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Abstract

Studying protein interaction networks of all proteins in an organ-
ism (“interactomes”) remains one of the major challenges in
modern biomedicine. Such information is crucial to understanding
cellular pathways and developing effective therapies for the treat-
ment of human diseases. Over the past two decades, diverse
biochemical, genetic, and cell biological methods have been devel-
oped to map interactomes. In this review, we highlight basic
principles of interactome mapping. Specifically, we discuss the
strengths and weaknesses of individual assays, how to select a
method appropriate for the problem being studied, and provide
general guidelines for carrying out the necessary follow-up analy-
ses. In addition, we discuss computational methods to predict,
map, and visualize interactomes, and provide a summary of some
of the most important interactome resources. We hope that this
review serves as both a useful overview of the field and a guide to
help more scientists actively employ these powerful approaches in
their research.
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The importance of studying PPIs

As the basic unit of life, cells represent complex biological entities,

whose normal function revolves around a delicate interplay

between multiple diverse biomolecular systems. Proteins are vital

components of these systems, acting as molecular machines,

sensors, transporters, and structural elements (among others), with

interactions between proteins, hereinafter called protein–protein

interactions (PPIs), being key to their function.

Protein–protein interactions are inherently dynamic in nature,

adjusting in response to different stimuli and environmental condi-

tions. This provides considerable flexibility in function and allows

cells to adapt in a measured way to changing circumstances. Even a

subtle dysfunction of PPIs can have major systemic consequences,

perturbing interconnected cellular networks and producing disease

phenotypes (Barabási et al, 2011). Developing in-depth, dynamic

PPI maps is therefore critically important in helping us comprehend

these complex processes, and identify new proteins and PPIs suit-

able for therapeutic intervention.

Over the years, we have seen an emergence and growth of a

wide range of exciting technologies for the identification and charac-

terization of PPIs. Selecting “the best” technology for a given

research application is thus non-trivial. Here, we highlight the

strengths and weaknesses of various methodologies, to aid in select-

ing the appropriate method for the problem at hand. Note that this

review does not aim to cover all PPI methods; instead, we focus on

newer approaches and earlier methods that remain widely used,

and strongly impacted research.

Key considerations

While numerous methods are available for the large-scale study of

PPIs, there is no one “perfect” method for all situations, and each

has its own strengths and weaknesses. When selecting a suitable

method to study interacting partners of a protein of interest, the

following factors should be considered:

1) The Goal of the Study must be clearly defined. Discovery-

driven studies usually aim to explore interactomes in an unbi-

ased manner on a proteome-wide scale. In contrast, targeted

interactome studies focus on a subset of PPIs and therefore

confine themselves to smaller libraries or arrays correspond-

ing to a defined set of candidate interaction partners. Dif-

ferent methods are better suited to certain classes of proteins

as well as to formats and scales, and selection of one that best

matches the research goals is critical.

2) The Distinct Nature of the PPIs Being Studied. All PPIs have

intrinsic biophysical properties, giving each its own unique

features. Some important characteristics to consider are the

PPI “strength” (binding affinity), and whether the interaction

is transient or stable (Perkins et al, 2010). Different bioassays

display variable sensitivity, and although generally all can

detect stable PPIs, only a fraction are capable of detecting

transient interactions. It is also important to determine

whether or not posttranslational modifications, co-factors, or
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additional binding partners are required (e.g., a PPI may be

mediated indirectly through a protein complex), as well as

where in the cell interactions are expected to occur, since the

selected assay must be compatible with these elements.

3) Time/Cost Constraints. Not all methods scale-up equally, and

some, while offering powerful advantages on a smaller-scale,

can become significantly more expensive and time-consuming

as the number of interactions studied increases. Additionally,

the time and cost required to develop the necessary reagents

(e.g., specific constructs, libraries) needs to be considered.

4) Specialized Equipment and Expertise. Finally, it is important

to ensure that all necessary resources and knowledge

required to fully take advantage of a particular method are

available. Although the majority of methods are straightfor-

ward, some do require specific instrumentation and expertise.

Most methods, especially those that attempt to study interac-

tomes on a genomewide scale, also require strong bioinfor-

matics support for analysis and data cleaning.

Guide to available methods

While many PPI assays exist, we present below some of the newer

and more widely used approaches, providing a concise overview of

their key principles, advantages, and limitations. Key references for

each technique, including examples of their large-scale application,

can also be found in Table 1.

The yeast two hybrid (Y2H)

Principle Originally developed 25 years ago (Fields & Song, 1989),

the Y2H assay (Fig 1A) remains one of the most popular PPI meth-

ods. Y2H-based systems can be used to detect interactions between

two proteins, protein and nucleic acid, and also in small-molecule

screens (Hamdi & Colas, 2012; Ferro & Trabalzini, 2013). The classic

Y2H involves the physical separation of two functional moieties of a

transcription factor, specifically a DNA-binding domain (BD) and a

transcriptional activation domain (AD), and their fusion to candi-

date interacting proteins. If a protein bearing an AD interacts with,

or comes in close proximity to, a protein bearing a BD, the AD and

BD are able to function together as a transcription factor, and direct

expression of a reporter gene (Fields & Song, 1989).

Advantages The Y2H approach is simple, well established, and low

cost and can be easily set up in most laboratory environments. Y2H

is scalable and effective for use in both large-scale screening studies,

and smaller efforts investigating specific PPIs. Another benefit is

that the assay is carried out in vivo in the context of the yeast cell,

helping avoid some of the complications and artifacts associated

with cell lysis. This assay is best suited for the detection of binary

interactions (Hamdi & Colas, 2012; Ferro & Trabalzini, 2013).

Limitations The use of a yeast host means that the PPIs from other

organisms may in some cases not be detectable, due to poor expres-

sion, or a lack of necessary posttranslational modifications, cofac-

tors, or other binding partners. The method requires that both

interacting proteins access the nucleus (in order to drive transcrip-

tion of reporter), which means that proteins confined to particular

cellular environments (e.g., the membrane) cannot be studied in

their full-length form. The proteins used in this method are also

often overexpressed, which can lead to non-specific interactions.

Altogether, these effects can lead to a high false-positive rate, neces-

sitating careful follow-up analysis to identify true, biologically rele-

vant interactions. The readout of this method is also indirect,

preventing spatial or temporal analysis of PPIs (Hamdi & Colas,

2012; Ferro & Trabalzini, 2013).

Membrane yeast two hybrid (MYTH)

Principle The MYTH assay (Fig 1B) is designed for the analysis of

the interactions of membrane proteins. It is based on a split-

ubiquitin approach, whereby the ubiquitin protein is divided into

Table 1. Useful literature references for protein–protein interactions (PPI) methods.

Assay Relevant literature reviewing or introducing technique Examples of interaction studies using technique

Y2H Hamdi and Colas (2012); Ferro and Trabalzini (2013);
Stasi et al (2015)

Yu et al (2008); Weimann et al (2013); Rajagopala et al (2014);
Rolland et al (2014); Grossmann et al (2015)

MYTH Snider et al (2010); Petschnigg et al (2012) Snider et al (2013); Lam et al (2015); Gulati et al (2015)

LUMIER Blasche and Koegl (2013) Barrios-Rodiles et al (2005); Xu et al (2014); Taipale et al (2014);
Sahni et al (2015)

MAPPIT Sahni et al (2015); Lievens et al (2011); Lemmens et al (2015) Lievens et al (2009); Bovijn et al (2013); Rolland et al (2014)

KISS Lievens et al (2014) Amano et al (2015)

BIFC Kerppola (2008); Zhang et al (2015) Lee et al (2011b); Snider et al (2013); Cooper et al (2015)

MaMTH Petschnigg et al (2014) –

BRET/FRET Ciruela (2008); Xie et al (2011); Ma et al (2014) Kocan et al (2008); Audet et al (2010); Mandi�c et al (2014);
Sauvageau et al (2014)

AP-MS Dunham et al (2012) Wang and Huang (2008); Babu et al (2012); Havugimana et al (2012)

BioID-MS Roux et al (2012) Kim et al (2014); Dingar et al (2015); Lambert et al (2015)

PLA Koos et al (2014) Chen et al (2014)

LRC-TriCEPS Frei et al (2013) Frei et al (2012)

AVEXIS Sanderson (2008); Kerr and Wright (2012); Sun et al (2012) Bushell et al (2008); Martin et al (2010); Crosnier et al (2011)
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two distinct fragments—an N-terminal fragment called “Nub” and a

C-terminal fragment called “Cub”. The Cub moiety is conjugated to

an artificial transcription factor and then fused to a cytosolic termi-

nus of a membrane-bound protein (the “bait”). The Nub moiety is

fused to potential interacting partners (“preys”), which can be either

membrane-associated or soluble. Interaction of bait and prey

proteins brings the Nub and Cub moieties into close proximity,

allowing them to form a “pseudoubiquitin” molecule, which is

recognized by cellular deubiquitinating enzymes that cleave after

the Cub C-terminus. This releases the transcription factor, which

then enters the nucleus and activates a reporter system (Stagljar

et al, 1998; Snider et al, 2010).

Advantages Membrane yeast two hybrid is simple, low cost, and

scalable for use in both low- and high-throughput (HT) formats. It is

easy to establish in any laboratory environment and requires no

specialized equipment. The assay is performed in vivo in a yeast

host, allowing for the study of the interactions of membrane proteins

in their full-length form and in the proper context of a membrane

environment. This is a significant advantage over the classical Y2H.

MYTH is best suited for the detection of binary interactions(Paumi

et al, 2007; Deribe et al, 2009; Snider et al, 2010, 2013).

Limitations Membrane yeast two hybrid suffers from some of the

same disadvantages as the classical Y2H, including the problems

associated with the expression, modification, and interaction of

non-native proteins in a yeast host, and artifacts resulting from

protein overexpression. Also, MYTH can only be used with

membrane proteins that have at least one terminus in the cytosol

(where the necessary deubiquitinating enzymes are located).

Additionally, soluble proteins cannot be used as baits in the

MYTH system, unless they are exceptionally large or anchored to

intracellular structures (thereby preventing diffusion of the bait-

transcription factor into the nucleus and interaction-independent

activation of the reporter system). The readout of this method is

also indirect, preventing spatial or temporal analysis of PPIs

(Snider et al, 2010).

Luminescence-based mammalian interactome

mapping (LUMIER)

Principle The LUMIER assay (Fig 1C) is a co-immunoprecipitation-

based approach. In this method, one protein (“A”) is fused to

Renilla luciferase, while another protein (“B”) is linked to an affin-

ity tag (e.g., FLAG, HA, protein A). Tagged constructs are trans-

fected into appropriate cell lines where they are overexpressed.

Cells are then lysed and protein “B” is immunoprecipitated using

an appropriate antibody against the affinity tag. Interaction with

protein “A” is assessed by measuring luciferase activity brought

down with protein “B” (Barrios-Rodiles et al, 2005; Blasche &

Koegl, 2013).

Advantages The LUMIER assay is easy to perform and can be used

in a HT screening format. It does not require specialized equipment,

beyond standard reagents for cell culture and instrumentation to

measure bioluminescence. The approach can be used in different

cell lines, providing the option of studying PPIs for a given organism

in an appropriate ex vivo format. Note that this assay is well suited

for studying binary interactions, although indirect interactions can

also be detected (Barrios-Rodiles et al, 2005; Blasche & Koegl, 2013;

Taipale et al, 2014).

Limitations A major disadvantage of the LUMIER method is that it

requires lysis of cells prior to immunoprecipitation, a process that

can result in the disruption of weak and transient PPIs, as well as

the introduction of potential artifacts (e.g., by bringing together

proteins in the lysate, which might not normally interact with one

another in the cell, destabilizing proteins and exposing previously

concealed non-native binding surfaces). The LUMIER assay must be

carefully controlled, to normalize for differences in transfection

efficiency and expression, and minimize background signal. The

assay is not ideal for studying how PPIs change spatially, over time

or in response to different environmental conditions (Barrios-

Rodiles et al, 2005; Blasche & Koegl, 2013).

Mammalian protein–protein interaction trap (MAPPIT)

Principle The MAPPIT assay (Fig 1D) is designed for use in

mammalian cell lines and is based on a cytokine signal transduction

mechanism. A “bait” protein is fused to the C-terminus of a cytokine

receptor deficient in binding to STAT3 (required for signal transduc-

tion), while “prey” proteins are fused to receptor fragments contain-

ing functional STAT3 recruitment sites. An interaction between a

bait and prey proteins produces a functionally competent receptor,

which, in response to cytokine ligand stimulation, activates STAT3

molecules (through intermediate JAK kinase activity), allowing

them to enter the nucleus and induce transcription of a reporter

system (e.g., luciferase; Ulrichts et al, 2009).

Advantages Mammalian protein–protein interaction trap provides a

powerful way to examine mammalian PPIs directly in the context

of the mammalian cell and is suitable for use in both HT library

and array screening formats. The assay is easy to perform and does

not require specialized equipment, beyond the necessary cell

culture reagents and instrumentation to measure bioluminescence

or fluorescence. Note that this method is best suited for studying

binary interactions (Lievens et al, 2009, 2011). Variations of

MAPPIT are effective for use in small-molecule screening

approaches (Eyckerman et al, 2005; Caligiuri et al, 2006; Lievens

et al, 2011).

Limitations Anchoring of the interaction sensor (i.e., the cytokine

receptor) to the plasma membrane requires that PPIs occur in the

Figure 1. Overview of interaction proteomics technologies.
Schematic representations of selected newer and widely used PPI assays. (A) Yeast Two Hybrid (Y2H). (B) Membrane Yeast Two Hybrid (MYTH) and Mammalian Membrane
Two Hybrid (MaMTH). (C) Luminescence-based Mammalian Interactome Mapping (LUMIER). (D) Mammalian Protein-Protein Interaction Trap (MAPPIT). (E) Kinase Substrate
Sensor (KISS). (F) Bimolecular Fluorescence Complementation (BiFC). (G) Bioluminescence/Fluorescence Resonance Energy Transfer (B/FRET). (H) Affinity Purification-Mass
Spectrometry (AP-MS). (I) Proximity-dependent Biotin Identification Coupled to Mass Spectrometry (BioID-MS). (J) Proximity Ligation Assay (PLA). (K) Ligand-Receptor
Capture-Trifunctional Chemoproteomics Reagents (LRC-TRiCEPS). (L) Avidity-based Extracellular Interaction Screen (AVEXIS).

◀
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cytoplasmic submembrane region, preventing detection of interac-

tion with preys localized to other subcellular compartments. This

anchoring (and the large size of the bait tag) may also block certain

PPIs due to steric issues beyond those occurring in many other

methodologies (Lievens et al, 2009). Finally, the method is also not

compatible with full-length transmembrane proteins and is not suit-

able for spatial or temporal analysis of PPIs.

Kinase substrate sensor (KISS)

Principle Kinase substrate sensor (Fig 1E) is a recently developed

mammalian two-hybrid approach designed to measure intracellular

PPIs. In this assay, a “bait” protein is fused to the kinase domain of

TYK2, while “preys” are coupled to a gp130 cytokine receptor frag-

ment carrying TYK2 substrate motifs. Interaction of bait and prey

results in phosphorylation of gp130 by TYK2, resulting in docking

and activation of STAT3, which can then enter the nucleus and acti-

vate transcription of a STAT3-dependent reporter system (e.g., luci-

ferase; Lievens et al, 2014).

Advantages Kinase substrate sensor allows assessment of PPIs

directly in living mammalian cells and is sensitive enough to detect

dynamic changes in response to physiological or pharmacological

challenges. The method is effective for use with both membrane

and cytosolic proteins and is best suited for measuring binary inter-

actions (Lievens et al, 2014).

Limitations Like many other assays, the KISS readout is indirect,

preventing spatial or temporal analysis of PPIs. The assay relies on

endogenous STAT3, making this approach unsuitable for studying

interactions involving proteins or stimuli that affect STAT3 signaling

(Lievens et al, 2014).

Bimolecular fluorescence complementation (BiFC)

Principles Bimolecular fluorescence complementation (Fig 1F) is

based on the division of a fluorescent protein (e.g., YFP) into two

distinct non-fluorescent fragments, which are then fused to “bait”

and “prey” proteins of interest. Interaction between bait and prey

allows the two non-fluorescent fragments to associate and form a

fluorescent complex, which can be viewed by microscopy or flow

cytometry (Kerppola, 2008; Zhang et al, 2015).

Advantages Bimolecular fluorescence complementation allows

direct visualization of PPIs in living cells, providing spatial informa-

tion about the subcellular location where PPIs are occurring. The

method is highly sensitive and can be used to detect interactions

between proteins expressed at endogenous or near-endogenous

levels, as well as weak and transient interactions. The method can be

used for different organisms, is simple to set up, and is cost-effective.

Different fluorescent proteins can also be used in combination,

allowing the visualization of multiple PPIs in parallel in single cells.

The method is best suited for detecting binary interactions (Hu et al,

2002; Kerppola, 2008; Zhang et al, 2015).

Limitations Bimolecular fluorescence complementation is not ideal

for measuring PPI dynamics or real-time changes, due to a delay in

generation of fluorescence upon protein interaction, as well as the

irreversible nature of fluorochrome formation (Kerppola, 2008).

Another disadvantage of BiFC includes functionality of fusion

proteins, as is the case for other techniques involving protein

tagging. Lastly, in some cases false-positive fluorescent signals can

be detected by BiFC due to fluorescence intensity of reconstituted

fragments arising irrespective of (or from non-specific) interaction

between two proteins under investigation (Miller et al, 2015).

Mammalian membrane two hybrid (MaMTH)

Principle Mammalian membrane two hybrid (Fig 1B) is a recently

developed in vivo proteomics technology designed for the analysis

of mammalian membrane PPIs. The assay is based on the principle

of split-ubiquitin, wherein reconstitution of inactive fragments of

ubiquitin (Nub and Cub) upon interaction of proteins to which they

are fused leads to release of an artificial transcription factor, and

subsequent expression of a reporter system (luciferase in the case of

MaMTH; Petschnigg et al, 2014).

Advantages Mammalian membrane two hybrid allows the analysis

of the interactions of full-length mammalian membrane proteins

directly in their natural cellular context. The assay is low cost, highly

scalable, and readily transferable to virtually any cell line of interest.

No specialized equipment is required, beyond standard cell culture

reagents and tools necessary for monitoring luciferase activity. One of

the key advantages of MaMTH is its high sensitivity, making it suit-

able for both the measurement of weak/transient interactions, and

for monitoring dynamic, “condition-dependent” PPIs (i.e., which

change in response to agonist, phosphorylation state, mutation etc.).

The method is best suited for the detection of binary PPIs (Petschnigg

et al, 2014).

Limitations For MaMTH to function, the bait must be associated with

the membrane or other intracellular structures, to prevent non-

specific activation of the reporter system (note that like MYTH, preys

can be either soluble or membrane-bound). Additionally, the termini

of the membrane protein fused to Cub must be cytosolic, in order to

provide access to the deubiquitinating proteases responsible for cleav-

age and release of transcription factor. The method is also not suit-

able for spatial or real-time temporal analysis of PPIs (Petschnigg

et al, 2014).

Fluorescence resonance energy transfer (FRET)

Principle Fluorescence resonance energy transfer (Fig 1G) is based

on the non-radiative transfer of energy from an excited donor fluo-

rophore to a nearby acceptor molecule. Donor and acceptors are

selected such that the absorption spectrum of the acceptor fluo-

rophore overlaps with the emission spectrum of the donor. In this

approach, one protein of interest is fused to the donor, while the

other is fused to the acceptor. If the two proteins interact or come

into close proximity with one other, the donor and acceptor fluo-

rophores are also brought together. Excitation of the donor in this

case does not lead to photon release, but rather energy transfer to the

nearby acceptor, which in turn produces an emission signal. This

emission signal is distinct from the signal that would be observed for

donor alone, and is used to monitor PPI (Ma et al, 2014).

Advantages A major advantage of FRET is its ability to monitor

instantaneous, real-time PPIs, allowing the measurement of short-

lived transient interactions. In addition, FRET can be used directly in

the context of live cells and allows detection of interaction sites. Also,
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due to the reversible nature of the fluorophore interaction, complex

interaction dynamics can be monitored such as the dynamic equilib-

rium between complex formation and dissociation (Ma et al, 2014).

Limitations For FRET to function, protein fusions to appropriate flu-

orophores need to be generated (the technical demands of which

may vary depending upon the fluorophores selected). In addition, for

a strong FRET readout, close spatial proximity of the fluorophores is

required for the energy transfer to occur. FRET also has decreased

sensitivity compared to other fluorescence-based approaches like

BiFC or BRET, as there tends to be strong background autofluores-

cence in cells upon sample illumination. For this reason, many

controls are necessary to quantify the changes in fluorescence inten-

sity in the presence and absence of energy transfer, and particularly

weak interactions producing a signal close to background may be dif-

ficult to detect. Depending upon the fluorophores selected, photo-

bleaching can also result in loss of signal over time (Boute et al,

2002; Ma et al, 2014).

Bioluminescence resonance energy transfer (BRET)

Principle The BRET assay (Fig 1G) has been developed to diminish a

major limitation of FRET—the strong background signal that results

from the direct excitation between the donor and acceptor fluo-

rophores. In BRET, a protein of interest is fused to Renilla luciferase

(“RLuc”, serving as the energy donor), while its interacting partner is

fused to either green or yellow fluorescent protein (GFP or YFP, serv-

ing as the energy acceptor). When donors and acceptors are brought

into close proximity (< 100 Å) by interaction of their fusion partners,

energy transfer occurs, producing fluorescent signal which is moni-

tored to detect the PPIs (Boute et al, 2002; Hamdan et al, 2006).

Advantages Like FRET, BRET is able to monitor instantaneous real-

time PPIs, functions directly in the context of live cells, and provides

information about the cellular location at which an interaction

occurs (Boute et al, 2002; Hamdan et al, 2006; Xie et al, 2011).

However, BRET also has greater sensitivity than FRET, with lower

background (Boute et al, 2002).

Limitations The major limitations of BRET are similar to those of

FRET, including the need for the generation of fusion proteins, and

the efficiency of the assay being dependent on close spatial proxim-

ity of the donor and acceptor (in order for proper energy transfer to

occur; Hamdan et al, 2006). BRET signal also tends to be signifi-

cantly weaker than that produced by FRET (Hamdan et al, 2006; Xie

et al, 2011). In addition, the analysis of PPIs using BRET and FRET

is not as easily scalable to HT screening applications as other meth-

ods, making it better suited to screens involving a more limited

number of potential hits.

Affinity purification–mass spectrometry (AP-MS)

Principle Affinity purification–mass spectrometry (Fig 1H) is a

popular technology that has gained considerable attention over the

past decade. The general principle involves immobilization of “bait”

protein of interest on a solid support (most frequently agarose or

magnetic beads), and use of this coupled “bait” to capture target

protein(s) from a soluble phase. Once affinity-purified, captured

proteins are usually digested with proteases (e.g., trypsin), to gener-

ate peptides, which in turn are sub-fractionated using high-pressure

liquid chromatography (HPLC) and then ionized and detected using

a mass spectrometer. AP-MS can be conducted either with endoge-

nous, native protein baits (using specific antibodies raised against

them) or with protein baits to which a standardized “epitope tag”

(e.g., TAP-, FLAG-, c-myc-, HA-, His-, protein A-, Strep-Tag) is

fused. The choice of the most appropriate affinity purification

method depends on a combination of factors, including the avail-

ability of antibodies, the type of a protein under investigation, and

the scale of the conducted analysis (Dunham et al, 2012).

Advantages Affinity purification–mass spectrometry is a library-

independent method with true genomewide HT capability. The main

advantage of affinity purification using native antibodies against

endogenous, native “baits” is that the proteins are purified in their

natural form from cell or tissue lysates, eliminating issues associated

with protein tagging and allowing multiple isoforms to be interro-

gated simultaneously. Conversely, the main advantages of epitope

tagging are that it allows the study of proteins for which native anti-

bodies are not available, and the analysis of multiple proteins using

a single, defined process with a specific antibody (i.e., since many

different proteins can be tagged with a single epitope; Dunham et al,

2012).

Limitations The major limitation of any AP-MS approach is a need

to perform cell lysis and affinity purification. These steps do not

allow for the detection of spatial or temporal PPIs and can also

prevent detection of weak, transient PPIs. Another major limitation

is contamination by abundant proteins co-purified from AP (Dun-

ham et al, 2012) and artifacts resulting from exposure of proteins to

one another in the unnatural environment of a cellular lysate (e.g.,

spurious interactions, disruption of protein interactions). In cases

where epitope tags and ectopic expression are required, high back-

ground can also result from improper folding and mislocalization.

However, several strategies do exist, which may help overcome

these problems, such as use of appropriate negative controls, further

enrichment of true interactions using tandem affinity purification

(TAP), quantification approaches (SILAC and other isotopic label-

ing, and label-free quantification, which usually need special

computational tools; Choi et al, 2011) and, for smaller experiments,

contaminants can be filtered out by comparison with a contaminant

repository database (Mellacheruvu et al, 2013). With endogenous

proteins, low expression levels of proteins of interest may also

prevent detection (Dunham et al, 2012). Lastly, data analysis of AP-

MS experiments is more difficult compared to other PPI assays (i.e.,

Y2H), due to required expertise with MS and specific bioinformatics

tools needed to address the limitations listed above.

Proximity-dependent biotin identification coupled to mass

spectrometry (BioID-MS)

Principle Proximity-dependent biotin identification coupled to mass

spectrometry (Fig 1I), which is similar in nature to AP-MS, uses a

“bait” protein of interest fused to a prokaryotic biotin ligase mole-

cule (BirA). When expressed in cells, proteins in proximity to the

BioID fusion protein are biotinylated by BirA, permitting their selec-

tive isolation using an avidin/streptavidin-based biotin affinity

capture approach. These purified, biotinylated proteins are then

identified using MS, providing a list of candidate interacting partners

for the bait of interest (Roux et al, 2012).
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Advantages Similar to AP-MS, BioID-MS is also a library-indepen-

dent method. A major advantage of BioID-MS is that PPIs are

detected in their natural cellular context (since biotinylation occurs

in the cell prior to lysis). Additionally, issues associated with bait/

prey stability and disruption of interactions upon cell lysis are

avoided. The method is also well suited for identifying weak or tran-

sient interactions and is amenable to temporal regulation (poten-

tially allowing for pulse-chase type applications; Roux et al, 2012).

The method also appears to be more effective at detecting low-

abundance proteins than AP-MS (Lambert et al, 2015).

Limitations BioID-MS requires the fusion of bait protein to BirA,

which adds significantly to the size of the protein and can poten-

tially compromise its targeting or function. Low expression level of

PPI partners can also lead to false negatives. The biotinylation

process itself may also affect protein behavior/interactions in certain

cases (Roux et al, 2012). Finally, like AP-MS, required expertise in

MS and specific bioinformatics tools can make data analysis more

complex than for other methods.

Proximity ligation assay (PLA)

Principle Proximity ligation assay (Fig 1J) is a powerful method for

the in situ detection of PPIs in fixed cells and tissues. The general

premise of the assay involves the use of proximity probes (i.e., anti-

bodies conjugated with DNA oligonucleotides, which are able to

recognize two target proteins of interest). When the Proximity

Probes are brought close to one another (i.e., due to interaction of

the target proteins to which they are bound), the DNA strands serve

as a template to direct ligation of two subsequently added oligo-

nucleotide fragments into a circular molecule. This circular DNA is

then amplified using rolling circle amplification (RCA) primed by

one of the original proximity probe oligonucleotides, resulting in a

long DNA sequence physically linked to the corresponding antibody

(and thus the interacting protein pair). This new DNA sequence

contains many repetitive elements, which are then bound by fluo-

rophore-labeled complementary oligonucleotide probes, allowing

visualization of interactions, at the specific sites where they occur,

using a fluorescence microscope (Koos et al, 2014).

Advantages The major advantages of PLA are its ability to detect

and localize PPIs with single molecule resolution and objectively

quantify them in cells and tissues. In addition, transient or weak

interactions can be monitored (Koos et al, 2014).

Limitations A major disadvantage of PLA is the dependence on

enzymes (i.e., for ligation and polymerization), making the

approach expensive and highly dependent on enzyme activity and

stability. The required use of antibodies in PLA is another potential

drawback, as antibodies are often costly, and may also not be

readily available against particular proteins of interest (Koos et al,

2014). Thus, PLA is not ideally suited for HT PPI screening applica-

tions.

Ligand–receptor capture – trifunctional chemoproteomics reagents

(LRC-TriCEPS)

Principle The LRC-TriCEPS approach (Fig 1K) has been developed

to elucidate potential receptor/ligand interactions. TriCEPS employs

a chemoproteomics reagent consisting of three moieties—one that

binds ligands of interest containing an amino group, a second that

binds glycosylated receptors on live cells, and a biotin tag. The

reagent effectively serves as a stable “bridge”, covalently linking a

ligand of interest to carbohydrate groups on its cognate receptor.

Following treatment with TriCEPS, cells are lysed and enzymatically

digested with trypsin, and TriCEPS bound peptides are purified via

the biotin tag. Receptor peptides are then freed from the TriCEPS

reagent and identified using quantitative MS (Frei et al, 2012, 2013).

Advantages The major advantages of using LRC-TriCEPS are the

ability to detect ligand–receptor interactions without the need for

genetic manipulations. This approach is also effective for detecting

surface interactions that are very transient in nature, and can be

used with both populations of individual cells and tissue samples.

In addition, LRC-TriCEPS can be used to identify the cell surface

binding partners of many different types of ligands, including

peptides, proteins, viral particles, antibodies, and engineered affinity

binders (Frei et al, 2012, 2013).

Limitations By design, LRC-TriCEPS is only useful for identifying

N-glycoprotein receptors, and is ineffective if glycans are sterically

inaccessible. Coupling of ligands to TriCEPS reagent may also affect

their functionality/proper target binding in some cases (necessitat-

ing verification of ligand function following TriCEPS linkage, where

possible). TriCEPS may also not be effective in detecting receptor–

ligand interactions in situations where ligand binding requires

association to other cell surface structures (in addition to a target

glycoprotein; Frei et al, 2013).

Avidity-based extracellular interaction screen (AVEXIS)

Principle Avidity-based extracellular interaction screen is a PPI

assay developed to systematically screen for novel extracellular

receptor–ligand pairs involved in cellular recognition processes

(Fig 1L). The general premise of this approach involves the

expression of secreted recombinant “bait” and “prey” proteins

(e.g., natively secreted proteins or the truncated ectodomain of

membrane proteins containing an N-terminal secretory peptide) in

a mammalian cell-based system so that structurally important

posttranslational modifications can occur. Bait proteins are

biotinylated, so they can be captured on a streptavidin-coated

solid phase, while prey proteins are tagged with b-lactamase and

a peptide sequence directing their pentamerization (used to

increase effective prey concentration and improve assay sensitiv-

ity). Bait and prey isolates are then presented to one another in

a binary manner to detect direct interactions using an ELISA-type

format (Kerr & Wright, 2012).

Advantages Avidity-based extracellular interaction screen can

detect very weak PPIs, which are a typical feature of interactions

between membrane-embedded receptor proteins (it has been shown

to detect interactions with equilibrium dissociation constants as low

as ~10 lM) with a low false-positive rate (Sun et al, 2012; Kerr &

Wright, 2012). The assay has also been adapted for use on a higher-

throughput scale than many other assays designed to detect extra-

cellular interactions (Sun et al, 2012).

Limitations Avidity-based extracellular interaction screen is

limited to the study of membrane proteins with self-contained
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extracellular domains and is not generally suitable for multi-

pass membrane proteins and other proteins that need to be

embedded in the plasma membrane to fold and function prop-

erly (Kerr & Wright, 2012; Frei et al, 2013). In addition, select-

ing, preparing, and validating the constructs necessary for

AVEXIS can be a lengthy (and relatively costly) process,

although the use of a recently reported protein microarray

format does help in this regard (Sun et al, 2012). The

approach may also have difficulty detecting homophilic interac-

tions and is not ideal for quantitatively comparing the strength

of different interactions (due to the artificial pentamerization

of preys; Kerr & Wright, 2012).

Dynamic protein interaction networks

A major limitation of the available PPI interaction network data is

the static representation of these interactions, neglecting the tempo-

ral and spatial organization of protein dynamics as well as the effect

of posttranslational modifications (PTMs). For instance, a PPI may

occur only during specific time periods (e.g., under particular stress

conditions, in response to certain signaling events etc.) or if specific

PTMs are present. The nature of protein–protein interaction is thus

an inherently dynamic process that changes with time, environ-

ments, and at different stages of the cell cycle. Recently, dynamic

protein interaction networks have been constructed by using

proteomic, genomic, and transcriptomic methodologies. In the

previous section, we touched briefly on the suitability of some tech-

niques for mapping dynamic interactions. Examples of some of

specific proteomic-based approaches employed include Y2H and

AP-mass spectrometry (Woodsmith & Stelzl, 2014). For instance,

the phosphotyrosine-dependent PPI network was recently studied

using Y2H, and identified many novel phosphotyrosine-dependent

PPIs of human kinases (Grossmann et al, 2015). AP-MS approaches

have been employed to study the dynamics of the human 26S

proteasome-interacting proteins (Wang & Huang, 2008, 2014), study

changes in the interactome of 14-3-3b in response to activation of

the insulin-PI3K-AKT pathway (Collins et al, 2013), and map phos-

photyrosine-dependent interaction sites on ErbB-receptor family

members (Schulze et al, 2005).

In addition to the temporal and spatial organization of PPIs,

perturbations of PPIs from disease-associated alleles have also

gained much interest. Such perturbations can be either subtle or

dramatic, but often have significant biological consequences, and

understanding the nature of these changes can be important in

developing new therapeutic strategies. Thousands of genetic vari-

ants have been identified in many Mendelian disorders, complex

traits, and cancers; however, the effect of these genetic variants on

PPI networks is still far from clear. Recent studies have looked into

assessing perturbations of protein interactions by disease-associated

alleles using the techniques described above. For example, Sahni

et al (2015) found widespread perturbations of macromolecular

interactions caused by disease-specific mutant alleles using a

comprehensive genomics/proteomics approach involving LUMIER

and Y1H/Y2H technologies. Additionally, Wang et al (2012) inte-

grated available protein structure and large-scale PPI data to

comprehensively investigate the relationships between mutations,

protein interactions, and human disease. Work by Petschnigg et al

(2014) using the MaMTH assay also identified differential interac-

tors of WT and oncogenic mutant forms of the receptor tyrosine

kinase EGFR. For a more thorough examination of protein interac-

tome networks and disease, several excellent reviews are available

(Ideker & Sharan, 2008; Vidal et al, 2011; Sahni et al, 2013).

Analysis of PPI screen data

Once a screen is completed, it is necessary to properly analyze the

data in order to validate the results and improve overall interactome

quality. In this section, we provide an overview of some key consid-

erations and methods useful for analysis of PPI datasets.

Assessing PPI datasets

Assessing the frequency of false positives and false negatives in PPI

datasets has been a long-standing problem, especially for HT

screens. Typically, the frequency of false positives is measured as

the false discovery rate (FDR ¼ false positives
true positivesþfalse positivesÞ; and the

frequency of false negatives as the false negative rate

(FNR ¼ false negatives
true positivesþfalse negatives) or sensitivity ( true positives

true positivesþfalse negatives).

The main strategies for assessing FDR and sensitivity have involved

testing detected interactions by multiple methods and comparing

against interactions from literature. FDR has been, arguably, a

greater focus in interactome studies than sensitivity. In small-scale

screens, FDR can be assessed and minimized by testing all reported

interactions using multiple methods. However, the FDR of small-

scale screens may still be uncertain. Edwards et al (2002) found that

interactions from small-scale screens were not always consistent

with known 3D structures of protein complexes. Rolland et al

(2014) tested interactions reported in single publications and found

that the detection rate was just slightly higher than for random

protein pairs. Small-scale studies rarely report protein pairs that

were tested but not detected. Consequently, the sensitivity of their

screens and the assessment of how much of the interactome they

have tested are largely unknown (Cusick et al, 2009).

Assessing HT screens is more difficult since testing all detected

interactions by multiple methods is not feasible. Venkatesan et al

(2009) developed a rigorous framework for assessing the quality of

HT PPI datasets. Their framework calculates four parameters:

screening completeness, assay sensitivity, sampling sensitivity, and

precision. Screening completeness is the fraction of open reading

frame (ORF) pairs tested in the screen. Assay sensitivity is the frac-

tion of interactions that can be identified by the assay, estimated by

testing the assay on a gold standard set of interactions, and deter-

mining the fraction detected. Sampling sensitivity is the fraction of

detectable interactions identified in one trial of the assay, estimated

by repeating the assay multiple times and fitting a Bayesian model

to the results. Precision, the fraction of detected pairs that are true

positives, can be estimated by testing the assay on reference sets of

interacting and non-interacting protein pairs, and calculating the

fraction of detected pairs that are from the interacting set.

Once the precision and sensitivity of an assay have been esti-

mated, the assay can be used to determine the FDR of interaction

datasets. HT studies commonly estimate FDR by retesting a subset

of detected protein pairs using different small-scale or HT methods

(Yu et al, 2008; Simonis et al, 2009; Rolland et al, 2014). Such esti-

mates need to take into account the precision and sensitivity of the
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retesting assay. This is especially important as the precision or

sensitivity may be quite limited. Braun et al (2009) assessed five HT

assays on a gold standard dataset comprised of interactions reported

by multiple small-scale studies (positive cases) and an equal

number of randomly chosen protein pairs. Each HT assay detected

only ~20–35% of positive cases, and up to 4% of negative cases.

Combined, the five assays detected 59% of positive cases, while

FDR increased to 14%. Furthermore, different assays have different

systematic biases; for example, affinity purification methods may be

biased in favor of high-abundance proteins (Ivanic et al, 2009).

Another concern, especially difficult to address, is that gold standard

datasets may also have biases. Such datasets, often comprising PPIs

reported by multiple small-scale studies, may be deficient for certain

types of proteins or PPIs due to research bias or limitations of assays

(Hakes et al, 2008; Edwards et al, 2011; Rolland et al, 2014; Kotlyar

et al, 2015; Wang et al, 2015).

Computational methods for assessing results

Computational methods provide a means of estimating FDR without

retesting detected protein pairs. Furthermore, they can provide error

estimates for specific proteins or protein pairs.

D’haeseleer and Church (2004) introduced a method for estimat-

ing FDR and assessing the reliability of individual interactions. Their

method analyzes the overlap of detected interactions with two other

datasets, including a trusted reference set. The variance of FDR esti-

mates can be high if the overlaps are small. However, the authors

showed that FDR estimates are not greatly affected by the quality of

the chosen datasets.

A statistical model introduced by Huang and Bader for assessing

two-hybrid datasets provides global error estimates as well as error

estimates for specific baits (Huang & Bader, 2009). Thus, it can

determine whether certain baits are responsible for a disproportion-

ate share of the global error rate. For example, in two-hybrid data

from worm, it found that the FDR was especially high among

proteins involved in cellular metabolic processes.

Computational methods to help improve data quality

One approach for assessing and improving data quality is to exam-

ine whether a PPI dataset possesses properties of interacting

protein pairs. Methods that use this approach assume that interact-

ing proteins are likely to have co-expressed genes (Deane et al,

2002), shared subcellular localization (Sprinzak et al, 2003), simi-

lar functional and process annotations (Sprinzak et al, 2003; Wang

et al, 2007), and shared interaction partners (Saito et al, 2002;

Goldberg & Roth, 2003). Evaluating a PPI dataset using such

evidence can be problematic: Many interacting protein pairs do not

have correlated gene expression, protein annotations such as

subcellular localization and function are often incomplete or

unavailable, and shared interaction partners are frequently

unknown, since the interactomes of most species are largely

unmapped. However, ranking detected protein pairs using these

types of evidence can help identify true positive interactions. A

combination of such evidence has been used in HT studies to

define high-confidence (HC) subsets of detected interactions (Miller

et al, 2005; Havugimana et al, 2012). The evidence can also help

identify potential false negatives—protein pairs that are not

strongly supported by the experimental detection method but have

properties of true interactions. Unfortunately, ranking based on this

evidence can introduce biases; ranking by correlation of gene

expression profiles favors stable interactions (Brown & Jurisica,

2007), while ranking by shared Gene Ontology terms or interaction

partners favors well-studied proteins. If the evidence is used multi-

ple times during the planning and analysis of an experiment, there

may be a danger of circular reasoning. For example, testing protein

pairs with similar functions and then ranking detected pairs by

similarity of localizations would be largely ineffective, as functional

similarity is correlated with localization similarity.

An approach for improving the quality of AP-MS data involves

calculating a score for each co-purified pair, indicating the likeli-

hood of the two proteins being observed together. Such scores

have been calculated using various methods: log-ratios of observed

versus expected co-occurrences (Gavin et al, 2006), machine-

learning algorithms (Krogan et al, 2006; Collins et al, 2007),

hypergeometric probabilities (Hart et al, 2007), and randomiza-

tions (Yu et al, 2009). Scores can be used for ranking protein pairs

and defining a HC subset of interactions. A score threshold for

defining this subset can be determined based on FDR and sensitiv-

ity calculated from a gold standard dataset comprising interacting

and non-interacting protein pairs. True positive interactions can be

distinguished from contaminants by analyzing quantitative infor-

mation from mass spectrometry data, including spectral counts,

signal intensity in the precursor scan of the mass spectrometer,

and intensity of product ions after fragmentation (Gingras &

Raught, 2012). Analysis of quantitative data using tools such as

SAINT (Choi et al, 2011) can be especially helpful when aiming to

detect transient interactions; preservation of transient interactions

in AP-MS experiments requires short incubation times and few

washes, resulting in more contaminants that need to be filtered

(Gingras & Raught, 2012).

Varjosalo et al (2013) filtered AP-MS data in three steps to

remove different types of protein contamination. The first filter

removed proteins that may have been left over from a proceeding

experiment. The second filter removed non-specifically interacting

proteins. The third filter removed low-abundance, non-systematic

contaminants; bait–prey pairs were assigned weighted spectral-

count-based scores reflecting interaction abundance and repro-

ducibility, and pairs with scores below a threshold were removed.

This three-step filtering improved reproducibility of resulting

networks more than previous filtering methods, wD-score (Behrends

et al, 2010) and SAINT (Choi et al, 2011).

Computational prediction to help improve datasets and the

interactome

Computational PPI prediction is similar to previously described

methods that assign scores to detected protein pairs, indicating the

likelihood of interaction. However, prediction methods provide

scores for both detected and undetected PPIs. These scores can be

used to improve the quality of experimentally detected PPIs, by

identifying high-confidence subsets and potential false negatives,

which can help accelerate interactome mapping (Schwartz et al,

2009). Also, prediction methods can help fill the gaps in a known

interactome by predicting interactions for interactome orphans and

low-degree proteins (Kotlyar et al, 2015).

PPI prediction methods can be categorized by the data they

use: genomic data, protein sequence, protein structure, PPI

networks, gene expression, and annotations of gene function,
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localization, and process. Prediction methods based on genomic

data analyze conserved operon structure, fusion domains, phyloge-

netic profiles, and interologs. Analysis of operon structure is based

on the idea that genes in close proximity on the genome are more

likely to encode interacting proteins, especially if the proximal

locations are conserved across species (Dandekar et al, 1998; Over-

beek et al, 1999). Similarly, if two genes exist as a single fused

gene in another species, they are likely to encode interacting

proteins (Enright et al, 1999). Phylogenetic profiles are used to

identify gene pairs that tend to co-occur across species—either

both are present in a species, or both are absent; such pairs are

likely to be functionally related and may encode interacting

proteins (Pellegrini et al, 1999). Interologs are interactions

conserved across species: if a pair of proteins interacts in one

species, their orthologs in another species are more likely to inter-

act (Walhout et al, 2000; Yu et al, 2004).

Many studies have predicted interactions based on protein

sequence (Gomez et al, 2003; Martin et al, 2005; Nanni & Lumini,

2006; Shen et al, 2007; Guo et al, 2008; Zaki et al, 2009; Chang

et al, 2010; Guo et al, 2010; Yu et al, 2010). These studies analyze

experimentally determined interactions to find patterns that

distinguish sequences of an interacting protein pair from those of

a non-interacting pair. This is often done using machine-learning

algorithms such as support vector machines, random forests (Roy

et al, 2009), and K-local hyperplane nearest-neighbors (Nanni &

Lumini, 2006). Protein sequence can also be used indirectly for

prediction; protein domains can be determined from sequence, and

pairs of domains enriched among known interacting protein pairs

may predict new interactions (Sprinzak & Margalit, 2001; Wojcik

& Schächter, 2001; Nguyen & Ho, 2006; Singhal & Resat, 2007).

Another approach combines sequence with protein tertiary struc-

ture. Although few proteins or complexes have known 3D struc-

ture, sequence homology can serve as a link to other proteins.

Homologous proteins, especially with conserved binding sites, are

likely to interact in similar ways (Aloy & Russell, 2003; Ma et al,

2003; Sinha et al, 2010). Thus, a protein pair can be predicted to

interact based on sequence or structural homology to proteins in

solved complexes (Lu et al, 2002; Aloy & Russell, 2003; Zhang

et al, 2012a).

If an interactome is partially known, new interactions may be

predicted from known network structure, often based on the idea

that interacting proteins tend to share interaction partners (Saito

et al, 2002; Goldberg & Roth, 2003; Liu et al, 2008). Other types

of interaction evidence—including correlated gene expression,

shared subcellular localization, similar function and process—are

typically used in combination with other evidence (Jansen et al,

2003; Ben-Hur & Noble, 2005; Rhodes et al, 2005; Elefsinioti

et al, 2011).

PPI prediction methods have a number of limitations and biases,

often similar to those of experimental PPI assays. Computational

methods tend to have difficulty predicting transient interactions and

interactions involving lesser studied proteins, which typically have

no tertiary structure data, no detailed Gene Ontology or domain

annotations, few known interactions, and few orthologs in different

species (Kotlyar et al, 2015). Transient interactions are difficult to

predict based on correlation of gene expression profiles (Brown &

Jurisica, 2007), or analysis of protein sequence or structure. In these

interactions, the two encoding genes are not highly correlated

(Brown & Jurisica, 2007), interaction interface sequences are not as

conserved as in obligate interactions (Perkins et al, 2010), interact-

ing proteins often undergo conformational changes (Perkins et al,

2010), and interactions are frequently mediated by linear motifs

rather than globular domains (Perkins et al, 2010). If proteins lack

Gene Ontology annotations, known interaction partners, or ortho-

logs, it is difficult to predict their interactions using annotation simi-

larity, network topology, or comparative genomics, respectively.

Interestingly, such proteins are also underrepresented in the experi-

mentally detected human interactome (Kotlyar et al, 2015). If

prediction methods require training, they may acquire the biases of

their experimentally detected training set. This may explain the

finding of Rolland et al that a proteome-wide, structure-focused

prediction method, PrePPI (Zhang et al, 2012a), had a tendency to

report interactions among well-studied proteins (Rolland et al,

2014).

Databases: what is available and what do they tell us?

Studies that detect PPIs report their findings in journal articles as

free-form text. Consequently, original information about detected

PPIs is scattered across thousands of articles and requires manual

curation. Converting these data into an easily usable set of interac-

tions and experimental descriptions remains a daunting problem,

comprising several key tasks: (i) experiments need to be described

with a controlled vocabulary and recorded in a common format,

(ii) thousands of articles have to be curated and resulting informa-

tion has to be easily accessible, and (iii) proteins need to be unam-

biguously identified. The first task, creation of standard

vocabularies and formats for PPI data, was addressed through the

Human Proteome Organization Proteomics Standards Initiative

(HUPO-PSI) by the Molecular Interaction (MI) workgroup. They

created a common controlled vocabulary for experimental tech-

niques, molecular features, and interaction types (Orchard &

Kerrien, 2010), and XML (PSI-MI XML) and tab-delimited (MITAB)

formats for recording and transferring data (Kerrien et al, 2007).

Most major PPI databases adopted the vocabulary and data

formats, allowing users to easily integrate datasets and analyze

them with programs such as Cytoscape (Su et al, 2014) and NAVi-

GaTOR (Brown et al, 2009).

The second task, curating articles and providing results through

online databases, started with the DIP (Salwinski et al, 2004) and

BIND (Bader et al, 2003) database projects and has continued with

the creation of many similar resources (Table 2 and Fig 2A). These

resources were especially important given the rapid increase in the

number of human PPIs (Fig 2B) detected by various experimental

methods. Initially, the focus was on experimentally detected PPIs in

yeast and human, but the scope has greatly expanded. Some data-

bases now include computationally predicted interactions (e.g.,

STRING (Szklarczyk et al, 2015), FpClass (Kotlyar et al, 2015), IID

(Kotlyar et al, 2016)), functionally related protein pairs (e.g.,

STRING (Szklarczyk et al, 2015)), interactions between proteins

and other molecule types (e.g., BIND (Bader et al, 2003), BindingDB

(Liu et al, 2007), IntAct (Kerrien et al, 2012)), interactions in a

range of organisms (e.g., DIP (Salwinski et al, 2004), IntAct (Kerrien

et al, 2012), MINT (Licata et al, 2012), BioGRID (Chatr-Aryamontri

et al, 2015), IID (Kotlyar et al, 2016)), and interactions involving
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specific types of proteins (e.g., extracellular matrix—MatrixDB

(Chautard et al, 2011), immune related—InnateDB (Breuer et al,

2013)).

Databases also differ in several other respects: the level of detail

recorded about experiments (shallow versus deep), the way infor-

mation is acquired (manual curation of literature or automatic

approaches such as text mining or PPI prediction), and the sources

of information—peer-reviewed articles (primary sources) or other

databases (secondary sources). Manual curation of articles is the

most trusted method for acquiring data and is carried out by most

databases. Several approaches have been used to assist with cura-

tion: curation guidelines have been established, an automated

syntax checker was implemented to test for compliance with

accepted formats, and guidelines were created for reporting PPIs in

papers, so that curation of papers is easier and more accurate

(Orchard et al, 2007). However, manually curating all previously

published literature and keeping up with new publications is a huge

task. The IMEx consortium (Orchard et al, 2012) was created to

better organize the curation effort across major PPI databases.

Members of the consortium avoid curating the same papers and

follow the same curation rules.

Although current PPI databases provide easy access to their PPI

data, obtaining the most complete up-to-date network can be chal-

lenging: the latest data has to be downloaded from multiple data-

bases and merged. The PSICQUIC (Aranda et al, 2011) query

interface simplifies these tasks. It enables multiple PPI databases to

be searched with the same query, and a clustering algorithm

provided with PSICQUIC helps merge results by grouping interaction

evidence based on primary identifiers.

Unfortunately, the third task, unambiguously identifying

proteins, has not been entirely resolved. Most PPI databases use

UniProtKB (Magrane & Consortium, 2011) protein identifiers, which

can represent peptides, fusion proteins, specific isoforms, or

proteins whose isoforms are not specified. However, some data-

bases use Ensembl (Flicek et al, 2014), Entrez (Maglott et al, 2011),

RefSeq (Pruitt et al, 2012), and species-specific identifiers. Mapping

between different types of identifiers is not always possible. When

databases use different protein identifiers, PSICQUIC is unable to

identify redundant data. However, this problem is being addressed

as more providers of PSICQUIC clients include commonly used iden-

tifiers in export files (Orchard, 2012).

Visualization, analysis, and biological validation of
PPI data

Visualization Tools

A number of tools are available for visualization and analysis of PPI

data including Cytoscape (Su et al, 2014), NAViGaTOR (Brown

et al, 2009), and packages from R and Bioconductor (e.g., Rintact

(Chiang et al, 2008) combined with RBGL). The main types of func-

tionality supported by these tools include loading PSI-MI files, visu-

alizing networks, annotating networks, and conducting network

analysis. Data can be loaded from tab-delimited or PSI-MI XML files,

and visualized as a graph, with nodes representing proteins and

edges representing interactions. Multiple graph layouts are

supported, including grids and force-directed layouts. Annotations

for nodes and edges can be included in the original data files,

retrieved from other text files, or imported from databases. The

appearance of nodes and edges can be set based on annotations.

Network analysis capabilities include clustering to identify protein

complexes, motifs, or graphlets, calculating centrality measures,

and identifying shortest paths or flows.

Identifying complexes in PPI networks

Although PPI networks focus on pairwise interactions, cellular

processes are often carried out by protein complexes. Complexes

typically have a “core”—a central functional unit present in most

isoforms of the complex, and “attachments”—proteins present in

some isoforms of the complex (Gavin et al, 2006). The attachments

may include “modules”—sets of proteins that always appear

together in different complexes (Gavin et al, 2006).

Experimental methods for detecting PPIs cannot easily identify

complexes. For example, Y2H methods only identify binary interac-

tions, and while TAP and HMS-PCI identify potential complexes,

reliably identifying complex members requires “reverse purifica-

tion”—repeatedly applying the detection method, using candidate

members of the complex as baits (Gavin et al, 2002).

Table 2. Major protein–protein interactions (PPI) databases.

Database Reference URL IMEx member PPI evidence Specialization

BioGRID Chatr-Aryamontri et al (2015) http://thebiogrid.org Observer Experimental

DIP Salwinski et al (2004) http://dip.doe-mbi.ucla.edu/dip Yes Experimental

FPCLASS Kotlyar et al (2015) http://ophid.utoronto.ca/fpclass No Computational

HPRD Keshava Prasad et al (2009) http://www.hprd.org/ No Experimental

IID Kotlyar et al (2016) http://ophid.utoronto.ca/iid Yes Computational,
Experimental

InnateDB Breuer et al (2013) http://www.innatedb.ca Yes Experimental Immune-related PPIs

IntAct Kerrien et al (2012) http://www.ebi.ac.uk/intact Yes Experimental

iRefWeb Turinsky et al (2014) http://wodaklab.org/iRefWeb/ No Experimental

MatrixDB Chautard et al (2011) http://matrixdb.ibcp.fr/ Yes Experimental Extracellular matrix PPIs

MINT Licata et al (2012) http://mint.bio.uniroma2.it/mint Yes Experimental

STRING Szklarczyk et al (2015) http://string-db.org No Computational,
Experimental

Functional protein–protein
associations
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Computational methods can predict complexes by analyzing PPI

networks and integrating networks with information such as gene

function or co-expression. Most complex prediction methods share

the same main steps: (i) assigning confidence scores to detected

interactions, (ii) identifying complexes by clustering PPI networks

or analyzing additional data, and (iii) evaluating resulting

complexes by comparing with gold standard datasets. The first step

assigns confidence scores to detected interactions; scores can be

used to filter interactions or can be included as input to clustering

algorithms. Any of the scoring approaches described earlier may be

used (see section “Computational methods to help improve data

quality”). Often, complexes are determined from AP-MS data, and

scoring approaches specific to this data are used.

Most prediction methods assume that complexes correspond to

highly connected regions of PPI networks and cluster the networks

to identify these regions. The clustering approaches can be

categorized as agglomerative or divisive, and overlapping or non-

overlapping. Agglomerative approaches (Bader & Hogue, 2003; Li

et al, 2005; Liu et al, 2009; Wang et al, 2009; Nepusz et al, 2012)

start with seeds—individual nodes or cliques—and expand them into

larger clusters by adding single nodes or merging with other clusters.

Divisive approaches (van Dongen, 2000; Pu et al, 2007; Friedel et al,

2009) start with an entire network and partition it into highly

connected regions. Overlapping approaches (Wang et al, 2009;

Nepusz et al, 2012) allow nodes to be members of multiple clusters,

to reflect overlap between complexes, while non-overlapping

approaches (van Dongen, 2000; Bader & Hogue, 2003; Liu et al,

2009) assign nodes to single clusters. Some methods (Wu et al, 2009;

Leung et al, 2009; Srihari et al, 2010; Chin et al, 2010) try to identify

core and attachment sections of complexes.

Several methods combine network clustering with information

about protein function, orthology, or structure. To increase the reli-

ability of predicted complexes, these methods look for clusters

whose members have similar functions (King et al, 2004; Li et al,

2007), highly conserved orthologs in the same set of species (i.e.,

the complex is conserved as a functional unit (Sharan et al, 2005;

Hirsh & Sharan, 2007)), and protein structures enabling simul-

taneous interactions with multiple complex members (Ozawa et al,

2010; Jung et al, 2010). Several surveys (Brohée & van Helden,

2006; Vlasblom & Wodak, 2009; Li et al, 2010; Srihari & Leong,

2013) evaluated complex prediction methods by comparing their

results against experimentally determined complexes. The

Markov Cluster Algorithm (van Dongen, 2000; van Dongen &

Abreu-Goodger, 2012) was found to be a top clustering method in

three surveys (Brohée & van Helden, 2006; Vlasblom & Wodak,

2009; Li et al, 2010), and integration of network clustering with

other information significantly improved performance (Srihari &

Leong, 2013).

Identifying interaction conditions

Understanding how PPIs produce specific phenotypes requires infor-

mation on their context: when, where, and under what conditions

interactions occur. Computational methods can help determine this

information by text mining of the PubMed database (Chowdhary

et al, 2012), or more commonly, by integrating transcriptomic and

other data with PPI networks. Usually, these methods aim to identify

cell types, tissues, and disease states in which interactions occur.

Direct evidence for interactions occurring in a given cell type or

tissue is often unavailable since PPI detection is typically done in

yeast cells or common cell lines. By contrast, HT gene expression

data are available for a wide variety of organisms, cell types, tissues,

and conditions (Barrett et al, 2013; Kolesnikov et al, 2015). A

common approach for assigning PPIs to tissues is to check whether

the genes encoding an interacting protein pair are both expressed in

a tissue (Bossi & Lehner, 2009; Lopes et al, 2011). Proteomics data

(Uhlen et al, 2015) are less extensive but can be used analogously.

The TissueNet (Barshir et al, 2013) database uses both gene and

protein expression data to assign PPIs to tissues. Assigning tissues

on the basis of gene or protein expression has limitations; absence of

gene expression may not indicate absence of protein expression, and

presence of gene or protein expression may not mean that proteins

interact. Also, since this approach estimates the presence or absence

of proteins, it can only indicate whether all interactions involving a

protein are absent, but not whether a specific interaction is absent.

Correlation of gene expression profiles can provide information on

specific interactions; a pair of genes with correlated expression

profiles in a tissue or cell type may have interacting protein products

(Camargo & Azuaje, 2007).

Interactions that change in disease or other conditions can be

identified by similar approaches. An interaction may be disease-

related if the two encoding genes are both expressed only in the

disease state (or are upregulated in the disease state; Ideker et al,

2002), or the genes have correlated expression profiles in disease

states (Camargo & Azuaje, 2007; Guo et al, 2007; Xiao et al, 2012).
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Figure 2. Protein and PPI counts in major human PPI databases.
(A) Major human PPI databases and the number of proteins they contain.
(B) Major human PPI databases and the number of PPIs they contain.
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Differential correlation of gene expression profiles can provide more

specific information about an interaction: if two genes have signifi-

cantly different correlation levels in two conditions, then the inter-

action of their protein products may change between conditions

(Lin et al, 2010; Yoon et al, 2011; Zhang et al, 2012b; Yu et al,

2013).

Integrating PPI networks with other omics data

Integrating PPI networks with other omics data, such as genomic,

transcriptomic, and proteomic, is essential for understanding the

molecular basis of phenotypes. Just as gene expression data can

provide context for PPIs, and link them with specific conditions, PPI

networks can provide context for other data, and link it with pheno-

type.

One of the most common types of integration combines PPI

networks and gene-phenotype data, to uncover relationships

between genes and diseases. Goh et al (2007) showed that essential

genes and disease genes have distinct network properties: essential

genes tend to encode hub proteins, while disease genes encode

proteins in the periphery of the network. Genes implicated in similar

diseases tend to encode proteins that are close in PPI networks—

either interacting directly (Goh et al, 2007; Schadt, 2009) or

members of the same complex (Lage et al, 2007), pathway (Wood

et al, 2007), or subnetwork (Lim et al, 2006). Based on this idea, it

is possible to identify novel disease genes by mapping known

disease-associated genes to nodes in PPI networks, and applying

random walk (Kohler et al, 2008; Smedley et al, 2014), network

flow (Yeger-Lotem et al, 2009; Chen et al, 2011), label propagation

(Lee et al, 2011a), or other related algorithms (Vanunu et al, 2010;

Winter et al, 2012). Random walk algorithms have been shown to

be especially effective (Navlakha & Kingsford, 2010).

Integrating PPI networks with protein–DNA interactions, gene

expression, phenotype, and drug information can provide insights

into disease and drug mechanisms and can help identify new treat-

ments. PPI networks combined with protein–DNA interactions have

been used to model cellular regulatory networks—identifying regu-

latory circuits (Yeger-Lotem et al, 2004) and signaling-regulatory

pathways (Ourfali et al, 2007). More recently, networks were used

to predict disease mechanisms by modeling pathogen induced

perturbations (Gulbahce et al, 2012), and effects of node or edge

removal (Zhong et al, 2009; Sahni et al, 2013). Networks have also

been effective for developing treatments: identifying drug targets

(Yeh et al, 2012; Emig et al, 2013), understanding drug mechanism

of action (Perez-Lopez et al, 2015), predicting side effects (Huang

et al, 2013b), predicting drug–drug interactions (Huang et al,

2013a), and characterizing drug-regulated genes and toxicity

(Kotlyar et al, 2012).

Biological validations

Direct experimental validation of the biological relevance of interac-

tions is the final important step in any interactome mapping project.

While complete validation of all novel interactions detected is

seldom possible within the context of a single study, demonstrating

that a particular interactome provides information of practical

biological importance can be done by further analysis of a represen-

tative subset of interactions.

Selection of the subset of interactions to study is highly situa-

tional, and will depend largely on the nature of the proteins being

investigated and the information currently available about them, as

well as the size of the interactome and the specific goals of the

study. For example, if studying the interactions of a protein whose

mutation is known to be associated with disease, interactions which

differ between the WT and mutant forms of the protein would likely

be highly informative candidates for initial validation. Interactions

involving members specifically associated with a given process of

interest, which have not been previously demonstrated to interact,

also represent a good starting point. Integrating the interactome

with other datasets, combined with various predictive algorithms

(as described above), is valuable in this selection process, and can

help identify candidates based on a more complex range of user-

defined criteria.

The specific validation experiments to be performed also vary on

a case-by-case basis. Typical initial characterization experiments

involve disrupting the level of individual members of an interaction

pair (e.g., by gene deletion/knockdown or overexpression), and

then looking for changes in the properties or function of the other

member. For example, if studying the interactions of a particular

receptor, one could investigate the effect of altering gene expression

levels of identified interactors on downstream signaling cascades

controlled by the receptor. Alternatively, effects on protein stability,

protein trafficking, posttranslational modification, or responsiveness

to known ligands/substrates could be probed. Investigations can be

as specific as centering on molecular effects on individual proteins,

or more broadly explore general phenotypic change (e.g., increased

sensitivity to particular drugs, inability to grow under certain condi-

tions). Mutational analysis of proteins can also be useful in identify-

ing regions important for mediating and regulating interactions. For

examples of proteomics screens followed by functional follow-ups,

we refer the reader to several recent studies (Babu et al, 2012;

Snider et al, 2013; Petschnigg et al, 2014).

The importance of performing these validations cannot be under-

stated, as they provide a clear demonstration of the usefulness of any

newly generated interactome in providing a solid starting point for

the identification and characterization of biologically important

processes. If an interactome cannot easily provide this information,

then it is unlikely to be of widespread value to the scientific commu-

nity, and further improvements are necessary. It is also critical to note

that carrying out proper validations may represent a significant effort,

and researchers must take this into account when planning and

implementing any interactomemapping project, regardless of scale.

Concluding remarks

High-throughput PPI mapping and analysis enables researchers to

generate data and investigate biological processes on a previously

unprecedented scale (Yao et al, 2015). Selecting and implementing

the method best suited for a particular biological question can be a

significant challenge, however, one which is further complicated by

the emergence of an ever increasing number of new interaction

proteomics technologies. Here, we have presented the general prin-

ciples of the most frequently used PPI methods and have highlighted

the advantages and limitations of each, as well as provided a

summary of available bioinformatics approaches and resources for

use in the interpretation of interactome data. It is our hope that this

review serves as a useful guide to “wet” and “dry” laboratory
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methodologies and the analytical tools required to properly make

use of these exciting approaches, and will help more scientists

actively employ them in their research efforts.
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