbs,
etc) and require re-calibration when physical parameters undergo unforeseen changes. On the other
hand, biological systems exhibit remarkable adaptability; for example, the size of a growing child’s
arm changes but the brain can adapt and “automatically re-calibrate” its sensorimotor control
processes. This is one reason why several researchers focused on biologically-based approaches
to sensorimotor control (Saxon and Mukerjee, 1990; Asuni et al., 2003, 2006; Laschi et al., 2008;
Hoffmann et al., 2017).

Approaches to biologically-based sensorimotor control are influenced by psychological theories
of intelligence. According to behaviorism, the motor system produces observable behaviors which
constitute the fundamental level of analysis (Graham, 2000; Sherwood and Lee, 2003). Strict
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behaviorism proposes that the analysis of intelligence should be
based solely on observable variables, viz., stimuli and responses
(behavior), without any reference to the system itself. In other
words, the biological system is treated as a “black box,” and
learning is defined as changes in behavior as a result of two
associative processes: In classical, or Pavlovian, conditioning,
changes in behavior result from associating one stimulus
(conditioned stimulus, CS) with another one (unconditioned
stimulus, US), which is contingent on CS. In instrumental or
operant conditioning, changes in behavior occur as a result
of a reinforcing stimulus which is contingent on the behavior
produced by the organism. This approach is exemplified with
the currently popular deep-learning models that use a dataset
containing inputs (stimuli) and desired outputs (reinforcement
signals) and train a multi-layer network whose architecture is
defined mostly in an ad-hoc manner. In contrast, constructivist
theories put a central role on the internal processes of the
organism that actively structures its inputs (Piaget, 1952). Hence,
constructivist approaches place a central role for structural and
functional properties of the organism. Our approach follows this
latter theoretical perspective by incorporating modules that are
inspired from the structure, i.e., functional neuro-anatomy of the
primate brain, and the functional principle of “circular reactions”
(Piaget, 1952).

The primate cortex consists of two general pathways: the
dorsal and ventral pathways (Goodale and Milner, 1992).
These two pathways carry out complementary information
processing: The ventral pathway is specialized for processing
“what” information, i.e., the detection and recognition of objects.
The dorsal pathway is specialized for the “where” information,
i.e., the localization of objects in space. From its definition, it
is clear that goal-directed reaching necessitates both the ventral
(detection and recognition of the desired target) and the dorsal
pathways (localization of the desired target in order to guide
arm movements). The joint operation of these two pathways
suggests interactions between them. Indeed, neurophysiological
findings suggest that the “what” and “where” specializations
are not binary exclusive properties of these pathways but are
shared to some extent (Mishkin et al., 1983; Wang et al., 1999;
Sereno et al., 2014). Neurophysiological studies also indicate
heavy connectivity between these areas, possibly underlying
their joint synergetic operations (Rosa et al., 2009; Wang et al.,
2012; Van Polanen and Davare, 2015). In our model, we start
with egocentric visual representations that reflect the coding of
visual information in early visual areas of the cortex. Through
the optics of the eye, neighboring points in the environment
are projected to neighboring points on our retinas. These
neighborhood relationships are preserved by retino-cortical
projections. This organization is called retinotopic organization
(Engel et al., 1997). The retinotopic cortical areas constitute
a map representation in the sense that the location of active
neurons indicates the location of the stimulus with respect to
the positions of the eyes. The eye-based representation is an
egocentric map because the location is encoded with respect
to the eyes of the observer. An egocentric reference frame
is one that is relative to the subject, e.g., eye-, head-, body-
, limb-based reference-frames. In the next stage of the model,

disparity information is used to combine the two egocentric
retinotopic maps into an exocentric “cyclopean map.” Exocentric
reference-frames are those that are relative to a reference outside
the subject1. For example, in the cyclopean map, the position
of an object is with respect to its position in the external
world and hence its coded position does not change when the
eyes move. This exocentric representation is then coordinated
with motor representations by using the functional principle
of circular reactions. Newborns start with genetically encoded
reflexes, which consist of actions like sucking. These reflexive
motor behaviors form circular reactions in that their end point
becomes the beginning of a new cycle and this closed cycle
repeating itself for autonomous learning and self-organization.
These circular reactions allow the coordination of different senses
and motor actions to guide the movements of our body (Piaget,
1952). Beginning with reflexes or random body explorations
and repeating these procedures circularly, sensory and motor
representations are gradually coordinated.

To model and simulate this sensorimotor self-organization,
we propose and test an integrative model that combines several
neural-network modules that are based on neuro-anatomical and
functional properties of the primate visual system.

2. RELATED WORK

As discussed in the previous section, several studies use the
physical modeling to characterize the known structure of the arm
and joints and the application of forward and inverse kinematics
can be used to determine and move the arm to a desired location
(Goldenberg et al., 1985; Manocha and Canny, 1994; Parikh and
Lam, 2005; Mohammed and Sunar, 2015; Srisuk et al., 2017;
Reiter et al., 2018). Biologically motivated studies that follow the
behavioristic approach do not use a model of the arm but “learn”
its structure through stimulus-response training. Our approach
follows the constructivist tradition and incorporates structural
and functional properties of the system, in this case the primate
brain. Hence the key elements of our approach are egocentric and
exocentric maps, motor vector representations, local associative
coordination of maps and vectors through circular reactions.

Many studies indicated that in human, the developmental
functions of brain is modulated by the sensory-motor experience
(Barsalou, 2008; Schillaci et al., 2016). This skill is thought
to be acquired through the active interactions with the
external environment (Piaget, 1952). A typical scenario of
this is the reaching behavior under the guidance of visual
information, which has been widely simulated by various
of modeling structures. For instance, Saxon and Mukerjee
(1990) studied sensory-motor coordination by self-organizing
neural networks, and created associations between an egocentric
visual map and a motor map via circular reactions. The
problem was simplified into a two-dimensional working
space and was simulated with a robotic arm consisting

1Traditionally, the term “allocentric” is used in this context. However, the prefix

“allo” means “other” and does not explicitly state the property of being outside of

the observer and does not highlight this contrast. Hence we use the term exocentric

to contrast it with egocentric and to convey more directly its meaning.
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of three degrees of freedom. Another study, described in
Asuni et al. (2003, 2006), offered a more developed system
working in three-dimensional space and simulated with a
DEXTER robotic arm. But the visual space was effectively
two-dimensional since the target objects were located on a
planar table. Similarly, the model learned through circular
reactions and the motor system was represented by vectors.
However, the objects visual locations were represented by gaze
positions (vectors).

Some studies focused more on the learning mechanisms. For
instance, Santucci et al. (2014) proposed a model incorporating
a novel reward mechanism that used the dopaminergic neurons
to strengthen the learning effect of reaching behaviors. This
model was simulated on a robotic arm, which moved in
a three-dimensional space, even though it was tested with
target objects located on a table. The neural networks were
trained via reinforcement learning where both the visual
inputs and the motor system were represented by vectors.
Tanneberg et al. (2019) implemented a stochastic recurrent
network to refine the end-effector’s motion trajectory to avoid
the obstacles on the way during reaching. In their study,
visual inputs were not used. In some studies more complex
hand movement scenarios, like grasping were implemented
(Sarantopoulos and Doulgeri, 2018; Della Santina et al.,
2019).

In recent years, the scope of this research area has been
expanded to a larger variety of tasks beyond vision-based
reaching. For instance, Hoffmann et al. (2017) implemented
reaching with tactile stimuli and incorporated a transformation
between the tactile map and motor coordinates. The robot
learned through self-generated random babbling and a self-
touch. Laschi et al. (2008) incorporated a visual processing
module that is able to predict the object’s tactile properties.
The model learned the reaching direction and object orientation
and mapped the arm and hand coordinations to the objects
geometrical features so that it was able to predict a suitable
movement to grasp the object. Chao et al. (2010) developed
an ocular-motor coordination that gradually mapped the gaze
space and the motor space of the ocular muscles. This study
included the differential resolution found on the retina (fovea
vs. periphery) and used eye movements (saccades) to bring
the stimulus from the periphery to the fovea. Schmerling
et al. (2015) used a robot with head motion and suggested
that head-arm coordinations would improve learning. The
neural network drove the goal-directed reaching of an arm
of a robot and were trained through circular reactions. The
objects positions were represented by head’s rotation vectors
and thus the study did not address how exocentric reference
frames are produced. Pugach et al. (2019) proposed a “gain
field” neural model where tactile information is included
to establish a mapping between visual and motor spaces.
Our model also uses gain field neurons and processes the
motor commands through neural population encoding. This
computational principle has been found to play an important role
in goal-directed sensory-motor transformation (Andersen and
Mountcastle, 1983; Salinas E, 2001; Pouget et al., 2002; Blohm and
Crawford, 2009).

The novelty of the present model is that we provide a
neurally plausible solution to the coordination between motor
configurations and an exocentric map, which is generated and
associated with joint vectors simultaneously. Currently, some
approaches to build and expand the visual map are reported.
For instance, Jamone et al. (2014) presented a strategy by which
the robot learns to expand and associate the visual maps in
different body positions by goal-directed reaching movements.
However, the visual map in their study is not a map of neurons
representing the spatial relationships among all the objects in
the external environment. Instead, it is a map representing the
reachability of each fixation point. The model was simulated
on a robot in a three-dimensional space. Chao et al. (2016)
proposed a robotic system utilizing a visual processing approach
inspired from human retina. The method uses a head motor
system to transform the spatial locations to the head joint
vectors. In this method, spatial locations are reflected by the
motor vectors instead of the inter-spatial relationships in the
retinotopic map. Other studies reproducing this method also
include (Shaw et al., 2012; Law et al., 2013). In contrast to
those approaches, the exocentric reference frame in our model
is built by fusing two retinotopic maps and by compensating for
eye movements.

3. DESCRIPTION OF THE MODEL

The cortical organization reflects interactive functioning of many
specialized modules, anatomically corresponding to various
“areas” of the cortex. In a similar way, as shown in Figure 1,
our model consists of interacting modules. In this study, for
simplicity, we limited senses to vision and motor control to
one arm. Our model receives the visual input through its two
“eyes” and encodes this information retinotopically as in human
early visual areas (Engel et al., 1997). In human vision, the
environment is projected on the retina through the optics of
the eyes following perspective geometry. Hence, neighboring
points in the environment are imaged on neighboring retinotopic
positions. These neighborhood relations are preserved through
the precise connections from retina to early visual cortex giving
rise to the “retinotopic organization” of early visual areas.
Retinotopic areas provide an egocentric map representation for
the stimulus. This is called a “map” representation (Bullock
et al., 1993) because the relative position of each neuron
with respect to its neighbors carries information about the
position of the stimulus, much like the representation of cities
on a map carries information about their relative locations.
It is an egocentric map because the location information is
relative not only to the position of the stimulus in space
but also relative to the position of the eyes. The next step
in the model is to recover the position of the stimulus in
space in a way that is invariant with respect to the positions
of the eyes, i.e., an exocentric representation. Hence, at the
next stage, the two retinotopic maps are fused by using the
binocular disparity information to build a “cyclopean map”
(Julesz, 1971). The arm position is represented by neurons
that encode joint angles in a vector format. In this “vector

Frontiers in Neurorobotics | www.frontiersin.org 3 December 2021 | Volume 15 | Article 658450

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


He and Ogmen Sensorimotor Self-organization via Circular-Reactions

representation” (Bullock et al., 1993), each group of neurons is
associated with a joint and the activities of these neurons encodes
in an analog way the joint angle, e.g., the higher the activity
the larger the joint angle. Synaptic connections between sensory
map-representations and motor vector-representations allow the
coordination of these activities through circular reactions. To
initiate the circular reaction, we send a random command
to joint angles which then moves the arm accordingly. As
the arm moves, its image is represented in the retinotopic
maps, creating a visuo-motor feedback loop. Through this
self-generated action, the system activates motor and sensory
representations and these simultaneous activities provide the
input for associating sensory and motor activities that are
congruent with the physics of the external world. This way,
we do not need to incorporate physical models of the arm,
eyes, etc., the system learns the relationships of the joints,
limbs, eyes, etc by perceiving the consequences of self-generated
actions. An important implication of this type of learning is
that the system does not need explicit models, parameters but
constantly adapts and recalibrates through action-perception-
learning loops. Hence, self-organization, adaptation, and re-
calibration are emergent properties of this approach. The
synaptic plasticity of the connections between these sensory
and motor representations coordinates them through associative
learning. Once these coordinations are learned, a target position
can predict the corresponding associated joint angles for the arm
to reach the target and vice-versa.

3.1. Visual Processing: Retinotopic and
Cyclopean Maps
A central feature of our model is that we process the
egocentric (retinotopic) maps from the stereopair image to
produce an internal visuomotor spatial representation-the
cyclopean map (CPM) (Julesz, 1971), serving as an exocentric
map to guide reaching activities. Our model implements
this process in three steps: (1) coordinate the stereopair
mapping; (2) compensate the binocular disparity and expand
the depth dimension; (3) synthesize the luminance profile by
a weighted sum of the luminance profiles of the stereopair
after disparity-compensation.

3.1.1. Coordination of Retinotopic Mappings
A stereopair consists of two retinotopic images that have mostly
horizontally-shifted luminance profiles. This is because, given the
horizontally displaced positioning of the two eyes, a point in the
three-dimensional environment is projected onto horizontally-
shifted locations in the left and right retina. This relative
spatial displacement is called binocular disparity. Our model
determines the binocular disparity information according to
the criterion of spatial-frequency similarity. This process can
be intuitively described as follows: The retinotopic maps are
firstly demarcated into non-overlapping unit areas (UA) with
uniform shapes. Thereafter, a spatial frequency filter that is
slightly larger in size is applied to all the unit areas to obtain
the response signals of each of them. After this step, a UA
in one image can then be matched to another UA in the
other image if they have the most related spatial frequency

FIGURE 1 | Processing stages of the model. Two-dimensional retinotopic

maps from the left and right eyes are combined into a cyclopean map to reveal

depth information. This information is used to represent target and

end-effector positions in an exocentric reference-frame. The spatial position

information is then converted to equivalent motor representations, which in

turn drive the movements of the joints to have the end effector reach the target

position. The visual input corresponding to the moving arm established a

feedback loop to control the action.

response across all areas. Importantly, the filter is larger than
those unit areas, which means that the correspondence among
unit areas are determined with considerations of not only
the unit area itself but also its neighbors. In the following
illustrations, we use (a,b) to indicate the size of neural
maps, where “a” is the number of cells in rows and “b”
in columns.

Figure 2 shows the visual processing beginning with a
retinotopic map, with a size of (N, N), and it is firstly converted to
a luminance map (LumM) by transforming the colored image to
a gray scale image. This LumM was demarcated into N*N/15 UA
with a size of (15,1). This UA can be thought as the resolution
by which binocular disparity and depth are determined. Then
spatial-frequency filters corresponding to multiple frequency-
channels are applied to LumM. Here we used a two-dimensional
Fast Fourier transformer with 50 frequency responses (from
1 to 50 cycles/deg). LumM was zero-padded to (N+5, N+19)
and then scanned by a transformer in size of (20,20), which
covered a UA and its surround. As a result, N/15 spatial-
frequency response-maps (SfRM) of size (50, N) were obtained.
N/15 Binocular Correspondence Maps (BCMs) in (N, N) were
then generated using Equations (1) and (2), where SfRMl,i(j, k)
represents k cycles/deg spatial-frequency response of an area
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FIGURE 2 | Visual processing. (A) The purple area shows zero pads. The red

dashed frame indicates transformer’s spatial extent along columns and the

green dashed frame along rows. (B) Spatial frequency response maps (SfRM)

with size of (50, N). Each row of UA is projected to a SfRM, within which each

column is the frequency response of an UA. Therefore, a LumM possessing

N/15 rows and N columns of UA creates N/15 SfRM in size of (50, N). A SfRM

has 50 rows because 50 frequency responses are obtained, and N columns

come from the corresponding N columns of UA. (C) Binocular

correspondence map (BCM). Frequency-based comparisons determine the

correspondence relations between the left and right UAs, and also their depth.

(D) Spatial localization of the target object and the end-effector.

registered by a UA in ith row and jth column of left retinal
LumM (replace l by r to represent right retina). In Equation
(1), the squared difference between the frequency-contents of
the corresponding left- and right-eye patches are computed

and its minimum provides the best matching binocular pair in
terms of frequency contents. BCMi(x, y) was used to indicate the
correspondent pairs in ith row of left and right retinal LumM. For
a row i and each x from 1 to N,

y = min
j

50
∑

k=1

(SfRMl,i(x, k)− SfRMr,i(j, k))
2 (1)

{

BCMi(x, y) = 1

BCMi(x, ŷ) = 0, ∀ŷ /∈ y
(2)

According to Equations (1) and (2), each activate cell in a BCM
encodes a binocular-correspondence relationship between a UA
on left retinal LumM and another one on the right.

3.1.2. Disparity Compensation and Depth Recovery
The depth of a UA can be determined by its representative
neuron’s relative position on the BCM map with respect to the
d axis as shown in Figure 2C. In other words, on BCM, a UA’s
representative neuron’s position along d will be equal to the
depth of activated neurons when projected onto CPM. Since
there are N placeholders along the depth dimension, the size
of CPM is (N, N, N). This depth recovery approach follows
Hirai and Fukushima’s neural network model for extracting
binocular parallax (Hirai and Fukushima, 1978). This process
can alternatively be explained by the existence of a group of
“binocular depth neurons” that are selectively sensitive to a
binocular stimulation with a specific amount of parallax. Take the
activated neuron in Figure 2C for example, this neuron in BCM
becomes active only when it receives simultaneous stimulation
of a UA whose position in the column is indicated by teal color
and the UA marked by red. In fact, “binocular-depth neurons”
have been found in many species including monkey and mouse
(Poggio et al., 1988; La Chioma et al., 2020).

3.1.3. Binocular Combination
Stereo image pair’s luminance profiles are combined by summing
them with a pair of physiologically plausible weights defined
by a simplified version of Ding-Sperling model (Ding and Levi,
2017). This model was built based on the principle that each eye
uses a gain-control on the other eye’s signal in proportion to
the contrast energy of its own input. After this procedure, the
fused luminance profiles are then filtered and clustered based
on the contrast change of the luminance. According to Ding-
Sperling model, each spot of the luminance map is allocated with
respect to the contrasts of that spot from the two eyes. This
means that contrasts will be rebalanced toward the eye carrying
the larger contrast energy. This contrast rebalancing is used,
because simply taking the luminance distribution from single eye,
without the contrast rebalance, weakens the effects of contrast-
based clustering. It deteriorates the precision of cluster center
localization when two objects are spatially closed. In this model,
for each row, the total luminance I0 was determined by Equation
(3), in which x is the number of the column, and I indicates the
luminance. The contrast at x, C(x), is determined by Equation
(4). Equation (5) provides the definition of the spatial-frequency
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filter LoGi(x). The contrast at ith spatial frequency Ci(x) can be
calculated by the convolution between ith spatial frequency filter
and luminance profile of this row. The contrast energy in the
ith channel, φi, can then be calculated by Equation (6). The total
contrast energy8 is defined as the sum of contrast energies for all
spatial frequency channels. And the total luminance energy L is
determined by Equation (7).8L and LL are the total contrast and
luminance energies for a row in a left retinal UA, and energies for
right retinal UA are given by 8R andLR.The weights wL and wR,
which are used to combine a left retinal UA and its paired right
UA, are calculated using Equation (8). The luminance profile of
CPM is then determined by summing all UAs on the left LumM
with their corresponding UAs on the right LumM according to
these weights.

The above processes can be abstracted and summarized as
follows: A UA on the left retina is firstly matched with a
corresponding UA on the right retina based on the similarity of
their spatial-frequency contents. These two UAs are assumed to
be projected from the same environmental stimulus. These two
UAs of size (15,1) are then projected to 15 neurons on the CPM,
where their relative locations indicate their spatial position in
the environment. The output of these 15 neurons on CPM are
determined by weighted sum of two UAs’ luminance profiles.

I0 =
∑

x

I(x) (3)

C(x) =
I(x+ 2)+ I(x)− 2I(x+ 1)

I0
(4)

LoGi(x) = −
1

πσ 2
i

(1−
x2

σ 2
i

),

σi = 5 ∗ i, i = 1, 2, 3, ..., 10

(5)







Ci(x) =
1
I0
LoGi ∗ I(x)

φi =
∑

x(wc(x) · Ci(x)),wc =
1

1+x2

8 =
∑

φi

(6)

{

L =
∑

x(wlum(x) · I(x))

wlum = 1
1+x2

(7)

{

wL = 8LLL
8LLL+8RLR

wR =
8RLR

8LLL+8RLR

(8)

3.2. Object Recognition and Localization
on the CPM
The discharge of neurons in CPM reflects the luminance
information from stereovision. The task requires the model
to recognize an object’s or end-effector’s luminance patterns
and return their locations within the CPM. The heuristic used
here assumes that an object is usually observed by a closed
contour, and the center of this contour might be used to
represent the location of this object. Since the focus of this

work is on sensorimotor coordination rather than complex object
recognition, the more complex cases of occlusion and boundary
ownership are not taken into account (Heydt et al., 2003; Layton
and Yazdanbakhsh, 2015; Dresp-Langley and Grossberg, 2016).
To achieve our goal, we first applied a center-surround filter and
convolved CPM’s luminance profile regardless of depth, as shown
in the grid in Figure 2D, where the filled pattern is an example
and corresponds to what we actually used in the experiments.
This filter is able to reduce the noise and enhance the edges. After
that, a Gaussian filter with size of (5,5) was used to suppress the
noise in the map. The Gaussian filter is defined by

Gi =
exp(−(di − 2)2)/2.42

∑25
i=1 Gi

(9)

where i is the index of values on the filter kernel and can be from
1 to 25, and di is ith value’s position on the kernel relative to the
center and can be 1, 2, or 3. After this, a threshold filter eliminated
the discharges of all neurons on the map whose discharges
represented luminance values below 130 cd/m2. The resulting
map was tested to be clean enough for object localization based
on clustering approaches. Luminant spots emitted from an
identified object are clustered with the same label through K-
means algorithm, and the returned objects’ cluster centers are
used as their position in CPM.

3.3. Motor Planning: Neural Networks
Visual processing and recognition stages compute the spatial
information of the target-object and the end-effector and encode
this information as the position of discharging neurons in
the cyclopean map. Our model connects the neurons in the
cyclopean map via adaptive synaptic connections to motor
neurons to guide the movement of a humanoid arm with
7 degrees of freedom (DOF) and let the end-effector (wrist)
reach arbitrary positions that are reachable and visible. The arm
model is shown in Figure 3. Interactions of two functionally
complementary subsystems are needed to process this: one
subsystem controls the upper limb (position controller) and
the other subsystem adjusts postures in response to the
environmental conditions (posture controller). This mechanistic
property is in line with physiological findings showing that two
main systems in human parieto-frontal networks play a major
role in visually guided hand-object interaction (Lega et al., 2020).
These two systems are associated with controlling upper-limb
positions and with coding hand postures, respectively.

3.3.1. Position Controller
The position controller works as amodified version of Grossberg-
Bullock reaching model (Bullock et al., 1993), where direction-
tuned neural networks code a 3-DOF arm to successfully reach
spatial targets with a satisfactory error on a 2D working surface.
Here we expand it with an additional dimension and make the
modified model capable of taking spatial information from CPM
and to send movement control signals to arm’s joints 0, 1, 2, and
4 accordingly. Two neural networks are embedded: a position-
tuned net (PTN) possessing neurons sensitive to specific spatial
zones in CPM; and a supplementary direction-tuned net (DTN)
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FIGURE 3 | Kinematic information of the arm model. This is a 7-DOF arm with

each joint and its rotation axe shown in the figure. All the angular rotations in

this paper are in terms of counter-clockwise except for joint 2 which works

clockwise.

possessing neurons sensitive to specific ranges of spatial direction
vectors. In practice, PTN generates the first command every time
when a new target appears, followed by DTN which corrects the
arm’s positions based on the spatial vectors from the end-effector
to the target.

An example describing how learning takes place in these
two neural nets is depicted in Figure 4. At the time t-k, the
visual information of the end-effector activates the green cell in
the CPM. Then the end-effector is moved to another position
represented by the red cell in CPM at time t. A cell in PTN
down-samples the CPM by selectively receiving signals from
a group of spatially-neighboring neurons in the CPM. At the
same time, the state of arm joints stays in response to the red
PTN cell, and this simultaneous activation of both PTN cell
and joint cell strengthens the synapses between them through
associative-learning rules (bolded connections between PTN and
joint neurons in the figure). In the subsequent motion of the end-
effector, the direction of motion is captured by some DTC cells,
as shown by a green-red cell for example, because this direction
lies in their receptive fields. Their discharges are dependent on
the angular difference between their preferred direction and the
perceived direction. A cell in DTN receives two signals, one

from a DTC and the other from a JTC, leading to a selective
tuning for a specific joint configuration. The number of cells
in DTN equals the product of the number of cells in DTC and
JTC so that DTN captures all possible situations. A DTN cell’s
discharge is equal to the multiplication of two signals it receives.
At time t, DTN cells receive JTC’s signals in green state and the
DTC signals capturing the end-effector’s motion direction. The
synapses between activated DTN cells and the joint increments
resulting in this motion are then learned accordingly.

Mathematically, using PTNij to represent the synaptic weight
from a PTN cell i to a joint j (j = 0, 1, 2, 4), the learning rule
for PTN is described by Equations (10) and (11). With a desired
position pos∗, PTN generates a motor command by Equation
(12), where p̂i is cell i ’s sensitive position zone in BCM, epos is the
end-effector’s position in BCM, θj is joint j’s position in degrees.
η was 0.5 in our simulation.

pi(t) =

{

1, if epos(t) in p̂i

0, otherwise
(10)

PTNij(t+1) = PTNij(t)+pi(t) ·
(

(1−η) ·θj(t)+(η−1) ·PTNij(t)
)

(11)

θj(0) = PTNij, i : pos
∗ in p̂i (12)

Using DTNi,j to represent the synaptic weight between a DTN
cell i to a joint j (j = 0, 1, 2, 4), the learning rule for DTN is
given by Equations (13)–(17), where adif (v1, v2) is the angular
difference between two vectors v1 and v2, v̂i represents the spatial
direction range for which cell i is tuned, θ̂ij is cell i’s sensitive
angular range of joint j, t is time or step in the learning and
testing dynamics, c(v, v∗) is a direction-tuned neuron’s tuning
curve given a stimulated vector v and its selective vector v∗, and
a → b represents a spatial vector defined by position a and bwith
a direction from former to latter.

After enough learning, DTN is expected to have the ability
to drive the arm to move the end-effector to a desired position
pos∗ by Equation (18). In the above functions, both γ and ρ are
step-sizes and δ is a parameter of regularization. β represents
the tuning activity of DTN neurons. In our simulation, we used
γ = 1, δ = 0.1, ρ = 0.05, and β = 0.001.

dv(t) = epos(t) → epos(t + 1) (13)

△ θj(t) = θj(t + 1)− θj(t) (14)

c(v, v∗) =

{

exp(−β · adif (v, v∗)2), if adif (v, v∗) < 90◦

0, otherwise
(15)

gi(t) =

{

1, if θj(t) in θ̂ij for j = 0, 1, 2, 4

0, otherwise
(16)

DTNij(t + 1) = DTNij(t)+ γ · c(v̂i, dv(t)) · gi(t) · (△θj(t)
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FIGURE 4 | Position controller: learning of neural networks. At the time t-k, the visual information of the end-effector activates the green cell in the CPM. Then the

end-effector is moved to another position represented by the red cell in CPM at time t. A cell in PTN down-samples the CPM by selectively receiving signals from a

group of spatially-neighboring neurons in the CPM. At the same time, the state of arm joints stays in response to the red PTN cell, and this simultaneous activation of

both PTN cell and joint cell strengthens the synapses between them through associative-learning rules (bolded connections between PTN and joint neurons in the

figure). In the subsequent motion of the end-effector, the direction of motion is captured by some DTC cells, as shown by a green-red cell for example, because this

direction lies in their receptive fields. Their discharges are dependent on the angular difference between their preferred direction and the perceived direction. A cell in

DTN receives two signals, one from a DTC and the other from a JTC, leading to a selective tuning for a specific joint configuration. The number of cells in DTN equals

the product of the number of cells in DTC and JTC so that DTN captures all possible situations. A DTN cell’s discharge is equal to the multiplication of two signals it

receives. At time t, DTN cells receive JTC’s signals in green state and the DTC signals capturing the end-effector’s motion direction. The synapses between activated

DTN cells and the joint increments resulting in this motion are then learned accordingly.

−δ · DTNij(t))) (17)

θj(t+ 1) = θj(t)+ ρ ·DTNij, i :

{

θj(t) in θ̂ij for j = 0, 1, 2, 4

min
i

adif (v̂i, epos(t) → pos∗)

(18)

3.3.2. Posture Controller
Figure 5 explains the functioning of the posture controller, which
adjusts the orientation of the palm to parsimoniously reconcile
the environmental requirement defined by specified geometrical

relations. Vectors Eu, El, Eh are along the spatial directions of
upper arm, lower arm and hand, respectively. Vectors En and

Ep are the normal vectors of planes defined by (Eu,El) and (El, En),
respectively. Vector Et represents the desired direction when the
end-effector reaches the target. Eq is the normal vector of the

plane defined by (El,Et). The rotation of each joint is defined by
the angular difference of a pair of vectors as shown in Equation
(20). The rotation of joint 3 in degrees was defined to be equal

to the angular difference between Ep and Eq, so that when end-

effector reached the target, the plane of the palm could be

perpendicular to the plane formalized by lower arm and target
direction. After this, joint 6 can be rotated to align the palm to
the target direction by a degree equal to the angular difference

between El and Et. However, due to limited rotation capacity of all
the joints, the hand might not perfectly align with the target’s
direction; so joint 5 can further adjust the hand’s direction by
rotating by a degree equal to the angular difference between
Eh and Et at last to make the alignment as close as possible.
However, each joint is limited in its range of rotations. If the
desired rotation angle exceeds their limit, they rotate up to the
maximum or minimum of the range, as shown by Equations (19)
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FIGURE 5 | The explanation of spatial relations by which the posture controller

works. Vectors Eu, El, Eh are along the spatial directions of upper arm, lower arm

and hand, respectively. Vectors En and Ep are the normal vectors of planes

defined by (Eu,El) and (El, En), respectively. Vector Et represents the desired direction

when the end-effector reaches the target. Eq is the normal vector of the plane

defined by (El,Et).

and (20).










En = Eu×El

Ep =El× En

Eq = Et ×El

(19)











joint 3 = adif (Ep, Eq), joint 3 ∈ [0, 105◦]

joint 5 = adif (Eh,Et), joint 5 ∈ [−15◦, 15◦]

joint 6 = adif (El,Et), joint 6 ∈ [−50◦, 50◦]

(20)

4. BIOLOGICAL EVIDENCE

The learning in this model is autonomous, unsupervised, and
local. The model autonomously generates movements, by which
the activities in sensory and motor representations can be
associated to predict each other. This learning procedure is
inspired by multiple studies suggesting infants acquire spatial
and motor knowledge and their associations by self-exploration
and object manipulation (Needham, 2000; Soska et al., 2010;
Schwarzer et al., 2013; Soska and Adolph, 2014). Like infants,
the model learns autonomously in an unsupervised manner.
The learning equations are not based on error-correction
following teacher-provided learning targets but rather on
associative learning, which simply associates correlated sensory
and motor activities. Learning feedback is provided directly by
the environment through action-perception loops. This type
of sensorimotor organization is believed to underly the more
abstract concepts of space. For instance, some investigators found
that, after object exploration, infants’ performance in mental
spatial imagination is improved, which suggests an importance
contribution from exploration experience to spatial development
(Slone et al., 2018). The sensory representation herein is projected
in CPM created by two retinal luminancemaps. This stereoscopic

sensing recovers the depth information through a specified
geometrical definition based on binocular disparity and enables
the motion detection in three-dimensional aspects. This three-
dimensional motion sensing has been investigated using various
of paradigms including direction selectivity, temporal resolution
and changing size, etc. (Beverley and Regan, 1974; Gray and
Regan, 1996; Portfors and Regan, 1997). Among those studies,
Beverley recorded electrical brain responses to stimuli in motion
along the depth-axis and found these responses to be different
with respect to different binocular disparities. The explicit map
representations in the model allow local learning. Maps provide a
representation for space and sensitivity-zones (e.g., Equation 10)
determine local regions in this space. For example, learning for
PTN cells occur only when the end-effector is within their local
sensitivity zone (Equations 10 and 11). That way highly nonlinear
relationships across the entire space can be simplified by local
approximations, resulting in a much simpler learning approach.

One important technique used in this model is to coordinate
spots on two retinas by spatial-frequency similarity. The spatial-
frequency channels in human vision and their psychometric
functions are well known (Sachs et al., 1971). On the motor-
control side, our model has neurons selectively tuned to different
spatial directions, abstracting neurons identified in the primary
motor cortex (M1). In one study that reported recordings from
monkey’s motor cortex, researchers found cells that code the
direction of movement in a way dependent on the position of the
arm in space (Caminiti et al., 1990). Similarly, DTN in our model
combine information from both arm configuration and motion
direction. More recent studies reported similar neurons found in
human cortex M1 (Tanaka et al., 2018; Feldman, 2019).

5. EXPERIMENTS

5.1. Platform and Simulation Procedures
Our model was simulated on Unity3D, where we programmed
the objects in the environment to make the arm work following
the kinematic rules described in this paper. We calibrated the
measurements by assuming that a unit scale in Unity3D scene
is equal to 10 cm. As shown in Figure 6, a pair of cameras were
placed both in 10 cm upward than the center of shoulder joint
and 9.5 cm and 14.5 cm leftward than the center of shoulder
joint, respectively. These cameras took pictures at a resolution
of 300*300 pixels. The gaze position of two eyes was 120 cm
forward, 15.7 cm rightward, and 13.7 cm below the left eye. We
used capsules with a diameter of 10 cm for upper and lower limbs
and spheres with equal diameter as the joints connecting two
equally long arm limbs. The end-effector herein was the wrist that
is the only visible body part. We kept other limbs transparent due
to the requirement of precise prediction of end-effector’s spatial
position during visual processing. We also placed a cube with 10
cm long, 5 cm wide and 2 cm thick to serve as the palm. The
lengths of limbs were 28 and 10 cm, respectively.

We trained the model using a uniformly distributed random-
variable that generated self-exploratory movements. The neural
networks embedded in the model learned spontaneously in the
way described. The model was tested by using a black cube as
target with sides 10 cm long placed randomly somewhere within
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FIGURE 6 | Simulation environment in Unity3D. The axes indicated by the

green and the red arrows are aligning with the axes marked by joint 2 and joint

0 in Figure 3, respectively. The blue arrow is pointing inward the shoulder

while joint 1 in Figure 3 is pointing outward the shoulder.

the view range of “eyeballs” at the beginning of each trial. The
system was then expected to deliver the end-effector to contact
the cube, and when it reached the cube, the palm was expected
to point in the forward direction as the red arrow axis shown
in Figure 6.

5.2. Validation of Visual Processing
In this part, we show the feasibility of the visual processing
methods by an example containing three movements. As shown
in Figure 7, two cameras representing two eyeballs were fixed
to the center of the black cube. The cameras were kept stable,
while the black sphere was moving for three steps. Eight pictures
from four states and two retinas were captured. First, we picked
a row of the pixels and plotted its luminance with respect to
the index of columns for each of the pictures in Figure 7. As
shown in Figure 8, binocular disparities co-varied with the four
motion states of the black sphere, as indicated by variations
in the misalignments between luminance curves from left and
right retinas. As indicated by Equations (1, 2), this model
is dominated by the left eye as the luminance profiles are
compensated from the right eye to the left eye. The fused profiles’
shape is in line with the dominant eye in terms of spatial
locations, while the contrast change and absolute luminance

value are both rebalanced taking both eyes into account. Second,
the object localization presented with the white circles in the
bottom row of Figure 7 reflects their real spatial information.
It can also be found that, with illumination unchanged, objects’
recognized centers are locally stable. Even when two objects
are close to each other, the model is able to differentiate
them. Third, results also show examples about the effect of
contrast-related weighted summation of binocular luminance
profiles. In Figure 9, we compared binocular combination with
dominant vision in the results of localization. As discussed, Ding-
Sperling’s model of contrast rebalance optimizes contrast-based
localization. Specifically, this method localizes the object on the
edges and corners, or on the zones of chiaroscuro of smooth
surface. This also stabilizes the localization of objects in motion,
as well as when two objects are spatially close. In contrast,
monocular vision is more sensitive to the absolute luminance
value as objects tend to be localized on the light spot. When two
objects are close to each other, the cluster center of the black cube
is marginalized, as shown in Figure 9. Last, Figure 10 shows the
three-dimensional spatial vectors indicating these three motion
directions in Figure 7. Putting the maps in Figure 7 into the 3D
coordinates shown in Figure 10, the depth value of the cube is
smaller than that of the sphere. The directions along the depth
axis are reconstructed, which coincide with the real motion as
the black sphere are moving toward the black cube.

5.3. Experiment 1: Reaching With Fixed
Gaze Position
In this experiment, we fixed the gaze position as where it was
initialized. We tested the functions of each module as well as the
neural networks. In this case, the objects and the arm were all
lying on the peripheral retina during the test session.We reported
the performance in terms of the cartesian error between the wrist
and the target, and the angular difference of the hand posture and
the target orientation.

5.3.1. Experimental Parameters and Learning
This system possesses two trainable neural-networks, TPN and
DTN, where neurons are sensitive to positional zones in CPM,
angular zones in arm joints or spatial directions in CPM.
To implement in simulation, we demarcated the CPM of size
(300,300,300) into 2.7 × 104 cube zones of size (10,10,10) as
the p̂i in Equations (18)–(20). The ranges of joints driving the
end-effector were [0◦, 90◦], [60◦, 120◦], [0◦, 25◦], and [0◦, 90◦] for
joints 0,1, 2, and 4, respectively. We used 6◦ as the interval to
demarcate this hyperspace into 9,000 (15× 10× 4× 15) angular
zones, θ̂i. Spatial vectors are represented using polar coordinates
(αi,βi) here as shown in Figure 11. We defined 180 selective
vectors, v̂i in (18), by αi = 20◦, 40◦, 60◦, . . . , 340◦, 360◦ and
βi = 20◦, 40◦, 60◦, . . . , 160◦, 180◦. Therefore, DTN contains
1.62 × 106(9, 000 × 180) cells because of its sensitivity to both
spatial direction and arm position. PTN contains 2.7 × 104

cells each selectively becoming active for a unique zone in
CPM. In the learning session, a total amount of 2.916 × 107

steps of self-exploration were implemented to drive the learning
and self-organization processes of the two neural networks. We
additionally tested the performance when the system was trained
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FIGURE 7 | Examples of visual localization. This figure contains three rows and four columns. Each column indicates an example, and three rows are left retina map

(A), right retina map and fused CPM’s projection on the plane (B,C). In the third row, two white circles are marked on two objects, respectively. These marks indicate

the spatial location of two objects determined by the model.

with 1/3 and 2/3 of the total amount. We also trained the system
with an additional noisy condition, where a random noise in the
range of 0 to 5 degrees was added to each of the joints.

5.3.2. Tests and Results
In the testing session, the system took six groups of tests,
within which each group contained 50 trials. Groups of tests
are distinguished by three different amounts of learning and
two conditions (with or without noise) to test robustness. In
each trial, the system operated in the way described above
and predicted the increments of arm joints to move the end-
effector to a target-object placed in an pseudo-randomly assigned
position that is reachable, visible, and also novel, i.e., not
experienced during the learning history. The system was also
expected to adjust the direction of the palm toward the forward
directions. Importantly, in each trial the system was only allowed
to move for four steps.

We evaluated the performance in terms of Cartesian error
measured by the Cartesian-distance between the end-effector and
the target object, as well as by the angular difference between the
palm and the desired direction.

Figure 12 shows the contribution of the position controller
by experimental conditions. In this figure, along the vertical
axis, “n” means results are obtained under the condition without
noise applied to joints, “y” means noisy, and the fractions

after n or y show the proportion of the entire learning session
experienced after which test results are obtained. Within the
chart, each box contains three black bars and a box body marks
two levels by upper and lower edges. From up to down, these
five levels indicate the maximum, third quarter, median, first
quarter and minimum values of the value set represented, which
is called “five-number summary.” Regardless the presence of
noise, Cartesian error decreases with larger amounts of learning.
The one-way ANOVA also shows the significant effect of the
amount of learning (F(2, 297) = 4.98, p < 0.01). Comparing
the conditions with and without noise, as expected, the median
levels of Cartesian errors are higher when noise is present. The
median error is 0.96 cm without noise applied and 2.54 cm with
noise present, although we found no significant effect of the
noise condition on the Cartesian error [F(1,298) = 1.49, p =

0.22]. Moreover, the first quarter error values are 0 for all six
conditions, and median errors are smaller than 5 cm for all
conditions except for the noisy one after 1/3 of the learning
session (6.01 cm). In particular, after going through the entire
learning session, under the condition without noise, the median
Cartesian error is 0.16 cm, and the third quarter error value is
4.96 cm. These results indicate that the position controller is
able to deliver the end-effector to contact or reach the target
with satisfactory error levels, compared to other recent studies
(Mahoor et al., 2016; Nguyen et al., 2019; Rayyes et al., 2020).
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FIGURE 8 | Examples of binocular combination. The four (A–D) show the luminance profiles of a single row where the four black spheres in Figure 7 are located,

respectively. Each figure shows the luminance profiles from the left retina, the right retina and the fused map.

FIGURE 9 | Effects of clustering in binocular combination. The upper row shows the clustering after binocular combination (A), and the lower row shows the

clustering using the dominant eye’s luminance profile (B). White circles mark the cluster centers.

As an example, Mahoor reported a median Euclidean distance
error of approximately 4 cm achieved by neural-networks learned
through motor babbling. Note that the accuracy and precision
of the system can be improved significantly by increasing the
resolution of internal representations and the learning trials

(circular reactions). Here we demonstrated that even with low
resolution and fast learning, the network is capable of reasonable
performance levels. Figure 13 further shows the contributions
of position-tuned net and direction-tuned net, respectively,
considering all conditions. After full learning experience, PTN
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FIGURE 10 | Examples of three-dimensional motion direction. This figure

shows three spatial vectors along the column axis, row axis and depth axis,

correspondent to the three motion represented in Figure 7.

FIGURE 11 | Definition of spatial vectors.

alone reduces the average distance error from 59 to 8.86 cm, and
followed by DTN who finally reduces this average error to 3.28
cm. Comparing PTN only and PTN&DTN, there is a significant
effect of DTN [F(1,298) = 37.15, p < 0.01]. This suggests that
the PTN successfully drives the end-effector to somewhere close
to the target, and DTN also behaves effectively in correcting
end-effector’s position.

Figure 14A shows the contribution of posture controller
under the condition of full learning and without noise. When
this component doesn’t function, which means palm’s direction
keeps aligning with lower limb’s direction, the median value
of angular errors is 58.36◦. This median error is reduced to
18.63◦ with the involvement of posture controller. The effect of
posture controller is also significant [F(1,98) = 55.76, p < 0.01].
This suggests that the posture controller is effective in adjusting
palm’s posture. In some positions, the desired directions might
be awkward for the posture controller to adjust when those can
possibly exceed joints’ rotation limits.

These results in visually guided reaching demonstrate the
effectiveness of sensorimotor coordinations and the three-
dimensional exocentric external frame of references.

FIGURE 12 | Cartesian errors in all six conditions. Along the vertical axis, “n”

means results are obtained under the condition without noise applied to joints,

“y” means noisy, and the fractions after n or y show the proportion of the entire

learning session experienced after which test results are obtained. Within the

chart, each box contains three black bars and a box body marks two levels by

upper and lower edges. From up to down, these five levels indicate the

maximum, third quarter (Q3), median, first quarter (Q1) and minimum values of

the value set represented, which is called “five-number summary.” Points that

past Q3+1.5*IQR (interquartile range) or Q1-1.5*IQR are not included in the

box.

FIGURE 13 | Contributions of position-tuned and direction-tuned neural

networks. The three values indicated by the green line are 59.20, 58.80, and

59.00 cm, respectively from 1 to 3 of the learning session to the end of the full

session. With PTN involved, as shown by the blue line, these three values are

15.89, 13.00, and 8.86 cm. When both PTN and DTN are functioned, these

three values are reduced to 6.74, 4.55, and 3.28 cm.

5.4. Experiment 2: Reaching With Active
Fixation
In addition to the first experiment, in which only the arm
consists of degrees of freedom, we conducted a supplementary
experiment adding the motion of eyeballs. By this experiment,
we show how the neural networks are expanded when other
body joints are included, such as eye movement, head rotation,
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FIGURE 14 | (A) Average angular errors between palm and desired direction

when trials are completed with and without the application of posture

controller. Same as Figure 12, each box in this chart summarizes five

numbers. For the left box, these numbers are 106.69, 73.30, 58.36, 42.30,

and 6.80 in degree from maximum to minimum, respectively, and 84.73,

36.31, 18.63, 12.06, and 1.16 for the right box. (B) Distance error in terms of

the number of cells in the CPM. For the left box, these numbers are 43.04,

18.11, 7.04, 1.69, and 0 from maximum to minimum, respectively, and 14.86,

8.14, 5.87, 3.04, and 0 for the right box. (C) Cartesian errors when PTN

worked only and when both PTN and DTN worked. Same as Figure 12, each

box in this chart summarizes five numbers. For the left box, these numbers are

21.29, 12.2, 5.46, 0, and 0 in cm from maximum to minimum, respectively,

and 13.06, 6.39, 0.55, 0, and 0 for the right box.

FIGURE 15 | When the eyeballs rotate to fix on the gaze position 2 from the

previous fixation (gaze position 1), a spot’s projection on the two retinas moves

accordingly. Two cells activated sequentially from the corresponding two CPM

are then associated. In this figure, the yellow square represents the CPM of

gaze position 1, and the blue square represents the CPM of the gaze position

2. The red disks represent the target and its projections on retinas and CPMs.

and other body motions. As explained in the following context,
adding any other degree of freedomwould necessitate expansions
in the same way as in the introduction of eye movement to the
model. The cells in each neural layer would not only tune to
the arm configurations and the directions, but they would also
tune to the gaze positions. This means there would be different
layers of cells, and each layer will correspond to a specific gaze
position. When the reaching begins, the gaze position firstly
triggers the selected layer, and then the cells within this layer
then function according to the input arm configurations and
directions. In addition, the CPM formalized by each gaze position
will compensate each other in a way that cells from different
CPMs that are projected by the identical spot in the environment
are connected. As shown in Figure 15, this associated learning
makes the spatial localization independent of the gaze position,
and thus exocentric.

Regarding the eyeballs’ rotation, there are two strategies to
cope with the reaching behavior: (1) reaching a target without
fixing on it; and (2) fixing on the target and then reach it. This
experiment will be tested using the latter, since the former are
shown in the first experiment.

5.4.1. Illustration of the Eyeball Rotation

Compensation
To illustrate the operation of exocentric representations, we
conducted a separated test, in which we compared the errors
of spatial localization under both exocentric and egocentric
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conditions. We tested internal representations of spatial position
with two gaze positions and 740 spatial positions. The eyes
rotated either 6◦ or 12◦ horizontally, with left eye rotating
rightward and right eye rotating leftward. We used 3◦ as the
resolution of the CPM cells considering the gaze positions.
We compared the distance between target spots’ internal
representation before and after the rotation with and without
the compensation. The results are shown in Figure 14B. The
mean error in the egocentric condition is 11.06, which is reduced
to 6.01 by the compensation. Due to the limited resolution
regarding the gaze position and the size of the CPM, eyeball
rotation have very little impact on some spots’ projections,
which can be found in the minimum error in the egocentric
condition. However, the maximum and third quarter values of
the error are greatly reduced. This means that, for the scenarios
where eyemovements cause drastic spatial localization errors, the
compensation effectively reduces the errors in the localization.
The ANOVA also shows a significant difference between these
two groups of the errors [F(1,1478) = 146.83, p < 0.01].

5.4.2. Experimental Parameters and Learning
This experiment used the same parameters relevant to the CPM
and the cell’s tuning properties as what we used in the first
experiment. However, since the eye movement was included,
both PTN and DTN were expanded by adding cells with
gaze position tuned properties, which selectively respond to a
specific eyeball configuration represented by the vertical rotation,
left eyeball horizontal rotation, and right eyeball horizontal
rotation. We considered 0◦ for an eyeball’s both horizontal
and vertical rotations when the eyeball points exactly forward.
The range of these rotations that the cells were tuned to
were [−40◦, 0◦], [0◦, 30◦], and [−20◦, 20◦], respectively, with an
interval of 10◦. (Here we use positive values for upward and
rightward rotations, and negative for downward and leftward
rotations.) The cells thus were tuned to 100 (5 × 4 × 5)
gaze positions, making the cells arranged in 100 different
layers. Within each layer, the cells selectively discharge to
4,096 (84) arm configurations. These are given by 8 angles
for each of the four joints: 0◦, 25◦, 50◦, . . . , 150◦, 175◦.
Therefore, within each of the 100 layers, DTN contains
730, 800 (4, 060 × 180) cells and PTN contains 2.7 × 106

cells. Importantly, from the first experiment to this one, we
changed the resolution of arm configuration in each joint
from 6◦ to 25◦. In the learning session, a total amount
of 1.6 × 108 steps of self-exploration were implemented to
drive the learning and self-organization processes of the two
neural networks. Other procedures were all identical to the
first experiment.

5.4.3. Tests and Results
In the test session, we used the noisy targets group that we
used in the first experiment. Figure 14C shows the contributions
of the posture and the direction controllers. Compared to the
original wrist position, as shown by the green line in Figures 12,
14C, both groups show strong learning effect as the median final
reaching errors after five motion steps are strongly reduced. The
mean distance from the wrist to the targets during the entire

test session was 59 cm, and the mean error of the reaching after
first step driven by PTN was 6.21 cm. This is even smaller than
the error from the same condition that was tested in the last
experiment, which is 8.86 cm. The DTN’s contribution afterward
reduces the mean error to 3.19 cm. This is also better than
the mean error in the last experiment, which was 3.28 cm. The
difference between the two groups of errors is also significant
[F(1,98) = 7.77, p < 0.01].

The performance of the model in this test is generally better
than the performance found in the first experiment even though
we reduced the resolution in the joints from 6 to 25◦. On the
other hand, we expanded the range of each joint to 180◦, which
may explain the improvement in the performance. Moreover, the
eye motion improves the contribution of the PTN, resulting in a
decrease in the error.

6. CONCLUSIONS

In this paper, we investigated a model reproducing sensorimotor
activities observed in human cognitive development. The model
learns to coordinate sensory map representations with motor
vector representations thereby generating accurate goal-directed
reaching movements. We show that the implementation of the
cyclopeanmap successfully provides the visual information in the
guidance of reaching behaviors.

The experimental results with our proposed system show
that its contrast-sensitive visual processing is able to locate an
object’s spatial center. In particular, a contrast balance method,
the Ding-Sperling model, improves the object localization in the
situation where two objects are spatially close to each other.
The experimental results also show a good reaching performance
measured by the Cartesian error between the end-effector and the
target. With proper amount of learning, the model successfully
contacts the target in almost half trials that have been tested, and
the errors are within 5 cm in three quarters of the trials (condition
“n3/3”). The two neural-networks, PTN and DTN, show their
distinct and significant contributions during the test session. We
also found our model robust in the noisy condition. Even though
the median Cartesian error increases when noise is applied, there
is no significant difference in the Cartesian error between “noisy”
and “clear” conditions.

At present, our model is able to locate and reach the target in
a relative low resolution. The model is not optimized according
to the serial computing architectures and principles used in
today’s computing technology. In contrast, the model is built
according to the massively-parallel computing-principle used in
the nervous system. Thus, current computing technology limits
the implementation of the model and we had to restrict the
resolution of internal representations (i.e., number of neurons
and layers) to be able to run our simulations in a reasonable
time. Massively parallel analog computers can provide a much
better platform for implementing our model. In terms of
comparing serial computing technology with massively parallel
neurocomputing, it suffices to highlight that even though
neurons operate orders of magnitude slower than integrated
circuits (time-scale of milliseconds vs. nanoseconds), for many
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sensory and motor tasks the brain outperforms computers both
in accuracy and speed.

As mentioned in the introduction, an alternative approach to
sensorimotor coordination could be based on the popular deep-
learning methodology (Vos and Scheepstra, 1993; Takemura
et al., 2018). Typically, amulti-layer feed-forward neural-network
is set and initialized by random weight values. A training set is
used, where the inputs represent the visual image or coordinates
of the target whereas the outputs consist of joint angles. By
using supervised learning, the error between the actual joint-
angles and the desired joint-angles can be back-propagated to
adjust the synaptic weights. Our approach is different in that
it is (i) autonomous, (ii) unsupervised, and (iii) local. Unlike
the aforementioned deep-learning approach, we do not need an
external teacher who will generate training data and feed the
training data to the network. Through circular reactions, our
model autonomously generates its own training trials and data.
The sensorimotor closed-loop in action automatically provides
error signals in real-time. Hence, no supervision is needed.
Finally, we embed explicitly map and vector representations
in our model based on the neurophysiology of the primate
brain, as opposed to starting “tabula rasa,” i.e., a network with
randomly selected weights. These map representations and their
coordinations are inspired by the organization and development
of sensory systems in biology. As mentioned in the Biological
Evidence Section, the explicit map representations in the model

allow local learning. Learning is restricted to “sensitivity zones,”
which represent local subsets of space. According to this
approach, highly nonlinear relationships across the entire visual
space can be simplified by local approximations, resulting in a
much simpler learning approach.
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