
sensors

Article

Resource-Constrained Onboard Inference of 3D Object
Detection and Localisation in Point Clouds Targeting
Self-Driving Applications

António Silva 1,† , Duarte Fernandes 1,*,† , Rafael Névoa 1,† , João Monteiro 1 , Paulo Novais 1 , Pedro Girão 2,
Tiago Afonso 2 and Pedro Melo-Pinto 1,3

����������
�������

Citation: Silva, A.; Fernandes, D.;

Névoa, R.; Monteiro, J.; Novais, P.;

Girão, P.; Afonso, T.; Melo-Pinto, P.

Resource-Constrained Onboard

Inference of 3D Object Detection and

Localisation in Point Clouds

Targeting Self-Driving Applications.

Sensors 2021, 21, 7933. https://

doi.org/10.3390/s21237933

Academic Editor: Reza Malekian

Received: 30 October 2021

Accepted: 25 November 2021

Published: 28 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Algoritmi Centre, University of Minho, 4800-058 Guimarães, Portugal; asilva@algoritmi.uminho.pt (A.S.);
rafael.accn@gmail.com (R.N.); joao.monteiro@dei.uminho.pt (J.M.); pjon@di.uminho.pt (P.N.);
pedro.melo@algoritmi.uminho.pt or pmelo@utad.pt (P.M.-P.)

2 Bosch Company, 4700-113 Braga, Portugal; pedro.girao@pt.bosch.com (P.G.);
tiago.afonso@pt.bosch.com (T.A.)

3 Department of Engineering, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
* Correspondence: dduartefernandes@gmail.com
† These authors contributed equally to this work.

Abstract: Research about deep learning applied in object detection tasks in LiDAR data has been
massively widespread in recent years, achieving notable developments, namely in improving pre-
cision and inference speed performances. These improvements have been facilitated by powerful
GPU servers, taking advantage of their capacity to train the networks in reasonable periods and
their parallel architecture that allows for high performance and real-time inference. However, these
features are limited in autonomous driving due to space, power capacity, and inference time con-
straints, and onboard devices are not as powerful as their counterparts used for training. This paper
investigates the use of a deep learning-based method in edge devices for onboard real-time inference
that is power-effective and low in terms of space-constrained demand. A methodology is proposed
for deploying high-end GPU-specific models in edge devices for onboard inference, consisting of a
two-folder flow: study model hyperparameters’ implications in meeting application requirements;
and compression of the network for meeting the board resource limitations. A hybrid FPGA-CPU
board is proposed as an effective onboard inference solution by comparing its performance in the
KITTI dataset with computer performances. The achieved accuracy is comparable to the PC-based
deep learning method with a plus that it is more effective for real-time inference, power limited and
space-constrained purposes.

Keywords: autonomous driving; deep learning methods; LiDAR scanners; 3D object detection;
onboard inference; quantisation methods

1. Introduction

The rapid development of computational power brought by high-end GPUs allowed
for deep learning algorithms’ increased importance in object detection tasks for a wide
variety of domains and, more particularly, in autonomous driving using Light Detection
And Ranging (LiDAR) data. This represents tremendous gains in detection efficiency, both
in terms of accuracy and inference speed. However, deep learning methods are typically
computationally expensive and, therefore, demand high-end server graphics processing
units (GPUs). As deep learning methods go deeper in an attempt to extract more and
more meaningful features, the more computationally expensive they become. The cheap
availability of GPUs allied to their capacity to train networks in reasonable periods by
taking advantage of their parallel architecture results in high performance and real-time
execution of deep learning models. However, their use as edge devices instead of server
machines is still impractical due to a critical requirement: power efficiency. Moreover,

Sensors 2021, 21, 7933. https://doi.org/10.3390/s21237933 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7075-3364
https://orcid.org/0000-0001-9736-5812
https://orcid.org/0000-0001-5576-6175
https://orcid.org/0000-0002-3287-3995
https://orcid.org/0000-0002-3549-0754
https://orcid.org/0000-0001-8257-0143
https://doi.org/10.3390/s21237933
https://doi.org/10.3390/s21237933
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21237933
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21237933?type=check_update&version=4


Sensors 2021, 21, 7933 2 of 24

in a vehicle, onboard computational resources exhibit limited execution time and space.
Although the scientific community widely adopted network optimisation and compression
techniques to cope with these limitations, research studies in applying Convolutional
Neural Network (CNN)-based models in resource-constrained devices [1–3] show that
accuracy degradation is expected to be relevant and can affect the capacity of models
detecting and classifying target classes. However, 3D object detection models addressed in
the literature takes as input point clouds and are known for being more complex. They
have a deeper pipeline and process a larger amount of data. For instance, typically a
point cloud comprises between 100 k–120 k points [4], where each point contains data
related to euclidean distance and signal reflection, i.e., 128 bits for translating each point
information. Although solutions in the literature differ in the design of its pipeline, they
share the same type of backbone, i.e., a stage responsible for extracting features from input
data, which are based on CNN, and therefore due to the amount of data and arithmetic
operations is the most computational demanding stage of the pipeline. This paper focuses
on how computing demand processes such as CNN-based operations can be deployed in
resource-constrained devices, proposing a methodology that covers all the steps needed,
such as hardware and software generation and model optimisation, aiming at providing a
3D object detection model able to offer real-time inference without significant penalties on
the performance metric precision. The contributions featured in this work are as follows:

• Demonstration of how the inference step of Object detection models and process-
ing point clouds can be implemented in an edge device limited in size and power
computation;

• A fine-tuning process and respective implications of deep learning model hyperpa-
rameters in meeting edge device application requirements;

• Application and analysis of different compression methods and their impact on the
model performance;

To the best of our knowledge, this paper is the first attempt to deploy an onboard
point cloud-based 3D detection model, which requires greater computation power and
resources that hybrid FPGA-CPU boards do not typically have, for detecting, localising
and classifying objects in point cloud data.

The paper is organised as follows: Section 2 describes related work regarding systems
for object detection and hardware platforms for their deployment. Section 3 presents
a four-step methodology used to select, train and fine-tune a deep learning model for
deployment in a hardware device. In this section, we present the selected model regarding
its deep learning components, the details about the architecture of the target hardware
device, and the implementation of hardware and software components. The process of
deploying the object detection model to the edge device takes place in Section 3.3, where the
details about the compression and quantisation processes are also given. Section 4 presents
benchmarks of the floating-point and integer versions of the models previously presented
in Section 3.3.2. In Section 4, the comparison of the quantitative test of the floating-point
and integer versions of each model configuration is presented. Finally, Section 5 presents
the conclusions and future work considerations.

2. Related Work

In recent years, we have witnessed the rapid development of deep learning methods.
CNN-based deep learning algorithms have been mainly applied for applications such as
object detection, applications in medical image analysis, and speech recognition [5] but its
applicability is wider, as proven by recent novelty works. For instance, in [6] the authors
proposed an algorithm based in CNN to improve the security performance of IoT-Enabled
Healthcare Networks.

Regarding the object detection in point cloud data, models addressed in the literature
have increasingly improved their detection capabilities. Generally, models in the literature
have been positioned in two categories: 3D and 2D CNN-based approaches, where different



Sensors 2021, 21, 7933 3 of 24

data representation, backbone networks, and multi-scale feature learning techniques might
be adopted [4].

The first methods typically rely on volumetric representation to discretise the point
cloud. Examples include VoxelNet [7], SECOND [8], F-PointNet [9], Point A2-free [10],
Point A2-anchor [10], HVNet [11], and then 3D convolution-based methods are performed
to produce object class prediction, bounding box regression, and orientation classification.
Typically, these methods demand more computationally expensive processes either because
they apply the expensive volumetric representation of the point cloud or the 3D-based
heavy convolutions. Although models have proposed solutions to address this topic by
introducing methodologies or techniques to reduce complexity [12–14], typically, these
methods present lower inference speeds when compared with 2D CNN-based [4]. This
limitation makes it difficult to adopt them for real-time applications.

Models that shift the 3D-based heavy convolutions by 2D convolutions, such as
LaserNet [15], VeloFCN [16], MV3D [17] or PointPillars [18], usually opt by compacting the
information into a 2D projection or organise point clouds in Pillars [18] as a means to reduce
the high computational cost of representing and processing 3D LiDAR data. Although these
methods present lower inference time results and thus facilitate their application for real-
time purposes, they reduce their detection capabilities by introducing an information loss.
It shows that there is always a trade-off between accuracy and inference time results.

Meeting application requirements in driverless vehicle setups is a challenging task,
especially when 3D object detection models applied in point cloud data are only studied in
powerful server nodes, as it is not reasonable to put such a power source and space demand
in a vehicle setup. Thus, dedicated hardware accelerators have gained increased impor-
tance mostly due to their compactness, robustness, flexibility and performance. A study
was conducted to compare different dedicated hardware accelerators for vision-based
navigation applications, namely FPGA, CPU, GPU, and DSP [1]. It shows that FPGAs de-
liver higher performance per watt than micro-controllers or GPUs, which is advantageous
for limited power supply and space-constrained setups. Moreover, GPUs demand more
power supply resources when compared with FPGAs and CPUs in the same conditions of
operation and inference accuracy. However, FPGAs have better performance compared
with CPUs for deep learning purposes. Although FPGAs have gained a substantial space
in the scientific community as latency and energy efficiency inference accelerators for deep
and machine learning applications in real-time inference, it has limited resources compared
with high-end GPUs [1]. These limitations forced the need of reducing the network size by
applying network compression techniques, such as quantisation, pruning, weight reduc-
tion [1], or design methodologies for enhanced architectures in terms of efficiency, such
as loop unrolling, memory configurations and utilisation, strategies for mapping network
into hardware, optimised data flows, and computing unit designs [19]. Given the nature
of some operations found in 3D Object Detection models, such as prepossessing (data
structuring) and post-processing - classification heads and Non-Maximum Supression
operations (nms) for instance, hybrid computing devices comprising FPGAs ans Systems-
on-Chips are preferred for implementing deep learning algorithms for edge devices in
several applications [1,20–22], speed and energy being the main criteria for target board
selection. These works leverage the parallelism nature of these accelerators to deliver
real-time inference for applications.

Qiu et al. proposed the first parameterised and runtime configurable hardware
architecture compatible with several networks triggering the forthcoming commercial
FPGA-based accelerators, such as HADDOC2 [23], DNNWEAVER [3], Hls4ml [2], and Vitis
AI [24]. These frameworks provide solutions to compress networks, reducing the memory
footprint and inference time, offering automatic flows for data quantisation and pruning,
and compilation for mapping a CNN model to the hardware platform. The differences
between the frameworks can be found in the following features: (1) model input format;
(2) deep learning operators; (3) optimisation and compression techniques supported; and
(4) supported hardware devices.



Sensors 2021, 21, 7933 4 of 24

(1) Onto model input format support, both Hls4ml [2], and Vitis AI supports a wide
variety of higher-level, familiar deep learning frameworks such as Keras, TensorFlow,
Caffe and Pytorch. On the other hand, DNNWEAVER [3], and HADDOC2 [23]
support fewer off-the-shelf deep learning frameworks by only supporting Caffe and
Tensorflow frameworks, respectively.

(2) All frameworks provide automatic workflows for mapping deep learning model
operators. HADDOC2 use direct hardware mapping (DHM) for implementing Caffe
deep learning approaches onto FPGAs. Deep learning entities are associated with
private resources to maximise parallelism and neurons in a layer mapped on the target
device to take interneuron parallelism. DNNWEAVER takes deep learning models
coded in Tensorflow and maps them to a macro dataflow instruction set architecture
(ISA). For this purpose, they use a translator component for converting deep learning
specifications to their macro dataflow ISA. In Hls4ml, an automatic workflow is
used [25] to represent deep learning operators and convert deep learning models.
Then, the converted model is deployed into the FPGA firmware. Also, Vitis AI uses
automatic workflows to convert customised deep learning tasks or complete models
to run on an accelerator placed on the FPGA fabric called Deep Learning Processing
Unit (DPU). DPUs are scalable to fit various Xilinx platforms and are customisable to
meet performance application-specific needs.

(3) Optimisation and compression techniques are also supported by projects described
herein to achieve high-performance inference times without sacrificing too much
accuracy. HADDOC2 uses fixed-point numerical representations to describe CNNs
variables and multiplications with logic elements to optimise models. DNNWEAVER
compiler uses an optimisation algorithm that tiles, schedules, and batches deep learn-
ing operators to maximise data reuse and optimise target FPGA memory and other
resources. In Hls4ml, the deep learning model optimisation is made by reusing the re-
sources of the inference operation and using compression techniques such as pruning
and quantisation in binary and ternary precision. Vitis AI enables the optimisation of
models through AI Quantiser and AI Optimiser. AI Quantiser supports pruned and
unpruned model quantisation, calibration, and fine-tuning, while AI optimiser aims at
pruning redundant connections in neural networks and reduces the overall required
operations. Moreover, the Vitis AI framework allows manipulating the DPU engine
to meet the deep learning model resource requirements and model compression to
reduce model complexity.

(4) The compiled model in HADDOC2 can be output to any FPGA device with tools
supporting VHDL 93. DNNWEAVER model result is a synthesisable accelerator that
matches deep learning model needs and, at the same time, provides performance and
efficiency gains for any target FPGA. Hls4ml framework deploys the converted deep
learning model onto any target FPGA device. Adopting the previously mentioned
engines requires the customisation of the hardware design regarding the network
and application, hampering its application in real-world applications. In this context,
the Viti Ai proposed and hardware IP Xilinx Deep Learning Process Unit (DPU) [26]
that can be easily adapted for the most well-known applications for several purposes,
for instance, 2D or 3D object detection, segmentation, etc. providing support for a wide
range of hardware platforms, such as Alveo cards, Ultra scales FPGA, and embedded
platforms, while providing APIs for easily scheduling jogs for DPUs while promotes
an efficient interaction processing system (PS) and a Programmable Logic (PL) unit,
both depicted in Figure 1. Moreover, it also supports various frameworks for deep
learning (Caffe, Tensorflow and Pytorch) and their basic functions.



Sensors 2021, 21, 7933 5 of 24

Figure 1. Traditional architecture of hybrid FPGA-CPU based inference solutions [1].

PS side refers to the CPU, typically responsible for the pre- (e.g., data cropping,
data transformations, and others) and post-processing (multi-head stage for location,
classification and bounding box regression, and others) tasks of the deep learning pipelines
and task scheduling; and external memory (e.d. DRAM), where input data, bias, weights
and PL instructions are stored. The PL side refers to the FPGA chip comprising the
processing elements (PE) for executing convolution-based arithmetic operations of the
most complex operations of the pipeline, i.e., convolutions and fully-connected layers;
and internal memory, such as BRAMs for holding data from activation layers as well
filter weights.

3. Methodology

To deploy the deep-learning-based model in a hardware device, we used the four-step
methodology depicted in Figure 2. (1) The model selection was based on the literature
review of existing models for 3D Object Detection, and then compatible frameworks and
corresponding hardware devices that accommodate the selected model were studied.

After this step, the selected model was subjected to a training and evaluation pipeline
(2), where several optimisations were taken to improve accuracy metrics while granting the
inference time requirement. This intense pipeline was performed in a server-side node (Intel
Core i9 with 64 GB RAM and a Quadro RTX 8000 GPU). The proposed workflow follows an
iterative approach, where the model is fine-tuned, and steps of training and evaluation are
repeated whenever required. The evaluation and comparison process is conducted using
KITTI benchmarks on the validation set in the before-mentioned server node. In conclusion,
this workflow ensures that our model meets the application requirements and achieves the
best possible accuracy. From this process, a set of candidate network configurations are
selected for the next step.

Once the workflow of step (2) is completed, a quantisation and compression phase
(3) is carried out, where the models obtained in the previous step are optimised and
compressed. In this phase, the performance of the optimised and compressed version of
the 3D object detection model is analysed with regard to accuracy degradation and speed
improvement. The model compilation phase only occurs when an optimal balance between
the metrics is achieved; otherwise, the workflow restarts at stage (2).

After the model compilation, adjustments and transformations are performed to pre-
pare the models for respective deployment in the hardware devices (4). Next, the inference
is performed in the KITTI validation set to evaluate the model’s accuracy and validate
the inference time metric. The model’s accuracy evaluation provides insights about the
accuracy degradation regarding the quantisation and compression phase, while the valida-



Sensors 2021, 21, 7933 6 of 24

tion of the inference time allows granting the onboard inference time lower than 100 ms
for meeting application requirements. Thus, steps (2) and (3) can be repeated to ensure
satisfactory accuracy performance while respecting inference time requirements. The fol-
lowing section provides details about the selected deep learning model’s architecture and
the parameters used in the fine-tuning process.

Figure 2. Methodology used for the deployment of the object detection model in the hardware device.

3.1. Object Detection Model

We opted for the model PointPillars [18] for deployment in the hardware device
since this model relies on 2D dense convolutions to the detriment of more complex 3D
convolution-based features extraction networks and achieves high-quality detection with
low inference time. As reviewed in [4], this model ensures an optimal trade-off between
accuracy and inference time. As depicted in Figure 3, it consists of three main components:
(1) Pillar Feature Network, (2) PointPillars Scatter and (3) Detection Head.

The first component, (1) Pillar Feature Network, the local feature extractor, receives
as input a set of pillars and encodes a set of features that are (2) scattered back to a 2D
pseudo-image.

Then, the 2D Backbone extracts features from this image-like representation that
are used by the (3) Detection Head, which in turn performs a set of 1 × 1 convolutions
to predict object class and bounding box offsets and direction. This 1 × 1 convolution
replaces the original PointPillars Single Shot Detection Head. In this work, the backbone is
represented as a set of blocks BLC, in the form blc1, blc2, . . . , blcm, where m ≥ 1. Each block
blcj ∈ BLC, j ≤ m, is represented by (n, F, U, S). The element n represents the number of
convolutional layers in BLCj. The set of convolutional layers C in BLCj is described as a
set c1, c2, c3 . . . cn, where n ≥ 1. F represents the number of filters of each ci ∈ C, i ≤ n, U is
the number of upsample filters of ci. All upsample filters are the same, and their respective
outputs are concatenated. S denotes the stride in c1. If S > 1 we have a downsampled
convolutional layer (c1), represented in Figure 3 as a light blue box. This layer is followed
by several convolutional layers (ci, such that i > 1), represented in Figure 3 as dark blue
boxes. After each convolutional layer, BatchNorm and ReLU layers are applied. Finally,
a set of 1× 1 convolutions C1x = c1x1, c1x2, . . . , c1xk, where k = 3, is applied. Our baseline
network for representing each block is depicted in Figure 3, where we use three blocks,
and each block is represented as follows:



Sensors 2021, 21, 7933 7 of 24

• blc1 = (3, 64, 128, 2);
• blc2 = (5, 128, 128, 2);
• blc3 = (5, 128, 128, 2).

Figure 3. Object Detection Network pipeline.

3.1.1. Network Training and Fine-Tuning

All models were trained on the KITTI dataset and evaluated on the KITTI benchmarks
for 3D object detection. We used two methodologies for the number of training epochs.
In one methodology, used by [8], models are trained for 160 epochs, and in another
for 300 epochs. The initial learning rate, exponential decay factor and the decay epoch
methodology remain the same as referred in [8]. Also, the same values for decay weight,
beta1 and beta2, were used. All detection results are measured using the official KITTI
evaluation detection metrics called average precision (AP) for a bird’s eye view (BEV), 3D
and 2D perspective. The training dataset was split using the approach adopted in [17],
which consists in splitting the provided 7481 training examples into a training set of 3712
samples and an evaluation set of 3769 samples. Thus, the benchmarks provided here are
based on the evaluation set only.

For all experiments, we selected three categories - car, pedestrian and cyclist as our
target classes. The model detailed in [18] generates two separate networks, one for predict-
ing cars and another for pedestrians and cyclists, which can have a high computational
cost, especially when running it in the edge device (few resources need to cope with two
parallel models). Another problem is granting that both models process the point cloud
and generate output bounding boxes simultaneously or within a short time difference and
in less than 100 ms. Thus, we train these three instances in a one-single network.

For the fine-tuning process, a random search methodology was employed to search
for the best hyper-parameter that ensures a better balance between accuracy and inference
time. Next, We will describe the hyper-parameters used for the fine-tuning process. The re-
sulting set of experiments and respective network configurations are then summarised in
Section 3.1.2.

Detection Head Stride and Filters. Typically, cyclist and pedestrian detection are the
more difficult task in 3D object detection using the KITTI dataset, since these instances have
fewer points to describe their shape. Moreover, using large strides results in fewer pixels
being analysed, which makes detection even more difficult. For this purpose, we optimised
Detection Head block strides (S), filters (F) and upsampling filters (U) for better capturing
of point cloud features for these classes. The idea herein is to find the most appropriate
balance between these parameters and, at the same time, granting the onboard inference
time requirement. As such, we used four Detection Head configurations as depicted in
Table 1. For all configurations, stride one in the first block (blc1) was used for capturing



Sensors 2021, 21, 7933 8 of 24

more features. Although it generates a higher feature map, it increases the memory usage
and consequently the inference time. Thus, to ensure the inference time requirement, we
chose a lighter version of Detection Head, where a small number of downsampling and
upsampling filters are used. The other two versions keep the same stride for the first block
while increasing the number of upsampling and downsampling filters.

Table 1. Detection Head filters and upsample filters configurations.

BLC Lighter Intermediate Baseline Higher
Number (LDH) (IDH) (BDH) (HDH)

F
blc1 32 32 64 128
blc2 32 64 128 128
blc3 64 128 256 256

U
blc1 64 64 128 256
blc2 64 64 128 256
blc3 64 64 128 256

The number of Sampling Instances. The strategy followed here was to search an
optimal number of sampling instances. These classes are randomly selected and placed
into the current point cloud used in the training stage. Our focus herein is to soften the
KITTI dataset imbalance issue. In our experiments, we use the original configuration
as mentioned in Section 3.1, and three experiments were conducted as demonstrated in
Table 2.

Table 2. Number of sampling instances (SI) per class.

SI Configuration Car Pedestrian Cyclist

SI1 15 6 8
SI2 15 15 15
SI3 15 25 25

Point Cloud Range. We receive an unordered set of points PC = {p1, p2, p3 · · · pn},
where n ≥ 0 and each point p is represented as (px, py, pz, pr), where px, py and pz corre-
spond to coordinates in the three-dimension cartesian axis and pr is the reflectance value
provided by the LiDAR sensor. A point cloud range PCR is a tuple (L, H, W), where L
consists of (xmin, xmax), H consists of (ymin, ymax), and W consists of (zmin, zmax). We denote
a point cloud subset with respect to PCR as PCR = {pi : pi ∈ PC, xmin ≤ px

i ≤ xmax, ymin ≤
py

i ≤ ymax, zmin ≤ pz
i ≤ zmax}. Point cloud range directly affects the model detection range

and thus limits its detection range. In our research, we conducted a study to represent the
location of ground truth objects for all frames in the KITTI dataset frame. As discussed
in Section 4 for example, in cars, it is possible to verify in terms of depth information that
most ground truth instances are between the 0 and 70 m, and after 70 m from the LiDAR
sensor centre, the number of instances drastically decreases. This can be explained by the
fact that after this range, the number of points to describe objects shape is very few, making
the task of detecting objects difficult. Thus, this experiment aims to find the optimal point
cloud range where the detection range is not compromised. The point cloud ranges are
depicted in Table 3.

Table 3. The different point cloud ranges (PCR) configurations used in fine-tuning.

PCR Configuration Xmin Xmax Ymin Ymax Zmin Zmax

PCR1 0 69.12 −39.68 39.68 −3 1
PCR2 0 70 −40 40 −2.5 1
PCR3 0 52.8 −32 32 −3 1
PCR4 0 47.36 −19.84 19.84 −2.5 0.5



Sensors 2021, 21, 7933 9 of 24

Pillar size. The object detection model receives the points in PCR and discretises
them in the X-Y axis thus creating a set of pillars {Pl1, Pl2, Pl3 · · · Pln}, where where n ≥ 0.
Each Pl has a fixed size in PCR and it is represented by a tuple SPL = (l, h), where l is
the length of the pillar along the x axis and h is the height of the pillar along the y axis.
The Pillar size has a direct impact on model accuracy and inference time. Increasing the
Pillar size can result in too much data having to be encoded and consequently randomly
sampled, which leads to information loss (maximum number of points per Pillar is set for
computational saving purposes as referred in Section 3.1). On the other hand, reducing the
Pillar size can increase the number of non-empty Pillars, increasing memory usage and,
consequently, inference time. In our fine-tuning process, three Pillar size configurations
were used, as shown in Table 4.

Table 4. Pillar size (SPL) configurations used in fine-tuning.

SPL Configuration SPLlength SPLheight

SPL16 0.16 0.16
SPL25 0.25 0.25
SPL5 0.05 0.05

Number of Pillars. The maximum number of Pillars is defined to explore the KITTI
dataset sparsity problem, since most Pillars will be empty. Using a large number of Pillars
can result in most of them being filled with zeros (to create a dense tensor as mentioned
in [18]), making it inefficient for inference time purposes. Based on the distribution of the
number of points per Pillar in the KITTI dataset, a max number of points is also defined.
Table 5 shows the max number of points per pillar configuration used in our experiments.

Table 5. Total number of Pillars used in fine-tuning.

P Configuration Total Number of Pillars Max Number of Points Per Pillar

P12K 12 K 100
P30K 30 K 5

3.1.2. Performance Evaluation and Comparison

This section reports the set of experiments which results from the random search
methodology used to achieve a better trade-off between accuracy and inference time
performance metrics. The experiments and corresponding network configurations are
depicted in Table 6. PointPillars settings and their results are also provided to understand
the impact of producing a model optimised to produce three-class output rather than
separating it into two distinct networks (one for cars and another for pedestrians and
cyclists).

Table 6. The set of experiments conducted and respective network configurations.

Experiments Detection Head
Config. PCR Config. SI Config. No. Output

Classes SPL Config. P Config. No. Epochs

1 LDH PCR1 SI1 3 SPL16 P12K 160
2 BDH PCR1 SI1 3 SPL16 P12K 160
3 IDH PCR1 SI1 3 SPL16 P12K 160
4 HDH PCR1 SI1 3 SPL16 P12K 160
5 BDH PCR1 SI2 3 SPL16 P12K 160
6 IDH PCR1 SI3 3 SPL16 P12K 160
7 BDH PCR1 SI2 3 SPL16 P12K 300
8 BDH PCR2 SI1 3 SPL25 P12K 160
9 BDH PCR3 SI1 3 SPL5 P30K 160
10 BDH PCR1 SI2 3 SPL16 P12K 300
11 IDH PCR1 SI2 3 SPL16 P12K 300

PointPillars
(Car)

BDH
(stride 2 in blc1) PCR1 SI1 1 SPL16 P12K 160

PointPillars
(Pedestrian & Cyclist) BDH PCR4 SI1 2 SPL16 P12K 160



Sensors 2021, 21, 7933 10 of 24

The following Tables 7–9 provide the results of experiments of Table 6 in terms of
AP for three difficulty levels (Easy, Moderate and Hard) and different Intersection over
Union (IOU) thresholds, according to KITTI benchmarks. For cars, the IOU is 70%, while
for pedestrians and cyclists, it is a required IOU of 50%.

Table 7. Results in validation set for BEV detection metric.

Model/Experiment
Car Cyclist Pedestrian

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Experiment 1 90.15 82.78 82.7 78.41 63.86 59.53 57.18 52.08 47.07
Experiment 2 89.8 87.3 84.95 82.98 67.62 63.48 65.11 59.94 54.97
Experiment 3 89.71 87.27 85.11 82.28 64.81 60.54 61.01 55.28 50.13
Experiment 4 89.46 86.70 85.26 85.09 68.08 63.93 63.11 58.05 53.88
Experiment 5 89.23 86.52 84.49 69.13 53.47 49.57 65.29 58.85 53.05
Experiment 6 89.09 86.22 82.29 83.01 68.06 64.46 63.69 57.00 52.59
Experiment 7 89.94 87.26 85.56 82.85 66.85 62.60 62.93 57.13 53.11
Experiment 8 90.02 87.23 83.22 82.63 66.85 62.51 62.24 56.78 52.76
Experiment 9 89.80 76.69 68.30 78.70 59.36 58.16 66.75 59.63 52.55
Experiment 10 89.93 87.18 84.2 85.85 67.15 63.88 62.74 57.12 52.08
Experiment 11 90.02 87.65 85.83 83.25 66.85 62.25 59.83 54.37 50.30

PointPillars 89.74 86.05 81.65 82.47 62.79 59.52 68.23 63.58 59.83

Table 8. Results in validation set for 3D Bounding Box detection metric.

Model/Experiment
Car Cyclist Pedestrian

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Experiment 1 83.06 71.26 67.38 77.31 60.07 57.11 50.03 44.86 40.07
Experiment 2 85.62 76.41 71.98 79.54 64.28 60.87 57.04 52.73 47.88
Experiment 3 84.83 75.42 70.60 80.89 62.88 59.10 53.13 48.03 43.35
Experiment 4 84.47 76.51 73.28 83.36 64.68 61.41 54.81 49.71 45.6
Experiment 5 76.37 65.94 65.06 47.47 26.09 24.68 51.35 46.39 41.26
Experiment 6 80.25 73.66 70.13 80.34 63.69 60.25 56.28 50.96 46.36
Experiment 7 81.89 75.65 71.06 81.71 62.45 59.71 55.11 49.22 45.28
Experiment 8 81.35 74.88 69.28 79.08 62.43 59.45 51.05 46.45 42.94
Experiment 9 84.33 66.49 59.73 76.76 57.58 53.83 51.13 48.43 43.05
Experiment 10 87.12 77.04 74.33 84.47 63.86 61.73 55.65 50.42 45.81
Experiment 11 85.22 75.49 70.64 80.55 63.07 59.31 52.70 47.19 42.72

PointPillars 83.58 74.15 68.76 80.61 60.95 56.94 62.3 57.53 52.51

Table 9. Results in validation set for AOS detection metric.

Model/Experiment
Car Cyclist Pedestrian

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Experiment 1 90.25 86.14 80.96 75.28 61.32 57.87 30.8 28.55 26.54
Experiment 2 90.59 88.44 86.62 84.57 70.33 68.1 48.42 46.03 42.65
Experiment 3 90.29 87.91 85.87 79.29 62.86 59.64 33.07 30.9 28.94
Experiment 4 90.37 88.38 87.2 86.03 68.26 64.9 46.84 44.31 41.82
Experiment 5 89.72 81.09 80.61 51.93 29.7 28.15 35.95 34.01 31.46
Experiment 6 90.17 87.90 85.99 83.78 71.32 68.74 47.44 43.68 40.86
Experiment 7 90.38 87.81 86.23 82.21 65.31 62.38 54.07 50.97 47.98
Experiment 8 90.51 88.31 86.17 83.6 68.12 64.55 42.18 39.42 36.87
Experiment 9 90.16 79.03 68.88 78.17 58.55 57.83 40.34 37.9 36.42
Experiment 10 90.39 88.64 86.9 85.85 66.78 64.53 54.31 50.84 47.7
Experiment 11 90.46 88.20 85.99 83.37 67.19 63.76 46.85 44.32 41.66

PointPillars 90.51 88.2 86.01 82.23 62.48 59.28 34.27 33.2 31.95

As demonstrated in the aforementioned results, there is a cost in terms of AP for
three-class trained models compared with PointPillars-separated networks (a standard
literature practice on KITTI benchmarks). During training, gradients are affected by all
those instances, which leads our models to lose the specialisation for prediction. These costs
are more evident when analysing the inference times (results in Table 10) since, in general,
experiments perform worst in this metric compared with PointPillars. The stride one in the
first RPN block and the substantial increase in the number of generated anchors during
the RPN detection phase can explain this difference. While the point cloud range in our
networks is the same across all instances, PointPillars generates anchors in a shorter range



Sensors 2021, 21, 7933 11 of 24

for pedestrian and cyclist classes, which substantially reduces the number of generated
anchors. Moreover, placing stride one in the first RPN block results in a higher feature
map and consequently a decrease in the model inference speed. An example of this is the
network of experiment 2, which improves the AP results compared with PointPillars by
increasing the number of filters and upsample filters and applying stride 1 to the first RPN
block, but at the cost of increasing inference time.

Table 10. Inference time metric benchmark results.

Model/Experiment Total (ms) ≈ Speed (Hz) ≈

Experiment 1 75.543 13.237
Experiment 2 94.488 10.583
Experiment 3 83.162 12.025
Experiment 4 127.666 7.833
Experiment 5 88.31 11.324
Experiment 6 82.063 12.186
Experiment 7 89.905 11.123
Experiment 8 33.453 29.893
Experiment 9 499.908 2.000

Experiment 10 104.1 9.606
Experiment 11 79.687 12.549

PointPillars
(Car) 23.294 42.929

PoinPillars
(Pedestrian & Cyclist) 27.48 36.390

To solve this limitation, we moved towards our efforts to change the training procedure
by increasing the number of sampling instances and the number of training epochs. Just
increasing the number of sampling examples brought improvements, especially for rare
classes such as pedestrians and cyclists. The results were quite prominent by combining
them with an increased number of training epochs (experiment 7). Although this is true,
experiment 6, where we use the SI configuration with the highest number of sample
instances while maintaining 160 training epochs, demonstrates no practical improvements
in terms of AP compared with the network of experiment 5.

Also, we explore different point cloud configurations by changing the Pillar sizes,
Point Cloud ranges, and the total number of Pillars. As expected, the results for SPL25 were
worse, while SPL16 and SPL5 pillar sizes present better results, but they are very similar.
However, SPL5 implicates more memory resources since more Pillars are generated. In the
SPL16 configuration, the point cloud from an HDL-64E (sensor used in KITTI) generates
4 k–9 k non-empty pillars, and SPL5 generates even more, which drastically affects inference
time (more Pillars need to be filled with zeros). On the other hand, increasing the pillar
size too much, such as SPL25, leads more Pillars to hold too much data (max number of
points of 100 is defined per Pillar) to fit the defined PointPillars tensor, as mentioned in
Section 3.1. Consequently, the data is randomly sampled to cope with the max number of
points, which leads to information loss.

Although the results of the PointPillars separated networks seem promising in terms
of the trade-off between accuracy and inference speed, as mentioned before, this literature
standard practice is impractical for onboard hardware device inference. Thus models herein
were produced to cope with this limitation. After analysing the experiments performed,
we selected the networks of experiments 1, 7, and 11 as candidates for the next phase.
Generally, these models outperform the PointPillars original networks concerning mAP
but at the cost of increasing the inference time, as shown in Table 10. Although results
of inference time meet the application requirements, these values need to be subject to
in-depth analysis for FPGA onboard inference purposes since these values have a small
margin compared with the reference value (100 ms) and can suffer fluctuations during
inference. The memory usage, the processes running in the background, and the number
of objects of interest in a LiDAR scene can affect these candidates’ networks’ inference
speed and lead to exceeding the reference value. In the next section, these networks will
be subject to a depth analysis to understand the viability of their deployment in step 4.



Sensors 2021, 21, 7933 12 of 24

The next step of our methodology, called Quantisation and Compression Processes, will be
described in the next section.

3.2. FPGA Inference—Platform Generation

The target device for the implementation of the above described deep learning network
in hardware is the Zynq UltraScale+ MPSoC ZCU102 hardware platform from Xilinx, Inc.
This device comprises several processors on a single chip, such as a real-time processing
unit (RPU), which is a dual-core Cortex-R5F, an application processing unit (APU), which
is a quad-core Arm Cortex-A53, and a graphics processing unit (GPU), which is a Mali-400,
as well as logic blocks on the Programmable Logic (PL)-side of the chip for configuration of
specific user operations. Summing up, the ZCU102 evaluation board supports high-level
operating systems such as Linux, logic programming in the FPGA fabric and provides
several peripherals (e.g., communication peripherals such as Ethernet or USB). All these
features are crucial for the successful onboarding inference of the deep learning model and
the consequent integration of our platform in the vehicle setup described in [27].

Regarding the programmable logic resources features, this platform offers 500 k
logic Cells, 550 k CLB flip-flops, 2520 DSP slices, 24 GTH 16.3 Gb/s transceivers, up to
32.1 MB Block Memory (BRAM) in blocks of size 36 Kb each (a total of 900 BRAMs), 36 MB
UltraRAM, and 8.8 MB Distributed RAM. Moreover, the PL side is equipped with a 512 MB
DDR memory component. Moreover, the Vitis environment provides a programmable
hardware engine optimised for convolutional neural networks, called a Deep Learning
Processing Unit (DPU). This FPGA-based inference accelerator is implemented in the PL
side of the target hardware board device, consisting of FPGA building blocks, such as
multipliers, adders, and accumulators, which consumes part of the PL resources above-
mentioned. This IP is configurable and requires specific instructions from a specialised
instruction set, provided in the form of an xmodel file to implement a vast range of
CNN architectures.

The DPU engine supports several deep learning operations, such as convolutions,
pooling, activation functions, concatenation, deconvolutions, and others, and also allows the
customisation of several parameters aiming at optimising resource usage, block performance
in terms of energy consumption and inference time, as further analysed. Such parameters
are DPU architecture (specified the level of parallelism), the number of DPU cores (up to
four DPU cores can be instantiated in a DPU IP), RAM and UltraRAM usage (configures
memory usage, high amount of memory offers higher flexibility in handling intermediate
information, improving performance), and DSP cascade Length can be configured.

For a proper deployment of our deep learning network targeting onboard inference,
we set the methodology depicted in Figure 4 to implement both hardware and software
required components. The methodology flow consists of five main steps: (1) building
hardware design (.xsa and bitstream); (2) generation of the software components for
the target device; (3) integration of both hardware and software components into a single
platform; (4) building a platform project and an SD card image; and (5) adapting, optimising
and compiling our deep learning model for onboard inference and building of an executable
software to run on the target device with support for communications with devices external
to the platform.



Sensors 2021, 21, 7933 13 of 24

Figure 4. Hardware and Software implementation flow for inference.

3.2.1. Hardware Components Implementation

To implement the hardware design of our platform, an IDE from Xilinx called Vivado
was adopted. For the efficient implementation of CNNs, a set of considerations were
identified and followed to integrate this IP in our board correctly. First, direct connections
between PL and PS sides must be provided, then memory locations for input point cloud,
temporary and output data must be defined, and the interrupt connections between PL
and PS sides.

DPU IP was imported and instantiated along with other IPs, as depicted in Figure 5.
These IPs, such as Clock Wizard and Processing System, are instantiated in the PL side that
communicates with the PS side, represented as the IP Zynq UltraScale+ MPSoC, via the
AXI4-based PS-PL interface. The development of the PS side occurs during the phase of
software development/phase 2 of the flow of development, depicted in Figure 5. Due to
the DPU AXI slave interface, the registered address and address range must be assigned to
the DPU IP. We set the minimum memory needed by the DPU to 16 MB. The device driver
and device tree file addresses match those assigned in the previous step (Vivado). Figure 5
depicts the final hardware design of our platform.

After implementing and synthesising the hardware design, a bitstream file is gener-
ated, which can be exported to be used as the base hardware upon which the software is
built in the following phase of the implementation flow, depicted in Figure 4.

In the setup overview showcased in Figure 1, we can see that the input data is obtained
extranaly to the on-board, which might be a LiDAR sensor or a computer publishing point
cloud for a ROS topic through the Ethernet port. The PS software accesses this data via
the ROS node running that subscribed to such a topic and then inputs it to the DPU
during inference.



Sensors 2021, 21, 7933 14 of 24

Figure 5. Hardware Design of DPU connected to the PS side.

3.2.2. Software Components Implementation

During the second step of the Hardware and Software Implementation Flow for In-
ference, designated Software configuration, a Linux image is generated for an AArch64
hardware architecture. Our custom image must incorporate all resources, such as drivers,
applications, and tools required to deploy deep learning networks on DPU. From the
perspective of deep learning inference and external communication, the platform must pro-
vide Vitis AI Runtime (VART), Xilinx Runtime (XRT), ZOCL, and ROS packages. The VART
tool was incorporated as a package in the yoc-to/petalinux flow, as it consists of a pro-
gramming interface providing C++/Python APIs that can be invoked in our executable
software for implementing accelerated AI inference on our hardware platform. This tool
allows the developers to incorporate several functionalities in the executable software to
execute kernels, as is the case of our DPU kernel, with support for multi-threading and
multi-process execution. The most relevant functionalities are as follows: DPU kernel
loading, which refers to tasks such as fetching DPU instructions and network parameters
from the compiled deep learning model (with extension .xmodel that is generated in phase
5 of the implementation flow) into the DPU dedicated memory space; task instantiation
and assignment; and encapsulating the calls to invoke the XRT. The VART runtime resorts
to XRT, which interacts with the driver ZOCL (it also performs FPGA manager integration
in fabric by fetching .xclbin file containing bitstream) for memory allocation to perform all
the functionalities mentioned above as it offers a software interface between the application
code and the DPU kernel.

Finally, the last package included in the PetaLinux project is the ROS package, which is
incorporated as a set of meta layers to Yocto so that its recipes can be parsed/processed for
AArch64 architecture and generated kernel distribution. This software will be responsible
for enabling and managing the communication with devices external to our platform,
i.e., LiDAR sensor. After including the VART, XRT, ZOCL, and ROS packages, as long as
their software libraries and dependencies are built into our PetaLinux project, the software
components of our platform are generated. This software contains all necessary booting
components (FSBL and PMU firmware and U-Boot), Linux image, Executable and Linkable
Format (ELF) files, and sysroot with VART, Vitis AI Library, XRT, ZOCL, and ROS software.

Once both phases 1 and 2 are complete, i.e., hardware and software components
are generated, phase 3 of our implementation process flow depicted in Figure 4 sets
off. During this step, the Vitis tool provided a specific solution consisting of a single
platform that integrates both HW and SW components. Thus, the Vitis IDE works with the
hardware design created with the Vivado tool (.xsa) and the software components built
using the PetaLinux tool and provides an OpenCL execution model and traditional C/C++
compilation. With the generated platform that supports kernels, we can now add a domain
(our operation system with the collection mentioned above of software drivers and tools,



Sensors 2021, 21, 7933 15 of 24

on which to build the application) and develop applications that use our DPU kernel to
run on the PS side, available to the operating system generated by the PetaLinux tool and
integrated into the platform generated on the previous step. Only a single Linux domain
for the Cortex™-A53 processor cores has been added to our platform.

The output of phase 3 is a board-specific SD card image that is used during Phase 4 of
the block diagram, depicted in Figure 4 to program it to a micro-SD card using software
for flashing OS images to SD cards. Finally, Phase 5 of the implementation flow regards
the tasks of training and adapting/compiling our model for on-boarding inference and
leveraging the VART C++/Python API to call Vitis AI Runtime and Vitis AI Library (where
several pre-and post-processing functions and neural networks algorithms, with full XRT
support, are provided) for building an executable software able to load the DPU kernel
and run the compiled deep learning model file (.xmodel extension file) on our target Xilinx
platform. Phase 5 is covered in detail in the next section.

3.3. Onboard Object Detection Architecture

This section describes the process of deploying our model to the edge device pre-
sented in the previous section, corresponding to Phase 5 from Figure 4. Deploying a
neural network model to a resource-constrained device requires multiple adjustments and
transformations to the model described in Section 3.1. We begin by describing the method-
ology followed to adapt and compile out the network for the targeting device, where we
included the steps of quantisation and compilation. Thereafter, we present the three best
performing model architecture configurations. In the last subsection, the quantitative and
qualitative analysis results of the deployable models are reported, along with a comparative
study between the performance of the floating-point models and their counterpart integer
(quantised) versions.

3.3.1. Quantisation and Compilation Methodology

The complexity of deep learning models is usually accompanied by high compute and
memory bandwidth challenges. Reducing this overhead ultimately leads to an increase
in power efficiency and lower total power requirements. In addition to saving power
during computation, lower bit-width compute also lowers the power needed for memory
bandwidth, reduces model size and the model’s inference time.

To ensure the low-latency and high-throughput requirements of the 3D object detec-
tion task on an edge device, a quantisation method can be applied to reduce the 32-bit
floating-point weights and activations to an 8-bit integer format. Two different quantisa-
tions methods were followed in this article, namely post-training quantisation (PTQ) and
quantisation aware training (QAT), and their results compared in terms of the onboard
inference performance. The PTQ pipeline, which quantises an already trained model before
converting the model to the Xilinx DPU instructions format, is presented in Figure 6. In (1),
PyTorch floating-point model and a PyTorch training checkpoint file are taken as input,
and it is performed prepossessing on it, corresponding to the removal of useless model
nodes and folding of the batch normalisation layers [28], resulting in a lighter and faster
version of the model.

After the preprocessing stage, (2) the weights and activations of the model are quan-
tised to a bit width of 8 (8-bit). To capture activation statistics and improve the accuracy of
the quantised model, the Vitis AI quantiser requires a calibration dataset to perform cali-
bration of the activations. This post-training calibration uses a cross-layer equalisation [29]
which doesn’t require the calibration dataset to be labelled since no backpropagation is
performed and only needs a small set of 100 to 1000 calibration examples to analyse the
distribution of activations.



Sensors 2021, 21, 7933 16 of 24

Figure 6. Model adaptation and optimisation based on post-training quantisation for on-board inference.

With the quantisation and calibration process complete, (3) the quantised model is
transformed into a Xilinx Intermediate Representation (XIR) computational graph (xmodel).
In this application, the model is split into two stages to distribute the computation between
two DPU cores. The two outputted models are the PointNet.xmodel, corresponding to
the Pillar Feature Net stage, and the RPN.xmodel, which includes both the backbone and
detection heads.

The last step before deploying the model to the edge device (4) is to generate a
compiled model based on the specified DPU microarchitecture. As shown in Figure 6,
the compiler takes the output of the quantisation process (both XIR-based graphs) and
a file describing the DPU architecture and generates two XIR-based graphs specifically
for the desired target architecture. At this stage, the model is ready to be deployed (5),
by writing it to the SD card along with the shared object libraries containing the C++
implementation of the pre- and post-processing steps depicted in Figure 4 and pipeline
management definition. On the other hand, the QAT approach applies quantisation during
the training step of a model, simulating the expected low precision behaviour only in the
forward pass of the training process. The quantisation error is thus accumulated in the
loss of the model, forcing the optimiser to reduce the error outcome from the loss function
by adjusting the parameters. This operation results in a set of more robust parameters,
making the quantisation step almost lossless. Therefore, Steps (3), (4) and (5) in Figure 4
are also followed when applying the QAT approach to our model.

3.3.2. Models Architecture

In this section, we selected the final network configuration for deployment on the edge
device, considering that deploying to a resource-constrained environment will have costs
on model performance. The candidate configurations resulting from the phase described
in Section 3.1.1 will be subject to an evaluation to meet application requirements based
on DPU configuration restrictions. The analysis of the DPU configuration selected and
presented in Section 3.2.1 allow us to conclude that the impact on inference time of the
inferior DPU capabilities compared to the reference of a highly paralleled system, such as a
GPU, is expected to be relevant and can lead to exceeding the time requirements of 100 ms
per inference step as further analysed.



Sensors 2021, 21, 7933 17 of 24

In order to reduce the inference time of the model while maintaining the general
structure of the model architecture, a logical step is to lower the number of convolutions
performed in the pipeline of the model proposed in Section 3.2.1. The RPN stage of the
model, presented in Figure 7, is the most computationally complex stage of the pipeline and,
consequently, bears the most considerable toll on processing time. Thus, due to the limited
computation resources of the DPU configuration, we change the first block (blc1) stride to
two while maintaining the number of filters of the convolutional layers in the sequential
blocks and the number of up-sampling filters of the transpose convolutions, according
to Table 1. The resulted RPN configurations are shown below, in Figure 7, followed by a
description of the resulting structure for each configuration in Table 11.

Figure 7. RPN configurations structure overview.

Table 11. The set of network configurations used.

Config. Det. Head
Config.

PCR
Config. SI Config. No. Out.

Class. SPL Config. P Config. No. Epochs

1 BDH PCR1 SI1 3 SPL16 P12K 300
2 IDH PCR1 SI1 3 SPL16 P12K 300
3 LDH PCR1 SI1 3 SPL16 P12K 300

As demonstrated in Table 11, we only used three Detection Head configurations with
stride 2 in blc1 and according with configuration provided in Table 1. Although our HDH
performs better in terms of AP results, its inference speed is impractical for real-time
purposes and thus was discarded to this phase. The first configuration uses our BDH,
where a higher number of filters is used. Configuration two uses our IDH version, where
the number of filters is slightly lower than the HDH configuration. Finally, the third
architecture, the lighter version, is used, namely LDH configuration, where the number of
filters used is smaller when compared to the two versions mentioned before. Given the
higher complexity of architecture one, it is expected to perform better in terms of precision,
but due to its complexity, a penalty on the execution time is to be expected, as showcased
in Table 12. In contrast, from architecture two, a balanced trade-off between inference time
and precision, and finally, configuration three should be the fastest model configuration



Sensors 2021, 21, 7933 18 of 24

at the cost of detection quality. The impact of the changes on the RPN is discussed in the
next section.

4. Results

In this section, the results of the previous steps are presented, comparing the floating-
point and the two resulting integer versions of each configuration of the model presented in
the previous subsection. These quantitative tests are performed using the KITTI Benchmark
dataset. The results provided originate from evaluating the floating-point models and
their pre-compilation quantised versions running on the server and the quantised models
running on the edge device.

Two setups were used to perform model evaluation: server and edge device (Xilinx
UltraScale+ MSoC ZCU102). The AArch64 Linux OS for our edge device was generated
according to the process flow described in the previous section, while the DPU kernel
was built and configured. The server setup used is composed of the following: Intel Core
i9-10900K CPU; 64 GB RAM; Quadro RTX 6000 Graphic card; Ubuntu 18.04.5 LTS.

In Table 10 the performance of the different versions of the model regarding the
configuration and data representation is presented. As can be seen, the time performance
analysis was executed on both systems, extracting data from the floating-point models on
the server and the quantised versions on both the server and the edge device.

Table 12. Inference time metric benchmark results, given in Hz, for floating-point and quantised
models running in different machines.

Configuration Floating-Point (Server) PTQ (Server) PTQ (Edge Device) QAR (Edge Device)

1 21.2 23.5 9.5 9.4
2 23.2 26.1 16.6 16.7
3 28.2 26.0 18.7 18.7

As expected, the more complex configurations perform worse in terms of inference
time. While the impact of the increased number of convolutions of Configuration 1 does
not have a substantial impact on performance when running the model on the server-
side (around 5 ms), due to the resource-constrained environment of the edge device, this
difference increases massively, almost doubling the inference time of Configuration 1 and
failing to meet the inference time project requirement of 100 ms as mentioned before. Both
Configurations 2 and 3 achieve positive results surpassing the requirements by over 60%
in inference speeds.

Tables 13–15 provide a set of results of the qualitative benchmark, containing informa-
tion on the official KITTI evaluation detection metrics. The precision-based quantitative
benchmarks for both the floating-point and quantised models were performed on the
server setup.

From the evaluation results of the floating-point model configurations presented
in these tables, it is clear that using an RPN structure with more convolutional filters
achieves higher quality detection, especially for the smaller classes, such as cyclist and
pedestrian, with a mAP increase reaching 8% for cyclist 3DBBOX in moderate difficulty
when compared to the runner-up configuration. Configuration 1 achieves higher precision
results over the other two configurations at the cost of more computational complexity.

For the AOS metric, this increase in detection performance is also evident, with gains of
up to 6% over Configuration 2, and 11% over Configuration 3. The second-best performing
model is Configuration 2, with a slight increase in precision over the simplest RPN of
configuration 3. Again, this relative improvement is most apparent in the smaller classes
and the 3DBBOX metric, with a 6% increase in hard difficulty for cyclists.



Sensors 2021, 21, 7933 19 of 24

Table 13. Results of the floating-point and quantised models on KITTI BEV detection for classes Car (IoU 0.70), Cyclist (IoU
0.50), and Pedestrian (IoU 0.50)

Config. Version
Car Cyclist Pedestrain

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

1

Float P. 89.64 87.30 79.42 78.44 60.72 55.31 52.98 50.75 44.74

PTQ 89.44 86.62 79.04 73.07 53.81 51.99 49.12 43.46 42.19

QAT 89.76 87.50 79.48 81.32 63.02 56.93 56.93 50.91 44.70

2

Float P. 89.75 87.22 79.35 72.49 53.75 52.14 59.98 53.75 52.14

PTQ 88.82 85.51 77.93 67.14 52.27 47.66 48.91 46.61 41.02

QAT 89.72 86.93 79.07 70.93 58.08 52.65 51.28 45.36 43.39

Optimised QAT 89.72 86.93 79.15 73.97 61.00 56.38 54.22 49.16 46.34

3

Float P. 89.85 86.94 79.24 71.13 51.80 49.85 51.45 45.13 38.74

PTQ 89.18 79.1 78.24 69.65 49.87 44.72 50.27 43.79 43.26

QAT 89.85 86.94 79.24 70.24 52.13 47.61 50.43 44.89 42.49

Table 14. Results of the floating-point and quantised models on KITTI 3D BBOX detection.

Config. Version
Car Cyclist Pedestrain

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

1
Float P. 84.3 74.82 67.74 73.04 60.06 54.66 47.51 42.07 36.22

PTQ 82.11 66.72 65.31 68.43 49.3 45.22 41.32 38.9 33.7

QAT 85.09 75.46 68.19 72.22 55.53 54.52 48.86 46.91 41.05

2

Float P. 83.68 68.24 66.46 71.28 52.26 50.68 46.26 40.34 34.90

PTQ 73.97 64.27 62.31 63.55 46.8 45.13 43.67 38.04 33.65

QAT 78.57 68.14 66.23 69.18 56.41 51.29 46.32 40.89 35.09

Optimised QAT 83.39 73.10 66.28 71.62 56.72 54.19 45.78 43.40 37.75

3
Float P. 77.44 67.36 65.78 74.87 53.00 51.25 44.61 39.36 34.26

PTQ 72.56 62.31 55.49 64.83 47.94 43.05 37.29 32.92 32.3

QAT 77.44 67.36 65.78 74.87 53 51.25 44.61 39.36 34.26

Changing the structure of the RPN for a simpler structure affects its performance, as it
reduces the maximum object distance that the model is capable of detecting, in addition to
localising it, the computed confidence score and the resulting IoU between ground truth
and predicted objects. As depicted in Figure 8, where the location of the coordinates of all
the KITTI dataset’s ground truth and predictions from models are displayed according to
the coordinate frame, configuration 1 detects objects further away from the sensor than the
others. Although it is almost unperceptive in Figure 8, configuration 2 performs slightly
worst than configuration 1, but presents significant improvements over configuration 3
regarding maximum detectable object distance in a point cloud. This trend is also noticed
for output confidence score and computed IoU, with configurations 1 providing higher
values for both parameters (with confidence scores of 0.88, 0.78, 0.70 for car, cyclist and
pedestrian, respectively, while computed IoU are respectively 0.86, 0.78, 0.66) than those of
configuration 2 (confidence score 0.87, 0.74, 0.67, and IoU 0.86, 0.78, 0.65, respectively for
car, cyclist and pedestrian) and configuration 3 (confidence score 0.85, 0.70, 0.66, and IoU
0.85, 0.77, 0.65, respectively). The confidence score parameter and the maximum distance
of a detectable object decrease are more significant for small-size objects, such as cyclists
and pedestrians, showing the loss of ability to learn resources at various scales of less
complex RPN structures, indicating that the effect of the reduction in the number of layers
on each block on the model performance is due to changes on the Shallow block. There
is a significant loss of robustness in detecting small objects or large objects but quite far
from the sensor due to the loss of spatially-rich information encoded during the processing
of such small receptive fields with higher resolution. The operation of deep layers does
not seem to be as strongly affected as it is during the processing of larger receptive fields,



Sensors 2021, 21, 7933 20 of 24

having a lower resolution, so that the required semantic-rich features are required to infer
large objects, such as cars, or objects near to the sensors.

Table 15. Results of the floating-point and quantised models on KITTI AOS detection.

Config. Version
Car Cyclist Pedestrain

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

1
Float P. 90.68 88.29 79.85 76.5 60.21 54.7 32.63 29.08 28.81

PTQ 89.97 86.86 78.76 68.1 51.47 50.15 28.1 26.05 26.17

QAT 90.59 88.51 79.95 78.52 61.37 55.31 34.18 34.06 30.45

2

Float P. 90.48 87.70 79.50 68.44 56.08 50.78 27.35 25.26 22.51

PTQ 89.23 85.7 77.5 66.67 53.08 48.78 24.87 22.12 21.2

QAT 90.49 87.41 79.35 70.49 55.63 54.2 30.16 28 27.47

Optimised QAT 90.50 87.35 86.05 69.90 58.29 54.26 31.45 29.95 29.17

3
Float P. 90.42 87.52 79.38 71.85 54.27 50.7 31.2 28.21 26.23

PTQ 90.24 86.71 78.51 65.51 48.83 46.83 21.45 21.09 17.47

QAT 90.42 87.46 79.4 72.95 55.27 50.7 29.8 27.06 26.55

Figure 8 provides descriptive information about the PointPillars model behaviour.
Although the point cloud range processed in terms of length is set to 0–69.12 m, most of the
models, regardless of the complexity of the RPN, are unable to detect small objects, such as
cyclists and pedestrians, at distances greater than 50 m from the sensor. This limitation is
linked to the model performance and the low resolution of the point cloud, as the number
of points representing objects is quite low. Therefore, we believe that this limitation should
be seen as a restriction for applying the proposed model, and the precision performance
assessment must consider it.

Figure 8. Representation of the location of the KITTI evaluation dataset’s ground truths and models
predictions for all evaluation point clouds on a BEV perspective and according to the camera
coordinate frame.

The results of the evaluation on the quantised model configurations, presented in
Tables 13–15, show that the same trend is still present, with the most complex structure
achieving higher results regardless of the type of adopted quantisation method. Though it
is still clear that Configuration 1 results in higher precision than the other two, the overall



Sensors 2021, 21, 7933 21 of 24

gains are smaller in this PTQ quantised version of the model. It is also important to note the
decay in detection quality resulting from the post-training quantisation process, with scores
dropping around 10%, especially for the 3D bounding box metric. These results show the
precision performance penalty due to reducing the resolution of the model parameters
and input data. Although quantisation is inevitable, its influence on performance can
be mitigated by considering the quantisation penalty on the model training step. QAT
models show significant improvements, resulting in models that notably outperform
their counterpart PTQ models, leading the resulting models to perform at the same level
(sometimes even leads this benchmark) as their floating-point counterpart model, but with
much lower inference times. Thanks to this quantisation process, it was possible to offer
a solution that does need to sacrifice precision in favour of inference time, as the QAT
solutions offer quite similar performance to their counterpart FP models. Figure 9 visually
demonstrates the inference performance of both quantisation approaches, where it is clear
that quantisation post-training reduces the model precision, weakening its capacity to
handle the presence of small objects or objects far from the sensor in point cloud.

As expected, some predefined parameters, such as nms score threshold, strongly
influence the model behaviour. In addition to the decrease in the average value found
in models with less complexity, this value also decreases for quantised models. The best
performing model, i.e., offering an optimal trade-off between precision and inference time,
is selected and tested against different nms score thresholds.

The conducted study allows us to conclude that an nms score threshold of 0.4 enhances
the model performance as showcased in table Tables 13–15. The model called Optimised
QAT follows the same configuration of its counterpart model at the exception of the
updated nms score threshold and the point cloud range.

Figure 9. Example of a KITTI frame inference results for PTQ (left point cloud top view) and Optimised QAR (right image)
configuration 2 model.

Therefore, previous observations were considered for adequately configuring the
Optimised QAT models, namely maximum point cloud range (0–69.12 m for class Car,
and 0–50 for cyclist and pedestrian) for class and nms score threshold (0.4 for all Classes).

Regarding our target platform’s energy consumption and resource usage, the DPU
IP was configured to allow us to achieve an optimal balance between parallelism and
resource usage while keeping the energy consumption low. Therefore, maximum paral-
lelism provided by the target board was selected, i.e., up to 4096 Peak Ops; two cores
adopted (one for each of the models found in the PointPillars pipeline); high usage of
DSP blocks but low utilisation of BRAM blocks. This configuration reduces the number
of digital resources significantly, as just 50% of the total o available BRAM blocks and
DPU blocks are consumed, while Slice LUTs, and CLB registers usages is lower than 30%.



Sensors 2021, 21, 7933 22 of 24

The energy consumption for this DPU configuration is 15.7 W. Decreasing the number
of adopted DPU cores leads to decreased energy consumption and resource usage of 5W
and 30%, respectively, but an inference time penalty of 10 ms was reported. However,
both configurations could be adopted given that the expected inference time is still lower
than the threshold imposed by the application, providing us with the possibility to reduce
inference time performance for reducing energy consumption and release resources that
might be vital for another process also adopted in autonomous vehicles, such as SLAM.

5. Conclusions

Previous works in 3D Object detection for autonomous driving have been focused on
improving the deep learning algorithms on the server-side with the main goal of improving
metric precision without considering the requirements and restrictions of the real-case
applications. Here, processing devices, so-called edge devices, offer much less computation
power and memory resources. This research study focuses on optimising and compiling
3D Object Detection models for hybrid FPGA-CPU boards. It was shown that using the
straightforward deployment of 3D object detection models in such resource-constrained
devices is impractical. Therefore, the baseline model, the PointPillars, is adopted, and the
most computing power demanding stages of its pipeline, i.e., CNN-based operations, as is
the RPN case, were accelerated in hardware while preprocessing and post-processing stages
are performed on the CPU part. The proposed methodology consists of a complete flow,
which is three-fold. Firstly, network performance improvement via network configuration
and hyperparameters optimisation is performed and discussed. Secondly, hardware and
software required to execute Linux applications and DPU-related algorithms with enabled
communications to the external devices, e.g., LiDAR scanners, are adequately configured in
a way that offers an optimal balance between resource usage, processing speed and energy
consumption. Finally, the performance results have been analysed, and required changes
studied and applied. This methodology aimed to achieve an optimal balance between
precision and inference-time at the same time that fulfils the inference time and energy
consumption requirements of the targeted real-case application.

The PointPillars model was selected due to its trade-off between accuracy and infer-
ence time [4], and as the majority of related solutions, most of the computation stage is
CNN-based. Moreover, its inference time margin permitted us to explore a fine-tuning
process to increase accuracy while maintaining project requirements. Herein, we provided
insights into the implication of several parameters in terms of accuracy gains and their
impacts on the model inference time.

In this paper, a Zynq MPSoC device was adopted, and two compression techniques
were applied to adjust the operations to the hardware limitations, namely pruning and
quantisation. The later technique adjusted the arithmetic operations, converting weights,
bias and input data for an 8-bit fixed-point representation. Both approaches drastically
reduced inference speeds, making these complex models surpass the inference time require-
ments by over 60%. However, PTQ quantisation-based models reported scores dropping
by approximately 10% in detecting objects from class cyclists and pedestrians. This per-
formance penalty translated into the inability to detect small objects or any object located
far from the sensor. The QAT approach showed notable performances that rival their
counterpart floating-point model. The followed methodology displayed that the inference
time can be reduced to acceptable values while maintaining notable performances for all
object classes in a resource-constrained device that can easily be assembled in autonomous
driving, with on-chip energy consumption low enough for vehicles and resource utilisation.
At the same time, the performance of the models regarding energy consumption and re-
sources used can be improved at the cost of the inference time, given the current difference
between achieved inference time and threshold (40 ms). It might be helpful when more
algorithms are expected to run on the same hardware device.



Sensors 2021, 21, 7933 23 of 24

Author Contributions: Conceptualization, D.F., A.S. and R.N.; methodology, D.F., R.N. and A.S.;
software, A.S., D.F. and R.N.; validation, D.F., R.N., P.M.-P., P.G., T.A. and J.M.; formal analysis, P.G.,
T.A., A.S., D.F., R.N., P.M.-P., J.M. and P.N.; investigation, D.F., A.S. and R.N.; resources, J.M., P.M.-P.,
P.G., T.A. and P.N.; data curation, A.S. and R.N.; writing—original draft preparation, D.F. and A.S.;
writing—review and editing, D.F., A.S., R.N., J.M. and P.M.-P.; visualization, A.S., D.F., R.N., P.G.
and T.A.; supervision, J.M., P.M.-P., P.G., T.A. and P.N.; project administration, J.M., P.M.-P., P.N., P.G.
and T.A.; funding acquisition, P.G., T.A., J.M. and P.M.-P. All authors have read and agreed to the
published version of the manuscript.

Funding: This work is supported by European Structural and Investment Funds in the FEDER com-
ponent, through the Operational Competitiveness and Internationalization Programme (COMPETE
2020) [Project No. 037902; Funding Reference: POCI-01-0247-FEDER-037902].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cosmas, K.; Kenichi, A. Utilization of FPGA for onboard inference of landmark localization in CNN-Based spacecraft pose

estimation. Aerospace 2020, 7, 159. [CrossRef]
2. Ngadiuba, J.; Loncar, V.; Pierini, M.; Summers, S.; Di Guglielmo, G.; Duarte, J.; Harris, P.; Rankin, D.; Jindariani, S.; Liu, M.; et al.

Compressing deep neural networks on FPGAs to binary and ternary precision with hls4ml. Mach. Learn. Sci. Technol. 2020,
2, 015001. [CrossRef]

3. Sharma, H.; Park, J.; Amaro, E.; Thwaites, B.; Kotha, P.; Gupta, A.; Kim, J.K.; Mishra, A.; Esmaeilzadeh, H. Dnnweaver: From
high-level deep network models to fpga acceleration. In Proceedings of the Workshop on Cognitive Architectures, Taipei, Taiwan,
15–19 October 2016.

4. Fernandes, D.; Silva, A.; Névoa, R.; Simões, C.; Gonzalez, D.; Guevara, M.; Novais, P.; Monteiro, J.; Melo-Pinto, P. Point-cloud
based 3D object detection and classification methods for self-driving applications: A survey and taxonomy. Inf. Fusion 2021,
68, 161–191. [CrossRef]

5. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;
Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021,
8, 53. [CrossRef] [PubMed]

6. Xu, L.; Zhou, X.; Tao, Y.; Liu, L.; Yu, X.; Kumar, N. Intelligent Security Performance Prediction for IoT-Enabled Healthcare
Networks Using Improved CNN. IEEE Trans. Ind. Inform. 2021. [CrossRef]

7. Zhou, Y.; Tuzel, O. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. arXiv 2017, arXiv:cs.CV/1711.06396.
8. Yan, Y.; Mao, Y.; Li, B. Second: Sparsely embedded convolutional detection. Sensors 2018, 18, 3337. [CrossRef] [PubMed]
9. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In Proceedings

of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5099–5108.
10. Shi, S.; Wang, Z.; Shi, J.; Wang, X.; Li, H. From points to parts: 3d object detection from point cloud with part-aware and

part-aggregation network. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 2647–2664. [CrossRef] [PubMed]
11. Ye, M.; Xu, S.; Cao, T. Hvnet: Hybrid voxel network for lidar based 3d object detection. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1631–1640.
12. Graham, B.; van der Maaten, L. Submanifold Sparse Convolutional Networks. Available online: https://arxiv.org/abs/1706.01307

(accessed on 25 November 2021).
13. Graham, B. Sparse 3D Convolutional Neural Networks. Available online: https://arxiv.org/abs/1505.02890 (accessed on 25

November 2021).
14. Qi, C.R.; Liu, W.; Wu, C.; Su, H.; Guibas, L.J. Frustum pointnets for 3d object detection from rgb-d data. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 918–927.
15. Meyer, G.P.; Laddha, A.; Kee, E.; Vallespi-Gonzalez, C.; Wellington, C.K. Lasernet: An efficient probabilistic 3d object detector for

autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach,
CA, USA, 16–17 June 2019; pp. 12677–12686.

16. Li, B.; Zhang, T.; Xia, T. Vehicle detection from 3d lidar using fully convolutional network. arXiv 2016, arXiv:1608.07916.
17. Chen, X.; Ma, H.; Wan, J.; Li, B.; Xia, T. Multi-view 3d object detection network for autonomous driving. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1907–1915.
18. Lang, A.H.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; Beijbom, O. Pointpillars: Fast encoders for object detection from point clouds.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June
2019; pp. 12697–12705.

19. Jo, J.; Kim, S.; Park, I.C. Energy-Efficient Convolution Architecture Based on Rescheduled Dataflow. IEEE Trans. Circuits Syst. I
Regul. Pap. 2018, 65, 4196–4207. [CrossRef]

20. George, A.D.; Wilson, C.M. Onboard Processing with Hybrid and Reconfigurable Computing on Small Satellites. Proc. IEEE
2018, 106, 458–470. [CrossRef]

http://doi.org/10.3390/aerospace7110159
http://dx.doi.org/10.1088/2632-2153/aba042
http://dx.doi.org/10.1016/j.inffus.2020.11.002
http://dx.doi.org/10.1186/s40537-021-00444-8
http://www.ncbi.nlm.nih.gov/pubmed/33816053
http://dx.doi.org/10.1109/TII.2021.3082907
http://dx.doi.org/10.3390/s18103337
http://www.ncbi.nlm.nih.gov/pubmed/30301196
http://dx.doi.org/10.1109/TPAMI.2020.2977026
http://www.ncbi.nlm.nih.gov/pubmed/32142423
 https://arxiv.org/abs/1706.01307
https://arxiv.org/abs/1505.02890
http://dx.doi.org/10.1109/TCSI.2018.2840092
http://dx.doi.org/10.1109/JPROC.2018.2802438


Sensors 2021, 21, 7933 24 of 24

21. Qiu, J.; Wang, J.; Yao, S.; Guo, K.; Li, B.; Zhou, E.; Yu, J.; Tang, T.; Xu, N.; Song, S.; et al. Going Deeper with Embedded
FPGA Platform for Convolutional Neural Network. In Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, Monterey, CA, USA, 21–23 February 2016; pp. 26–35. [CrossRef]

22. Yang, Z.; Yan, L.; Yuan, J. Design and Implementation of Driverless Perceptual System Based on CPU + FPGA. In Proceedings
of the 2020 5th International Conference on Control, Robotics and Cybernetics (CRC), Wuhan, China, 16–18 October 2020;
pp. 261–265. [CrossRef]

23. Abdelouahab, K.; Pelcat, M.; Serot, J.; Bourrasset, C.; Berry, F. Tactics to directly map CNN graphs on embedded FPGAs. IEEE
Embed. Syst. Lett. 2017, 9, 113–116. [CrossRef]

24. Kathail, V. Xilinx Vitis unified software platform. In Proceedings of the 2020 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, Seaside, CA, USA, 23–25 February 2020; pp. 173–174.

25. Duarte, J.; Han, S.; Harris, P.; Jindariani, S.; Kreinar, E.; Kreis, B.; Ngadiuba, J.; Pierini, M.; Rivera, R.; Tran, N.; et al. Fast inference
of deep neural networks in FPGAs for particle physics. J. Instrum. 2018, 13, P07027. [CrossRef]

26. Xilinx. DPUCZDX8G for Zynq UltraScale+ MPSoCs. Product Guide. Xilinx. 2021. Available online: http://aiweb.techfak.uni-
bielefeld.de/content/bworld-robot-control-software/ (accessed on 10 July 2021).

27. Fernandes, D.; Afonso, A.; Girão P.; Gonzalez, D.; Silva A.; Névoa R.; Novais P.; Monteiro J.; Melo-Pinto, P. Real-time 3D Object
Detection and SLAM Fusion in a Low-Cost LiDAR Test Vehicle Setup. Sensors 2021. submitted.

28. Krishnamoorthi, R. Quantizing deep Convolutional Networks for Efficient Inference: A Whitepaper. arXiv 2018,
arXiv:cs.LG/1806.08342.

29. Nagel, M.; van Baalen, M.; Blankevoort, T.; Welling, M. Data-Free Quantization Through Weight Equalization and Bias Correction.
arXiv 2019, arXiv:cs.LG/1906.04721.

http://dx.doi.org/10.1145/2847263.2847265
http://dx.doi.org/10.1109/CRC51253.2020.9253490
http://dx.doi.org/10.1109/LES.2017.2743247
http://dx.doi.org/10.1088/1748-0221/13/07/P07027
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/

	Introduction
	Related Work
	Methodology
	Object Detection Model
	Network Training and Fine-Tuning
	Performance Evaluation and Comparison

	FPGA Inference—Platform Generation
	Hardware Components Implementation 
	Software Components Implementation 

	Onboard Object Detection Architecture
	Quantisation and Compilation Methodology 
	Models Architecture 


	Results
	Conclusions
	References

