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Background: Several determinants of exercise intolerance in patients with precapillary pul-
monary hypertension (PH) due to pulmonary arterial hypertension and/or chronic throm-
boembolic PH (CTEPH) have been suggested, including diaphragm dysfunction. However,
these have rarely been evaluated in a multimodal manner. Methods: Forty-three patients
with PH (age 58 +− 17 years, 30% male) and 43 age- and gender-matched controls (age 54
+− 13 years, 30% male) underwent diaphragm function (excursion and thickening) assess-
ment by ultrasound, standard spirometry, arterial blood gas analysis, echocardiographic as-
sessment of pulmonary artery pressure (PAP), assay of amino-terminal pro-brain natriuretic
peptide (NT-proBNP) levels, and cardiac magnetic resonance (CMR) imaging to evaluate
right ventricular systolic ejection fraction (RVEF). Exercise capacity was determined using
the 6-min walk distance (6MWD). Results: Excursion velocity during a sniff maneuver (SniffV,
4.5 +− 1.7 vs. 6.8 +− 2.3 cm/s, P<0.01) and diaphragm thickening ratio (DTR, 1.7 +− 0.5 vs.
2.8 +− 0.8, P<0.01) were significantly lower in PH patients versus controls. PH patients with
worse exercise tolerance (6MWD <377 vs. ≥377 m) were characterized by worse SniffV,
worse DTR, and higher NT-pro-BNP levels as well as by lower arterial carbon dioxide levels
and RVEF, which were all univariate predictors of exercise limitation. On multivariate analy-
sis, the only independent predictors of exercise limitation were RVEF (r = 0.47, P=0.001) and
NT-proBNP (r = −0.27, P=0.047). Conclusion: Patients with PH showed diaphragm dys-
function, especially as exercise intolerance progressed. However, diaphragm dysfunction
does not independently contribute to exercise intolerance, beyond what can be explained
from right heart failure.

Introduction
Pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH)
as forms of precapillary pulmonary hypertension (PH) are associated with significant exercise intolerance,
but the exact mechanisms leading to exercise limitation are multifactorial and still not well understood
[1–6].
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In precapillary PH, and in PAH and CTEPH in particular, increased pressure in the pulmonary arteries overloads
the right ventricle (RV), causing hypertrophy and failure [5]. The majority of measures that predict survival in PH,
such as exercise capacity and functional class, have been related to RV function [5]. In particular, RV function was
shown to be the only independent predictor of exercise intolerance when evaluated together with systolic pulmonary
artery pressure (PAP) [6,7].

Recently, inspiratory muscle strength has emerged as a potential new contributor to exercise intolerance in PH [8,9].
Indeed, lower values of inspiratory muscle strength as assessed by transdiaphragmatic pressure following magnetic
stimulation of the phrenic nerve roots were shown to relate to exercise intolerance in patients with precapillary PH [8].
While this showed that inspiratory muscle dysfunction parallels the development of exercise intolerance in PH, it is
not yet known whether the diaphragm contribution to exercise intolerance is independent of RV systolic dysfunction
in precapillary PH.

Therefore, this prospective study was conducted in patients with precapillary PH and age- and sex-matched con-
trols to evaluate whether diaphragm function, assessed by diaphragm ultrasound, [10] contributes to exercise intol-
erance, evaluated by the 6-min walking test, over and above impaired right ventricular pump function, as assessed by
cardiac magnetic resonance (CMR) imaging.

Experimental
Study design
The present study was conducted at the University Hospital of Münster (Universitätsklinikum Münster) from June to
September 2018. Informed consent was obtained from each subject and the study protocol conformed to the ethical
guidelines of the 1975 Declaration of Helsinki as reflected in a priori approval by the Institution’s Human Research
Committee (Ethikkommission der Ärtzekammer Westfalen Lippe, ethical approval number 2017-187-f-S). All par-
ticipants gave verbal written informed consent to participate in the study. The project was prospectively registered
and continuously updated under the German Clinical Trials Registry (drks.de Identifier: DRKS00014695).

Study population
Patients with Nizza class I PAH or Nizza class IV CTEPH were consecutively recruited based on the latest European
Society of Cardiology (ESC) criteria [1]. All patients underwent the following tests as per the latest recommenda-
tions and guidelines: standard two-dimensional echocardiography for estimating PAP; [1] CMR imaging to quantify
right ventricular function; [11] spirometry to assess lung function; [12,13] capillary blood gas analysis; diaphragm
ultrasound; and 6-min walking test as a measure of exercise capacity.

A group of healthy volunteers well matched for age, gender and body mass index (BMI) was enrolled as control
group and underwent evaluation of diaphragm function. All volunteers were required to have normal electrocardio-
gram (ECG) findings, pulmonary function natriuretic peptide hormone levels.

CMR data acquisition and analysis
ECG-gated CMR studies were performed on a 1.5-T scanner (Ingenia, Philips, Best, The Netherlands) using com-
mercially available cardiac software and cardiac-dedicated surface coils. Cine-imaging was performed using a
steady-state-free-precession (SSFP) sequence in four long-axis slices (four-, three, two-chamber as well as a modi-
fied two-chamber for the RV) and a stack of short-axis slices completely covering the ventricles.

CMR analysis was performed off-line by two experienced readers. Ventricular volumes and ejection fraction were
derived by contouring the endocardial borders at end-diastole and end-systole on the short-axis cine images and
including the left ventricular (LV) papillary muscles/RV trabeculations in the ventricular cavity. For optimal segmen-
tation of the RV, the tricuspid valve and apical planes were first defined using the four- and modified two-chamber
for RV slices. RV systolic dysfunction was defined according to the latest available published data [11].

Diaphragm ultrasound
A portable ultrasound machine (LOGIQ S8 -XD clear, GE Healthcare, London, United Kingdom) with a 3.5-MHz
convex transducer was used for assessment of diaphragm excursions in the subcostal view, and a 10-MHz linear
transducer was used for evaluation of diaphragm thickness in the zone of apposition. Measurements were performed
on the right hemidiaphragm in the supine position because posture is known to directly affect diaphragm thickness
[14]. All measurements were performed three times and the average value for each parameter was then calculated.

For evaluation of diaphragm excursions, the 3.5 MHz probe was positioned between the mid-clavicular and ante-
rior axillary lines, in the subcostal area with the probe held as medially as possible and directed cranially (Figure 1A).

2 © 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).



Bioscience Reports (2019) 39 BSR20190392
https://doi.org/10.1042/BSR20190392

Figure 1. Standardised Diaphragm Ultrasound Protocol

Parameters measured during diaphragm ultrasound: diaphragm excursion during TB (A) and sniff maneuver (B); and diaphragm

thickness at FRC (C) and TLC (D).

Excursions of the right hemidiaphragm were recorded on M-Mode sonography in real time with a clear instruction
to ‘cut’ the hemidiaphragm in its posterior third. Measurement of diaphragm excursion amplitude was performed
during tidal breathing (TB) (Figure 1A), after deep inspiration toward total lung capacity (TLC) and following a
voluntary sniff (VS) maneuver which leads to maximum displacement of the diaphragm. Assessment of diaphragm
excursion velocity was performed during TB and following the VS maneuver only (Figure 1B). Excursion amplitude
was defined as the upright-perpendicular distance from the minimum to the maximum point of diaphragm displace-
ment, and excursion velocity was defined as the upright-diagonal distance from the minimum to the maximum point.
Diaphragm thickness was measured as the vertical distance between the pleural and peritoneal layer at both TLC and
functional residual capacity (FRC) (Figure 1B). This was done in the zone of apposition, which is defined as the chest
wall area where the abdominal contents reach the lower ribcage. In a standardized manner, we first visualized the
diaphragm with the 10 MHz probe positioned in the posterior axillary line between the eighth and tenth intercostal
space. Thus, the diaphragm can be easily visualized by its characteristic three layers (pleural and peritoneal layer as
echogenic outer borders; Figure 1C). During inspiration, the diaphragm contracts and gets thicker, and on expiration
it relaxes getting thinner again (Figure 1C,D). Diaphragm thickness was defined as the distance from the inner part
of the pleural layer to the inner part of the peritoneal layer, measured at its thickest portion adjacent to the lung.
Diaphragm thickening ratio (DTR) was calculated as thickness at TLC divided by thickness at FRC.

Statistical analysis
All analyses were performed using Sigma Plot™ software (Version 13.0, Systat Software Ltd, Erkrath, Germany). Be-
fore analysis, data distribution was tested using the Kolmogorov–Smirnov test. Results are expressed as mean and
standard deviation or median and interquartile ranges for continuous variables with normal or skewed distribution,
respectively, and as percentages for categorical data. Comparison of continuous variables between groups was done
using independent t test or Mann–Whitney U test, as appropriate, while categorical data were compared using the
Chi-Square test, with Fisher’s exact test, as appropriate. Pearson product moment correlation was used to explore
the relationship between continuous variables: strength of correlation was classified as weak (0.20–0.38), moderate
(0.39–0.58), strong (0.58–0.78) or very strong (0.79–1.00). Determinants of exercise intolerance were evaluated using
univariate and multivariate regression analyses forcing age and gender into the equation with 6-min walk distance
(6MWD) as the dependent variable. Based on pilot data and assuming a two-sided significance level of 5% (α) and
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Table 1 Demographic and clinical characteristics of the study population at baseline

Patients with precapillary PH (n=43) Healthy volunteers (n=43)

Male, n (%) 13 (30) 13 (30)

Age, years 57.8 +− 17.1 53.5 +− 12.6

BMI, kg/m2 27.6 +− 6.7 28.9 +− 7.8

BSA, m2 2.0 +− 0.2 2.0 +− 0.2

NYHA class, n (%)

I 1 (2) -

II 16 (37) -

III 25 (58) -

IV 1 (2) -

Systolic PAP, mmHg 51 +− 7 -

RVEF, % 50.1 +− 12.3 -

Impaired RVEF, n (%) 27 (63) -

NT-proBNP, pg/ml 860 (200–1159) <50

Capillary CO2, mmHg 33.4 +− 4.3 -

Lung function data

FVC, L 2.62 +− 1.0 4.5 +− 1.11

FVC, % predicted 76.0 +− 18.2 106 +− 151

FEV1/VC, % 77 +− 10 81 +− 8

Medication, n (%)

PDE 5-I 20 (49) -

Dir.cGMP Stim 5 (12) -

ERA 25 (61) -

PCA 6 (15) -

Values are mean +− standard deviation, median (interquartile range) or number of patients (%). Abbreviations: BSA, body surface area;
Capillary CO2, capillary carbon dioxide level; Dir.cGMP Stim, direct cyclic guanosine monophosphate stimulator; ERA, endothelin receptor
antagonist; FEV1, forced expiratory volume after 1 s; FVC, forced vital capacity; NT-proBNP, amino-terminal pro-brain natriuretic peptide;
NYHA, New York Heart Association; PCA, prostacyclin analog; PDE 5-I, phosphodiesterase 5 inhibitor; RVEF, right ventricular ejection
fraction.
1P<0.05 vs patients with precapillary PH.

80% power (β), a sample size of 35 patients was calculated to be required to detect a 20% reduction in DTR. To allow
for dropouts, the target sample size was 43 patients and the same number of controls. For all analyses, a P-value of
<0.05 was considered statistically significant.

Results
Subjects
Forty-three consecutive patients with precapillary PH (age 58 +− 17 years, 30% male, BMI 28 +− 7 kg/m2) and 43
control subjects matched for gender, age, and BMI (age 54 +− 13 years, 30% male, BMI 29 +− 8 kg/m2) were enrolled
in the study (Table 1). The majority of patients with precapillary PH had PAH (n=36) and the others had CTEPH
(n=7).

PH patients had moderate to severe PH (systolic PAP 51 +− 7 mmHg) as indicated by the fact that most (58%) were
in New York Heart Association (NYHA) functional class III with moderate to severe exercise impairment (based
on 6MWD achieved). Patients with PH also had systolic RV dysfunction (63% of cases) and elevated NT-pro-BNP
levels. Respiratory data revealed a mild but significant reduction in forced vital capacity (FVC) and the presence of
hypocapnia (capillary carbon dioxide) CO2] <35 mmHg in 71%).

Diaphragm ultrasound measures
During TB, the diaphragm moved significantly faster and wider in precapillary PH patients compared with controls
(diaphragm width: 2.5 +− 1.8 vs 1.6 +− 0.5 cm, P<0.01; diaphragm velocity: 1.7 +− 0.9 vs. 1.1 +− 0.4 cm/s, P<0.01).
Excursion velocity during a sniff maneuver (SniffV, 4.5 +− 1.7 vs. 6.8 +− 2.3 cm/s, P<0.01) and the DTR (1.7 +− 0.5 vs.
2.8 +− 0.8, P<0.01) were significantly reduced in precapillary PH patients versus controls (Table 2). Considering the
lower limit of normality (95% confidence interval) obtained in the healthy population (6.11 cm/s for SniffV and 2.49
for DTR), precapillary PH patients showed impaired SniffV and DTR in 91 and 84% of cases, respectively.
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Table 2 Diaphragm ultrasound measures in patients with precapillary PH and healthy volunteers

Patients with precapillary PH (n=43) Healthy volunteers (n=43) P-value

Diaphragm excursion

Amplitude during TB, cm 2.5 +− 1.8 1.6 +− 0.5 0.003

Velocity during TB, cm/s 1.7 +− 0.9 1.1 +− 0.4 <0.001

Amplitude during VS, cm 2.9 +− 1.0 2.6 +− 1.1 0.116

Velocity during VS, cm/s 4.5 +− 1.7 6.8 +− 2.3 <0.001

Amplitude during maximal inspiration,
cm

5.0 +− 1.3 7.8 +− 1.9 <0.001

Diaphragm thickness

FRC, cm 0.23 +− 0.09 0.20 +− 0.07 0.309

TLC, cm 0.37 +− 0.11 0.53 +− 0.19 <0.001

Thickening ratio 1.7 +− 0.5 2.8 +− 0.8 <0.001

Values are mean +− standard deviation.

Table 3 Characteristics of precapillary PH patients dichotomized by 6MWD

Patients with precapillary PH P-value
6MWD <377 m (n=21) 6MWD ≥377 m (n=22)

Age, years 64.5 +− 14.5 51.5 +− 17.1 0.012

Male, n (%) 4 (19) 9 (41) 0.127

BMI, kg/m2 27.04 +− 5.6 28.2 +− 7.7 0.907.

BSA, m2 2.0 +− 0.2 2.0 +− 0.2 0.847

NYHA class, n (%)

I 0 1 (5) 0.690.

II 6 (29) 10 (45) 0.569

III 12 (57) 13 (59) 0.754

IV 1 (5) 0 0.785

Systolic PAP, mmHg 47 +− 7 53 +− 7 0.124

RVEF, % 44.9 +− 12.6 55.1 +− 9.8 0.008

NT-proBNP, ng/l 1000 (557–2689) 450 (109–1000) 0.007

FVC, % predicted 72.6 +− 18.3 81.6 +− 14.9 0.217

Capillary CO2, mmHg 31 +− 4 35 +− 4 0.001

Diaphragm ultrasound

Diaphragm excursion

Amplitude during TB, cm 2.4 +− 2.3 2.5 +− 1.2 0.243

Velocity during TB, cm/s 1.7 +− 0.7 1.7 +− 1.0 0.836

Amplitude during VS, cm 2.8 +− 0.8 3.0 +− 1.1 0.498

Velocity during VS, cm/s 3.4 +− 1.0 5.7 +− 1.5 <0.001

Amplitude during maximal inspiration, cm 4.8 +− 1.3 5.2 +− 1.3 0.308

Diaphragm thickness

FRC, cm 0.26 +− 0.08 0.20 +− 0.08 0.013

Thickening ratio 1.5 +− 0.3 2.0 +− 0.5 0.001

Values are mean +− standard deviation, median (interquartile range) or number of patients (%). Abbreviations: BSA, body surface area;
Capillary CO2, capillary carbon dioxide level; NT-proBNP, N-terminal pro-brain natriuretic peptide; PCA, prostacyclin analog; PDE 5-I,
phosphodiesterase 5 inhibitor. Significant P-values are represented in bold.

Clinical and instrumental characteristics of precapillary PH patients with
exercise intolerance
When dichotomized into two groups based on 6MWD above or below the median, precapillary PH patients with more
pronounced exercise intolerance (6MWD <377 vs. ≥377 m) had worse right ventricular systolic ejection fraction
(RVEF) (45 +− 13 vs. 55 +− 10%, P<0.01), higher levels of NT-pro-BNP (1000 [interquartile ratio (IQR): 557–2689]
vs. 450 [IQR: 109–1000] ng/l, P<0.01) and lower pCO2 values (31 +− 4 vs. 35 +− 4 mmHg, P<0.01). They also showed
worse SniffV (3.4 +− 1.0 vs. 5.7 +− 1.5 cm/s, P<0.01) and worse DTR (1.5 +− 0.3 vs. 2.0 +− 0.6, P<0.01) (Table 3 and
Figure 2). Of note, no significant between-group differences were seen in systolic PAP, FVC, or forced expiratory
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Figure 2. Diaphragm velocity during a VS maneuver (top) and DTR (bottom) in controls (left blue box plot) versus patients

with precapillary PH and less (6WMD ≥377 m) (mid box light red plot) or more (6MWD <377 m) (right dark red box plot)

pronounced exercise intolerance (all P<0.01; see Tables 1 and 2)

volume after 1 s (FEV1). Supplemental Videos S1 and S2 summarize diaphragm ultrasound abnormalities found in a
patient with preserved RV systolic function and in a patient with impaired RV systolic function.

SniffV and DTR were weakly–moderately correlated with RVEF (SniffV: r = 0.34, P=0.03; DTR: r = 0.44, P=0.004)
and pCO2 (SniffV: r = 0.42, P<0.001; DTR: r = 0.39, P<0.001).
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Table 4 Predictors of 6MWD

Univariate analysis Multivariate analysis

Hemodynamic variables

Systolic PAP - -

RVEF r = 0.58; P<0.001 r = 0.47; P=0.001

NT-pro-BNP r = −0.46; P=0.002 r = −0.27; P=0.047

Respiratory variables

Capillary CO2 r = 0.52; P<0.001 -

FVC - -

Diaphragm ultrasound

Amplitude during TB

Velocity during TB - -

Amplitude during VS - -

Velocity during VS r = 0.39; P=0.009 -

Amplitude during maximal inspiration - -

Thickness at FRC - -

Thickening ratio r = 0.36; P=0.017 -

Abbreviations: Capillary CO2, capillary carbon dioxide level; NT-pro-BNP, amino-terminal pro-brain natriuretic peptide.

Figure 3. Correlation between RVEF and distance achieved in 6-min walking test (6MWD) in patients with precapillary PH

Predictors of exercise intolerance
RVEF, NT-pro-BNP, capillary CO2, and both SniffV and DTR predicted 6MWD on univariate analysis (Table 4 and
Figure 2). However, only RVEF and NT-pro-BNP remained independent predictors of 6MWD on multivariate anal-
ysis (Table 4 and Figure 3). Combining RVEF and NT-pro-BNP it was possible to explain 74% of the variability in
6MWD (Table 4).
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Discussion
The present study confirmed that diaphragm impairment is a very common finding in patients with precapillary PH.
Diaphragm dysfunction seems to develop as exercise intolerance progresses. However, the most important new find-
ing of the present study is that inspiratory muscle strength impairment did not independently contribute to exercise
intolerance in precapillary PH, beyond right ventricular systolic dysfunction.

Several factors predicting exercise intolerance in patients with precapillary PH have been found in previous studies
[3–6]. However, these have not often been investigated with multivariate analysis. This is important because many
pathophysiological determinants of exercise intolerance in patients with precapillary PH are likely to be interrelated.
In fact, it is reasonable to assume that long-term increases in PAP and pulmonary vascular resistance would lead to
RV dysfunction with reduced cardiac output, resulting in muscular hypoperfusion and myopathy, eventually causing
hypertrophy and failure [5]. The myopathy might also involve the diaphragm, which has an increased metabolic
demand due to chronic hyperventilation [3].

It is already known that assessment of RV systolic function is superior to invasive measurement of PAP in explaining
exercise intolerance and even providing prognostic discrimination in precapillary PH [15–17]. For this reason it
seems wise to also evaluate RV systolic function whenever testing a novel potential predictor of exercise intolerance
in precapillary PH, such as diaphragm function.

Recently, inspiratory muscle strength has emerged as a new candidate explaining exercise intolerance in PH [8,9].
Indeed, lower values of inspiratory muscle strength as assessed by transdiaphragmatic pressure following magnetic
stimulation of the phrenic nerve roots were shown to relate to exercise intolerance in precapillary PH patients [8]. Di-
aphragm ultrasound has emerged as an alternative, non-invasive, and more practical bedside tool to study inspiratory
muscle function [10].

In the present study we clearly showed that ultrasound assessment of diaphragm function may identify compro-
mised diaphragm strength in patients with precapillary PH. Indeed, there was almost no overlap in SniffV and DTR
values between patients and controls. Only two previous studies investigated the contribution of inspiratory muscle
dysfunction to exercise intolerance in precapillary PH [8,9]. While maximal inspiratory pressure measured through
a mouthpiece did not predict exercise intolerance in patients with precapillary PH, [9] a subsequent study by Kabitz
and coworkers [8] using magnetic phrenic nerve stimulation found that transdiaphragmatic pressure be decreased
by 34% in patients with precapillary PH compared with controls and was related to exercise intolerance.

The magnitude of the reduction in diaphragmatic strength observed in precapillary PH patients in the present
study (35% reduction in VS and 40% reduction in DTR versus healthy controls) and its correlation with exercise
intolerance is close to that reported by Kabitz and coworkers [8] and supports the validity of ultrasound assessment
of inspiratory muscle strength assessment in this clinical scenario. This makes diaphragm ultrasound a promising
diagnostic tool for assessment of diaphragm function in patients with precapillary PH.

In precapillary PH, increased pressure in the pulmonary arteries overloads the RV, eventually causing hypertrophy
and failure [5]. Most measures that predict survival in PH, such as exercise capacity and functional class, have been
related to RV function [5]. In our study, RVEF determined using cardiac MRI (the gold standard) and natriuretic
peptide hormone levels, were shown to be the only independent predictors of exercise intolerance; in fact, RVEF
alone explained almost 50% of the variability in 6MWD. This suggests that RV systolic function is a stronger predictor
of exercise tolerance than the other univariate predictors, such as pCO2 (which reflects baseline hyperventilation),
and diaphragm strength (as reflected by SniffV and DTR, which have previously been reported to correlate with
invasively obtained metrics of inspiratory muscle strength [10]). We hypothesize that RVEF may, on the one hand,
cause hyperventilation through as yet undetermined reflex mechanisms (and thus a decrease in CO2) and is, on the
other hand, also responsible for diaphragmatic impairment through chronic hypoperfusion.

Most of our pathophysiological understanding of diaphragm involvement stems from numerous studies on this
topic in patients with systolic HF [18–21]. However, the impairment in inspiratory muscle strength in precapillary PH
goes far beyond what has been reported in systolic HF (30–40 vs 10%) [22]. The higher degree of hyperventilation, as
reflected by generally more severe hypocapnia in patients with precapillary PH versus HF, might be one explanation
for this discrepancy [23,24]. Hyperventilation places higher demands on the inspiratory muscles, leading to more
pronounced diaphragmatic dysfunction in the long run [23,24].

In light of the findings presented above (see Table 4) it may be speculated that diaphragm dysfunction does not play
an important pathophysiological role in exercise intolerance in patients with precapillary PH. In particular the finding
that robust markers reflecting right ventricular pump function (RVEF) and right ventricular overload (NT-pro-BNP)
are the only independent predictors of 6MWD in the present study speaks out in favor of targeting right ventricu-
lar overload by lowering pulmonary pressure through vasoactive drugs as postulated in current guidelines [1]. This
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speculation would make diaphragm ultrasound appear rather unnecessary in this patient cohort either. However, di-
aphragm dysfunction may still be part of a vicious circle that underlies exercise intolerance in this patient cohort as
detailed above. Therefore, further specifically designed and larger studies that use inspiratory muscle strength train-
ing protocols as a targeted approach are needed to further support the concept that an improvement in diaphragm
function and inspiratory muscle strength helps improve exercise intolerance in this particular patient cohort. Of note,
this has been shown to improve inspiratory muscle strength and functional capacity in 29 patients with PAH lately
[25]. Therein diaphragm ultrasound may not only prove to be a valuable tool in clinical research but also (later on)
potentially a tool that helps further monitor the impact and hence success of inspiratory muscle strength training in
these patients.

In the current study, diaphragm ultrasound assessment was related to a volitional maneuver and is therefore subject
to bias. However, the use of repeated measurements for each variable (mean over three samples) as well as the fact
that the degree of diaphragm dysfunction was comparable with that observed using non-volitional assessment by
magnetic phrenic nerve stimulation appear to support the validity of ultrasound in this setting. Plus, as per guideline
recommendations, right heart catheterization was used to diagnose PH, but only echocardiography was repeated
during follow-up visits, including at study enrollment. Although this may potentially introduce a lack of precision
and exclude some relevant hemodynamic data, this topic has been evaluated in previous studies [5,15,17] and was
not the focus of the current investigations. Likewise, it was not the primary focus of this study to assess and discuss
diaphragm dysfunction in patients with precapillary PH due to chronic lung disease (chronic obstructive pulmonary
disease in particular), as the pathophysiological background of it is likely substantially different from patients with
Nizza class I/IV precapillary hypertension where an obstructive lung function impairment pattern is rarely seen as
evidenced in our patients cohort. However, in order to prove the concept that diaphragm dysfunction as evidenced
by ultrasound criteria does also occur in this patient cohort we identified 11 patients (age 69 +− 10, 6 men, FVC 75
+− 15% predicted, FEV1 40 +− 15% predicted) with COPD in whom we collected diaphragm ultrasound data and in
whom the presence of precapillary class III PH is very likely based upon echocardiographic measures (Pa Sys 45 +− 5
mmHg and simultaneous ascertainment that systolic – as defined as a LVEF above 55% – and diastolic – as defined
as a normal E/A ratio and E/E′ and normal left atrial diameter-function are normal, hence making confounding with
Nizza class II PH due to left heart disease unlikely). In these patients diaphragm abnormalities similar to those seen
in patients with Nizza classes I and IV were found suggesting that diaphragm dysfunction does also occur there.
This was evidenced by significantly lower amplitude during maximal inspiration of 5.4 +− 1.5 cm and a significant
reduction in DTR of 2.2 +− 0.3: both P<0.05 against a control group matched for age, gender, and BMI).

Conclusions
Patients with progressive precapillary PH are characterized by diaphragm dysfunction which may develop in response
to chronic hyperventilation. However, diaphragm dysfunction does not independently predict exercise intolerance
beyond what can be explained by RV systolic function. Additional research is needed to further elucidate the under-
lying pathophysiological mechanisms that lead to diaphragm dysfunction in PH.

Perspectives
• This prospective study was conducted in patients with precapillary PH and age- and sex-matched

controls to evaluate whether diaphragm function, assessed by diaphragm ultrasound, contributes
to exercise intolerance, evaluated by the 6-min walking test, over and above impaired right ven-
tricular pump function, as assessed by CMR imaging.

• The present study confirmed that diaphragm impairment is a very common finding in patients with
precapillary PH. Diaphragm dysfunction seems to develop as exercise intolerance progresses.
However, the most important new finding of the present study is that inspiratory muscle strength
impairment did not independently contribute to exercise intolerance in precapillary PH, beyond
RV systolic dysfunction.

• Patients with progressive precapillary PH are characterized not only be RV systolic dysfunction
but also by diaphragm dysfunction which may develop in response to chronic hyperventilation.
Additional research is needed to further elucidate the underlying pathophysiological mechanisms

© 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).
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that lead to hyperventilation and diaphragm dysfunction in PH, since these alterations are not (yet)
part of a targeted therapy in PH.
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