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Analysing wideband absorbance 
immittance in normal and ears 
with otitis media with effusion 
using machine learning
Emad M. Grais1,8, Xiaoya Wang2,8, Jie Wang3,4,8, Fei Zhao1*, Wen Jiang5, Yuexin Cai6,7, 
Lifang Zhang3,4, Qingwen Lin2 & Haidi Yang6,7*

Wideband Absorbance Immittance (WAI) has been available for more than a decade, however 
its clinical use still faces the challenges of limited understanding and poor interpretation of WAI 
results. This study aimed to develop Machine Learning (ML) tools to identify the WAI absorbance 
characteristics across different frequency-pressure regions in the normal middle ear and ears 
with otitis media with effusion (OME) to enable diagnosis of middle ear conditions automatically. 
Data analysis included pre-processing of the WAI data, statistical analysis and classification 
model development, and key regions extraction from the 2D frequency-pressure WAI images. The 
experimental results show that ML tools appear to hold great potential for the automated diagnosis 
of middle ear diseases from WAI data. The identified key regions in the WAI provide guidance to 
practitioners to better understand and interpret WAI data and offer the prospect of quick and accurate 
diagnostic decisions.

The human middle ear functions importantly for effective sound transmission by acting as an impedance match-
ing device between the low impedance of air and high impedance of cochlear fluids1. Tympanometry is a use-
ful tool for measurement of acoustic admittance changes in the middle ear system as air pressure varies in the 
external ear canal2. Conventional tympanometry with a single low-frequency, usually 220 or 226 Hz probe tone, 
is used routinely in audiological and otological assessment. Over the past five decades, a large body of research 
evidence has shown that tympanometry is an essential tool in the detection of certain types of middle ear pathol-
ogy in ENT/Audiology clinics2. Technological advances in the assessments of middle ear function have expanded 
the frequency range from single probe tones (226/1000 Hz) to multiple frequency measurements delivered as a 
sweep through a series of frequencies3. This multiple frequency tympanometry (MFT) has been shown to provide 
improved sensitivity and specificity in the detection of some middle ear pathologies, such as otosclerosis and 
ossicular discontinuity4. In recent years a commercialised MFT device that uses Wideband Absorbance Immit-
tance (WAI), also known as Wideband Energy Reflectance (WBER) or Otoreflectance has been developed5. This 
system is designed to assess wideband acoustic transfer function of the middle ear over a wide frequency range 
from 0.25 to 8.0 kHz6. The acoustic absorbance characterises the ratio of absorbed sound energy to incident 
sound energy. A number of studies have shown that measurement of absorbance has several advantages over 
traditional tympanometry5,7. Measurement of WAI is simple, fast, objective, reproducible and non-invasive, 
and because some changes of energy absorbance are associated with certain types of middle ear pathologies, the 
WAI has unique features that provide important diagnostic information in patients with middle ear disorders. 
Keefe et al.8 found that the likelihood-ratio predictors for wideband absorbance at ambient and tympanometric 
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pressure was higher (0.97 to 0.93) than the predictors for conventional 226 Hz tympanometry (0.80 to 0.93) in 
the detection of conductive hearing loss. In addition Keefe and Simon9 showed that the sensitivity for diagnosing 
childhood otitis media with effusion (OME) increased from 27 to 78% when adding WAI measurement to the 
test battery thereby reducing inappropriate diagnosis and costs associated with the condition.

Recent studies have also proven the significant advantages of WAI in providing additional information on 
middle ear function by using a wider frequency range as a function of pressure, e.g., at ambient pressure and peak 
pressure, plotted in two- and three-dimensional graphs6,10,11. The multidimensional graphs obtained from WAI 
enable the clinician to better understand the dynamic characteristics of the middle ear by recognizing specific 
tympanometric patterns associated with middle ear pathologic change. Niemczyk et al.12 investigated WAI pat-
terns in ears with intraoperatively confirmed otosclerosis by analysing resonance frequency, and number of peaks 
with detailed descriptions in terms of height and width. Although the patterns were statistically significantly 
different and provided important diagnostic information in terms of otosclerotic status, this approach appears 
less helpful clinically for the purpose of differential diagnosis as the absorbance patterns overlap with absorb-
ance graphs found in the normal ear condition and other middle ear disorders. For example there is a similar 
characteristic of significantly reduced absorbance in frequencies below 2000 Hz in cases of OME10. Therefore, 
the main challenges clinicians still face are to understand, interpret and use WAI data as an effective and accurate 
diagnostic tool in ENT and Audiology clinics.

In addition, there is little research being undertaken to investigate the use of whole WAI data on energy 
absorbance, within which is embedded substantial information associated with energy transfer function of the 
middle ear, particularly in the high frequency region under various middle ear pressures6,11. A recent study 
by Hougaard et al.11 analysed the wideband energy absorbance (EA) tympanogram from 99 ears in normal 
middle ear conditions. The results revealed a trend of increasing EA in the lower frequencies as a function of 
frequency regardless of ear pressure. EA peaked at around 4.0–5.0 kHz under positive pressures between + 50 
and + 150 daPa, followed by a sharp decrease at higher frequencies. Although this study provided important 3D 
absorbance information in adults with normal hearing and middle ear function, future studies are necessary to 
further understand the potential for WAI in clinical applications.

Machine learning (ML) tools have been used to explore and process different data to extract useful infor-
mation, make predictions and inform decision making13,14. The initial motivation underlying this study was 
to address questions that have arisen from clinical challenges and fill in gaps in the literature, particularly in 
relation to the limited understanding and poor interpretation of WAI results across different pressures in vari-
ous frequency regions. Therefore, we aimed to identify the characteristics of WAI absorbance across different 
frequency-pressure regions in normal middle ear conditions and ears with OME and to develop ML tools to 
automatically diagnose ears as normal or with OME. Initial statistical analysis compared absorbance values at 
different frequency-pressure regions in normal middle ears and middle ears with OME. This was followed by 
an evaluation of the performance of five ML models in classifying the WAI data as being from a normal mid-
dle ear or ear with OME. We also aimed to identify key regions in the WAI data that could guide the clinicians 
in deciding whether the WAI data was from a normal ear or ear with OME. To the best of our knowledge, the 
present study is the first to use ML tools to better understand and interpret WAI results, and provide automated 
diagnosis of ears with OME and thereby facilitate its clinical application.

Materials and methods
Materials.  Wideband absorbance immittance (WAI) data acquisition.  A total of 672 WAI data were col-
lected from patients and volunteers in five hospitals in Beijing, Guangzhou and Xuzhou, China. There were 423 
ears from 242 participants with normal middle ear function (age range 1–68), and 249 ears with OME from 163 
participants (age range 1–73 years). The number of participants with bilateral OME was 86 (52.8%) and with 
unilateral OME was 77 (47.2%). Data from neonates and infants younger than 1 year old were excluded. Poor 
quality WAI measurements with incomplete pressure values were also excluded.

The definition and inclusion criteria for normal middle ear and ears with otitis media with effusion were:

•	 Normal middle ear function: (1) No history of inflammation or disease that has impacted the middle ear, nor 
any recent hearing disability and aural symptoms; (2) Otoscopy: normal tympanic membrane lustre normal, 
no atrophy, scar, retraction or perforation; (3) Tympanometry: normal range of middle ear pressures within 
− 50 to + 50 daPa (adults) or − 100 to + 50 daPa (children). Peak compliance range from 0.3 to 1.4 ml (adults) 
or 0.3 to 0.9 ml (children) (Type A tympanogram).

•	 Otitis media with effusion (OME): (1) OME is defined as fluid of varying amount and viscosity accumulated 
in the middle ear as a result of Eustachian tube dysfunction; (2) Otoscopy: tympanic membrane lustre is dull, 
either with air bubbles or a fluid line or retraction; (3) Tympanometry: abnormality of middle ear function 
measured and diagnosed by conventional tympanometry, showing (a) significant negative middle ear pres-
sure in the presence of normal static compliance (Type C tympanogram), i.e., range of middle ear pressure 
is less than − 50 daPa (adults) or − 100 daPa (children), and range of peak compliance from 0.3 to 1.4 ml 
(adults) or 0.3 to 0.9 ml (children), or (b) no measureable middle ear pressure or static compliance (Type B 
tympanogram), i.e., a flat trace.

Methods.  The work included pre-processing of the WAI data, statistical analysis and ML model develop-
ment, together with further key regions extraction from the 2D frequency-pressure WAI images.

WAI measuring system and data pre‑processing.  A Titan IMP440 (Interacoustics, Denmark) was used to meas-
ure the 3D wideband absorbance. Figure 1a shows an example of a 3D image of Wideband Absorbance Immit-
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tance (WAI) obtained from a participant with normal middle ear function aged 22 years. The figure shows one 
dimension of the WAI to be frequency, the second pressure, and the third absorbance value6. Frequencies varied 
from 226 to 8000  Hz with 1/24-octave frequency-intervals. Pressures varied from − 300 to + 200  daPa, and 
absorbance was between zero and one. Theoretically, higher absorbance indicates a better transfer function of 
the middle ear, whereas lower absorbance means less energy being passed through the middle ear, indicating 
pathological change in the middle ear. Figure 1b shows the absorbance curve at peak pressure across a wide 
frequency range currently used to evaluate middle ear function. Figure 1c shows a 2D image using the domains 
of frequency and pressure corresponding to the WAI data in Fig. 1a. Values of absorbance show as values of 
pixels in the image. There are 107 bins across the frequency axis (X-axis) starting at 226 Hz and rising to 8000 
Hz. Because the pressure axis was unevenly sampled due to artefact rejection of noisy samples, ear canal volume, 
and probe fit11, we resampled the pressure axis between − 300 to + 200 daPa in 10-daPa steps using the Piecewise 
Cubic Hermite Interpolating Polynomial15. As a result, there are 51 pressure values on the Y-axis as shown in 
Fig. 1d. There were a total of 5457 data points, i.e., 107-frequency bins × 51-pressure values in the 2D frequency-
pressure WAI images.

Statistical analysis.  Mean and variance of absorbance at each frequency-pressure region was calculated for 
participants with normal middle ear function and those with OME. A Wilcoxon rank sum test was used to 
determine any significant differences between the normal and OME ears. The level of significance was set at the 
conventional 5% level.

Development of machine learning (ML) models for WAI classification.  Basic ML classifiers were used to pro-
cess the 2D WAI images after interpolating the pressure axis; K-nearest neighbours classifier, support vector 
machines (SVM), and random forest (RF). Deep learning (DL) based classifiers, such as feedforward neural 
networks (FNN) and convolutional neural networks (CNN) were also examined. The ultimate goal of developing 
ML classifiers was to enable the automatic classification of WAI data as being from normal or OME ears.

Extracting the important regions from 2D WAI images.  In clinical practice, as a part of clinical assessment, 
medical images (e.g., X-ray, CT scan and MRI) play an important role to detect and identify the pathological 
changes, and thus facilitate clinical diagnosis. Experienced clinicians are usually aware of the key regions to be 
examined in those images, and consequently achieve a quick and accurate judgement that leads to an appropriate 
diagnostic decisions. In this study, two feature extraction techniques were used to identify the important regions 
from 2D WAI images, i.e., (1) random forest classifiers as a feature selection tool to extract the important features 
of the 2D images, and (2) significance tests over the 2D frequency-pressure WAI images to extract regions show-

Figure 1.   An example of the 3D WAI image and data pre-processing: (a) An example of 3D WAI data obtained 
from a participant with normal middle ear function aged 22; (b) the 2D frequency-absorbance plot at the peak 
pressure obtained from same participant; (c) the 2D frequency-pressure image converted from the 3D WAI in 
Fig. 1a; (d) the 2D frequency-pressure image converted from the 3D WAI in (a) after interpolating the pressure 
values on the Y-axis.
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ing the most significant differences between normal ears and OME ears. The extracted regions could provide 
valuable guidance to audiologists and ENT physicians in their diagnostic decisions.

Ethics.  All methods used in this study were approved by Cardiff School of Sport and Health Sciences Ethi-
cal Committee under the Cardiff Metropolitan University ethical guidelines and regulations (Ethical reference 
number: Sta-3013). Informed consent was obtained from all subjects, and if subjects were under 18, from a 
parent and/or legal guardian. The anonymous WAI data were analysed when machine learning tools were used.

Results
WAI characteristics and statistical analysis of the normal middle ear condition compared to 
ears with OME.  Figures 2a–d show the mean and variance of absorbance at different frequencies and pres-
sures in the normal middle ear and ears with OME. The averaged absorbance contour for the normal middle 
ear condition showed a peak area at the centre frequency of 820 Hz at 0 daPa with an absorbance value of 0.39 
(frequency range: 771–917 Hz with pressures between − 30 and + 30 daPa and absorbance value 0.4), and the 
second peak at the centre frequency of 1335 Hz at + 20 daPa with absorbance value of 0.50 (frequency range: 
1300–1370 Hz with pressures between 0 and + 40 daPa and absorbance value 0.5). The largest peak occurred 
at the centre frequency 3270 Hz at + 65 daPa, with absorbance at 0.76) (frequencies range: 2900–3700 Hz with 
pressures between − 30 and + 160 daPa and absorbance values between 0.75 and 0.76 (Fig. 2a). Figure 2b shows 
the contour of variance for the normal middle ear condition. There were a couple of areas showing larger vari-
ances in absorbance obtained from normal middle ears, i.e., variance value of 0.07 at frequencies between 1834 
and 2370 Hz at pressures between − 300 and − 110 daPa, and the variance value of 0.07 at frequencies between 
5180 and 5500 Hz at pressures between − 30 and + 10 daPa. In comparison, ears with OME showed the largest 
peak centred at 5000 Hz with pressure at − 30 daPa with an absorbance value of 0.5 (frequency range: 4500 to 
5500 Hz, pressures from − 220 to + 130 daPa with an absorbance value of 0.5) (Fig. 2c). The highest value in the 
averaged absorbance was significantly lower in the OME ears than the normal ears (0.49 vs. 0.76, p < 0.0005 ). 
Significantly higher variances in absorbance were found in OME ears, with the largest averaged variance occur-
ring between 3700 and 5500 Hz and at pressures between + 40 and + 200 daPa and variance values from 0.11 
to 0.12 (Fig. 2d). Further statistical analysis at each frequency-pressure point showed 88% of data points (4782 
out of 5457) to have significant differences in absorbance values between normal ears and OME ears (Wilcoxon 
rank sum test, Z = 3.04 , p < 0.0005).

Figure 2.   The mean and variance in absorbance at different frequency-pressure regions in the normal middle 
ear condition and ears with OME: (a) Mean absorbance contour plot at different frequencies and pressures in 
the normal middle ear condition; (b) Variance of absorbance contour plot at different frequencies and pressures 
in the normal middle ear condition; (c) Mean of absorbance contour plot at different frequencies and pressures 
in ears with OME; (d) Variance of absorbance contour plot at different frequencies and pressures in ears with 
OME.
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Outputs from various classification models: accuracy, area under the ROC curve, F1 score, pre-
cision and recall for categorising middle ear function as normal or OME.  As indicated in section 
“Methods”, different ML classifiers were developed and examined to determine their ability to categorise middle 
ear function as normal or OME using the 2D frequency-pressure WAI images. For the KNN, SVM, RF, and 
FNN classifiers, the 2D images were converted into vectors with the dimension 5457, i.e., 107-frequency bins × 
51-pressure values. The 2D images were used directly for the CNN. Data were normalized to have a zero mean 
and unit variance for all classifiers. We used the 10-fold cross validation to test each model. There is some ran-
domization in the process of RF and in the initialization of FNN and CNN and since the performance of these 
classifiers depends strongly on this initialization, especially with small datasets, we ran the experiments three 
times with different random initializations for each model run. To implement the neural networks, Keras with 
TensorFlow backend was used16 and for the remaining classifiers, we used Scikit-learn Python based library17. 
Table 1 summarises the results derived from each ML model in terms of; accuracy, area under the ROC curve, 
precision, recall/sensitivity and F1-score for predicting normal from OME13. Overall, the different ML models 
produced different outputs. The area under the ROC curve ranged from 0.74 to 0.79, while the accuracy for 
determining the middle ear function ranged from 0.74 to 0.82. Of these, the CNNs had the highest accuracy as 
the most promising models. We tested different KNN classifiers with different number of neighbours in queries, 
i.e., K = 1, 3, 15 . All points in each neighbourhood were weighted equally and Euclidean distance was used 
to measure the distance between data samples. The results of KNN shown in Table 1 indicate that increasing 
K improves the accuracy and precision for OME, the recall for the normal and F1-scores for both classes, but 
decreases the recall of the OME and slightly decreases the precision for the normal cases. This indicates that with 
increasing K the model is biased toward classifying the data into normal and this perhaps because the number 
of normal samples is higher than the number of OME samples in our dataset. For SVM, different kernels were 
examined, such as, linear, polynomial (Poly), radial basis function (RBF), and sigmoid13. The degree for the poly-
nomial kernel was three. As shown in Table 1, the accuracy and F1-scores, for the polynomial and RBF kernels 
were better than the other kernels. For the RF, different numbers of decision trees were tested in the forest com-
bination, e.g., 10, 100, 500. The RF was run three times with different randomization for each run. As shown in 
Table 1, the best results (accuracy, F1-scores, precision, and recalls for both classes) were obtained using 100 and 
500 decision trees in the RF. With the experiments using Feedforward neural networks (FNN), different num-
ber of layers and different number of nodes in each layer were developed and examined. The detailed structure 
of each FNN is described in Table 2. The rectified linear unit (ReLU) was used as an activation function in the 
hidden layers and the sigmoid activation function was used in the output layer. A dropout value 20% was used 
after each hidden layer. The tested FNNs gave almost the same results as shown in Table 1. Convolutional neural 
networks (CNN) experiments also used a different number of layers and different number of filters and different 
filter sizes in each layer. The detailed structure of each layer in each CNN is described in Table 2. Similar values 
were found in terms of the accuracy and F1-score in all CNNs, together with small differences in the precision 
and recalls for both classes using CNNs with different structures as shown in Table 2. To train the FNN and CNN 
models, the binary cross entropy cost function and Adam optimizer were used. Because the initialization of the 
FNNs and CNNs is important, each model was trained three times with different random initialization for each 
training, i.e., training three models with the same structure but with different initializations.

Handling imbalanced datasets and the performance of the CNN models.  As the dataset used in 
this study includes 423 samples from normal class and 249 samples from the OME class, i.e., the normal class 
samples are 1.7 times the OME samples, imbalance issue between the two classes may lead the classifiers to per-

Table 1.   Summary of the performance of the ML models for predicting normal middle ear condition and 
OME.

Classifier Design AUC–ROC

Precision Recall F1-score

AccuracyNormal OME Normal OME Normal OME

KNN

1 0.74 0.83 0.64 0.75 0.73 0.79 0.68 0.75

3 0.75 0.81 0.68 0.81 0.69 0.81 0.68 0.76

15 0.78 0.81 0.80 0.91 0.65 0.86 0.72 0.81

SVM

Linear 0.74 0.83 0.63 0.75 0.73 0.79 0.68 0.74

Poly 0.77 0.81 0.77 0.89 0.65 0.85 0.71 0.80

RBF 0.77 0.80 0.81 0.92 0.62 0.86 0.70 0.80

Sigmoid 0.74 0.79 0.72 0.86 0.62 0.82 0.66 0.77

RF

10 0.77 0.81 0.75 0.87 0.66 0.84 0.70 0.79

100 0.78 0.83 0.76 0.87 0.69 0.85 0.72 0.80

500 0.78 0.83 0.76 0.87 0.69 0.85 0.72 0.80

FNN
FNN1 0.78 0.83 0.77 0.88 0.69 0.85 0.73 0.81

FNN2 0.79 0.83 0.78 0.89 0.69 0.86 0.73 0.81

CNN
CNN1 0.79 0.83 0.79 0.90 0.69 0.86 0.74 0.82

CNN2 0.79 0.83 0.78 0.89 0.70 0.86 0.74 0.82
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form better with the majority class than the minority class13,18. This can be fixed using different methods, such 
as, resampling data space and cost-sensitive learning18. In this study, a succinct approach based on cost-sensitive 
learning was used to penalize the errors arising from the misclassification of the minority class more than the 
error coming from the majority class during training the models. This was achieved by putting more weight on 
the errors from the misclassification of the minority class in the cost function for training the models18. Con-
sequently, the error coming from the misclassification of the OME sample was weighted 1.7 times to the error 
coming from the misclassification of the samples from the normal middle ear class during training of the CNN 
models. The influence of the weighting rates was examined using the CNN2 model as shown in Table 2. Figure 3 
summarises the results obtained from using different weights to fix the imbalanced issue between normal and 
OME samples. The results showed an increase in the recall of the OME by 5%, when we penalized the misclas-
sification of the OME class by increasing the weight to 1.7. It implies that there is the possibility of improving 
predictive performance for OME cases by fixing the imbalance issue of the dataset.

Extracting the discriminative regions of the 2D frequency‑pressure WAI images.  In this experi-
ment, ML tools were used as data driven approaches to extract the discriminative regions from the WAI, which 
would provide useful guidance for clinicians in their diagnostic decisions. Two different data driven approaches 
were investigated:- 

1.	 The first approach was based on extracting the key regions that derive the random forest (RF) classifier to 
categorize the WAI as normal or OME. In this approach, the RF classifier was used as a feature selection 
approach to extract the key regions from the WAI;

2.	 The second approach was to extract the regions in the 2D WAI images that indicate significant difference 
values between the classes using a Wilcoxon rank sum test19.

Using random forest classifiers to extract the discriminative regions in the 2D WAI images.  The RF based feature 
selection technique extracts regions that mostly drive the classification decision by giving the important features 
that carry the most discriminative information more values than redundant features. Ten different RF with a 
different number of decision trees were tested, i.e., 10, 20, 30, 40, 50, 100, 200, 300, 400, and 500 trees. In each 
RF case, a set of coefficients were obtained representing the importance of the features in the 2D images. The 
coefficients from the ten RFs were then averaged to achieve a smoother estimate for the extracted regions. Fig-
ure 4 shows the averaged coefficients from the ten RF cases. The highlighted regions with high values indicate 
discriminative regions for the different classes. There was an important discriminative region with high values 

Table 2.   The structures for the FNN and CNN models. The symbol “–” means the layer does not exist and 
Dense(1000) means fully connected layer with 1000 nodes. Conv2D(20, (21, 11)) means a 2D convolutional 
layer with 20 filters, where the size of each filter is 21 in the frequency direction and 11 in the pressure 
direction. MaxPooling2D (3,2), is a 2D max-polling operator with size 3 in the frequency direction and 2 in the 
pressure direction. Dropout (0.2) means 20% dropout. ’relu’ means rectified linear unit activation function.

Layers/models FNN1 FNN2 CNN1 CNN2

1

Dense(1000) Dense(1000)
Conv2D(20, (21, 11)) Conv2D(20, (21, 11))

MaxPooling2D(3,2) MaxPooling2D(3,2)

Activation(‘relu’) Activation(‘relu’)

BatchNormalization BatchNormalization

Activation(‘relu’) Activation(‘relu’)

Dropout(0.2) Dropout(0.2)

2

Dense(100) Dense(500)

Flatten

Conv2D(40, (11, 7))

BatchNormalization

Activation(‘relu’) Activation(‘relu’)
Activation(‘relu’)

Dropout(0.2)

3

Dense(1) Dense(100)
Dense(100) Conv2D(60, (3, 3))

Activation(‘relu’) BatchNormalization

Activation(‘sigmoid’) Activation(‘relu’)  Dropout(0.2)
Activation(‘relu’)

Dropout(0.2)

4 –
Dense(1) Dense(1)

Flatten
Activation(‘sigmoid’) Activation(‘sigmoid’)

5 – – –

Dense(100)

Activation(‘relu’)

Dropout(0.25)

6 – – –
Dense(1)

Activation(‘sigmoid’)

Number of parameters 5,558,201 6,008,701 1,754,921 5,338,621
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around frequencies from 1000 to 2670 Hz and pressures from − 50 to + 100 daPa that showed a significant dif-
ference between normal and OME data.

Using statistical significance tests to extract discriminative regions in the 2D WAI images.  Section “WAI charac-
teristics and statistical analysis of the normal middle ear condition compared to ears with OME” showed that 
88% of the total area in the 2D frequency-pressure images indicate significant difference in absorbance between 
normal and OME ears. In this experiment, the top 10%, i.e., 5457 points 10% = 546 points) of the most signifi-
cantly different points, i.e., the lowest p-values between the two classes in the 2D frequency-pressure images were 
highlighted as shown in Fig. 5.

Figure 6 shows regions extracted from RF with extracted region contours identified using the statistical 
significance test. The inner contour contains 5% of the most significantly different points (273 points), the outer 
contour contains the top 10% of the most significantly different points. Figure 6 demonstrates that the RF and 

Figure 3.   Performance of CNN2 with using different weights on the OME samples in the cost function.

Figure 4.   The extracted discriminative regions in the WAI data using the RF classifiers. Regions with high 
values (bright regions) are the most discriminative regions.
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the significance test approaches picked almost the same regions. Further analysis showed the averaged absorb-
ance in the 10% extracted region was 0.59 and 0.33 for normal and OME ears respectively. For the 5% extracted 
region mean absorbance was 0.53 for normal and 0.28 for OME ears.

Discussion and future study
According to the recent ENT Elective Care Handbook, the biggest challenge for ENT specialists appears to be 
‘unnecessary’ referrals by GPs that could be managed effectively in primary care. An updated Clinical Practice 
Guideline on Otitis Media with Effusion20 points out that a low percentage of clinicians follow clinical practice 
guidelines in the use of pneumatic otoscopy for diagnosis due to a lack of experience in handling the technical 
difficulties of the device. Consequently efforts are still needed in primary care settings to teach and promote 
accurate OME diagnosis.

In the present study, several ML classifiers have been examined using different parameters for the purposes of 
categorising middle ear function as normal or OME on the basis of WAI data. As shown in Table 1, results from 
most of the tested classifiers are promising with the accuracy of most of the classifiers at around 80%. Indeed, 
the results from the ML classifiers in this study exceed diagnostic performance in identifying normal and OME 
ear conditions in the primary care settings by General Practitioners (GP) or other healthcare professionals using 
traditional middle ear diagnostic tools10. A study by Lee et al.21 investigated the accuracy of traditional diagnos-
tic tools for OME, such as pneumatic otoscopy, otomicroscopy, and tympanometry. Their results showed low 
specificity in diagnosing childhood OME, although pneumatic otoscopy is recommended as the gold standard 
for OME diagnosis. In addition, there were high percentages of false positive and false negative cases when the 
results obtained from traditional tympanometry were examined. Future research will focus on improving the 
performance of the CNNs in terms of achieving more accurate and reliable classification results. Performance 
could be improved by using either larger datasets or advanced DL techniques such as transfer learning, data 
augmentation, and few-shot learning22 to train the CNNs more efficiently with small datasets. The work by Feyjie 
et al.23 demonstrates the efficiency of using few-shot learning in the task of skin lesion segmentation. A review on 
the state-of-the-art data augmentation methods applied in the context of segmenting brain tumours from MRI 
images indicates that data augmentation has become a main part of almost all DL methods for segmenting brain 
lesions24. Moreover, transfer learning has become a useful approach for analysing medical imaging using DL25.

This is the first study to use ML models to better understand and interpret the clinical meanings of char-
acterized WAI regions that are closely associated with middle ear transfer function and further facilitate its 
clinical application. Two feature selection methods (i.e., random forest and statistical significance tests) were 
used in this study to extract the key regions from the WAI. The extracted regions could guide the clinicians to 
decide whether the case is normal or OME. Lai et al.26 investigated three other feature selection methods to 
extract dominant features to distinguish cases with temporal lobe epilepsy (TLE) from healthy cases. They were 
independent sample t-test filtering, the sparse-constrained dimensionality reduction model (SCDRM), and the 
support vector machine-recursive feature elimination (SVM-RFE). By using Support vector machine (SVM) to 
determine abnormal brain regions in TLE, their results indicated that the SVM-RFE achieved the best results, 
followed by the SCDRM and the t-test. More advanced DL tools such as attention mechanisms could also be 
used to extract the key regions in our future studies27. With attention mechanism, the neural network can weight 

Figure 5.   The most significantly different region (blue) in the WAI data. The blue region is the region with the 
lowest p-values that contains 10% of the data ( 51 ∗ 107 ∗ 10% = 546 points).
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features by level of importance to the classification task, and use this weighting to help achieve classification with 
better accuracy. Guan et al.28 showed that the performance of automated classification of thorax disease on the 
basis of chest X-ray images using attention mechanisms was improved in terms of accuracy by cropping out the 
discriminative parts of the image and classifying both the global image as well as the cropped portion together. 
In the present study, the size of the key region extracted and driving the classification decision is approximately 
5% of the whole WAI image (as shown in Fig. 4), i.e., around frequencies from 1000 to 2670 Hz and pressure 
from − 50 to + 100 daPa, approximately 5% of the whole WAI images. This result provides important guidance 
to ENT physicians, audiologists and other healthcare professionals in terms of WAI data interpretations and 
subsequent diagnostic process for identifying middle ear diseases in the clinical setting. The small size of the key 
regions suggests that dimensionality reduction techniques could be used before classification to decrease the size 
of the data, allowing efficient computing, simplifying the complexity of the problem and possible improvement of 
results29. The study by Zhao et al.7 analysed the characteristics of 2D WAI plot configurations in ears with normal 
middle ear function. The results highlighted that the frequency region with high absorbance; 1.1 kHz (SD: 0.3 
kHz appeared related to resonances in the middle ear system, where sound energy coming into the external ear 
canal is transmitted most efficiently into the cochlea30. A previous study by Beers et al.31 found that the area of the 
ROC curve was 0.9 at frequencies between 800 Hz and 5.0 kHz, with the best result at 1.25 kHz. 96% sensitivity 
and 95% specificity were achieved at the absorbance cut-off value of 71.7% in diagnosing childhood OME with 
WAI. Their results also imply the importance of areas around the middle ear resonance frequency. Furthermore, 
Zhao et al.7 found another region with high absorbance in the high frequency region (mean: 3.4 kHz, SD: 1.5 
kHz). They suggested that this region might be associated with the external ear canal resonance and middle ear 
structure. A recent study by Won et al.32 concluded that the otitis media group with high viscosity effusion had 
significantly less absorbance from 2.74 to 4.73 kHz in comparison to the otitis media group with low viscosity 
effusion. In addition, the amount of middle ear effusion affected the absorbance at the frequencies from 1.92 to 
2.37 kHz. However, their results did not show the statistical significance in absorbance around 1.0 to 2.0 kHz 
with effusion categories. This is likely due to the large variations in middle ear pressure that affect absorbance. 
Zhang and Gan33 investigated the effect of the middle ear pressure on WAI using the Finite Element (FE) model 
that simulated the negative middle ear pressure levels between − 50 and − 200 daPa. Their results showed that 
absorbance decreased in general with increased negative middle ear pressure, with the greater affected EA at 
frequencies between 1.0 and 4.0 kHz. Therefore, the impact of OME conditions defined using different classifica-
tions should be further investigated to compare the accuracy in ears with various OME severity.

Because of the complexity of 3D measurement results obtained from WAI, very few have explored the ability 
of WAI to differentiate between normal middle ears and OME, although a pilot study by Wang et al.10 investigated 
the dynamic characteristics of the middle ear system using 3D image analysis in ears with normal middle ear 
function and in the OME condition. They reported that the areas in the frequency range between 1.0 and 8.0 kHz 
with normal middle ear pressure appeared important in terms of distinguishing normal from OME. Absorbance 

Figure 6.   The combination of the regions extracted by RF and contours of extracted regions by the significance 
test, where the inner contour contains the 5% most significant points (273 points) and the outer contour the top 
10% most significant points. Bright regions are the key regions extracted by the RF. The inner circle highlights 
the statistically significant area that contains 273 points with the lowest p values (273/5457, 5.0%). The outer 
circle features the statistically significant area that is comprised of points with the 546 lowest p values (546/5457, 
10.0%).
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in the high frequency region under high positive pressure was significantly decreased in ears with OME. In the 
present study, the contour of averaged absorbance in the frequency-pressure plot in normal ears is generally 
consistent with the findings of Hougaard et al.11. The averaged absorbance increases from 50% at 1.0 kHz to an 
absorbance peak point around 75% at 3.5 kHz under positive pressures between + 50 and + 150 daPa, followed by 
a sharp decrease at higher frequencies (Fig. 2a). Averaged absorbance in ears with OME were significantly lower 
than those in normal ear conditions (Fig. 2c). In comparison to the variance found in the normal ear conditions 
(Fig. 2b), significantly higher variances were found in absorbance in ears with OME around the frequency from 
4.0 to 6.0 kHz in the positive pressure region (Fig. 2d). Won et al.32 also identified large variance in absorbance 
between 2.0 and 5.0 kHz in ears with OME of various type and amount of effusion. In another theoretical analysis 
using the FE model of the middle ear, Koike and Wada34 suggested that positive pressure in the middle ear cavity 
had a greater impact on sound transmission than negative pressure at frequencies beyond 1.5 kHz. Therefore, 
the area with greater variance at the region of high frequency and positive middle ear pressure should be used 
as an indicator of severity in the OME condition.

This novel research proves the capability of ML tools to diagnose OME automatically with an accuracy around 
75–82%. Although the current accuracy might not sound perfect, the promising outcomes and ML solution pro-
vide an important stepping stone to inspire more researchers to work on this challenge and thus further facilitate 
its clinical application. Moreover, in applying ML to complex tasks in the diagnosis of OME, the technology has 
great potential for the development of a quick, accurate, cost effective, non-specialist diagnostic tool, with the 
potential for widespread use in global hearing healthcare to satisfy urgent clinical need.

It should be noted that there are several limitations in the present study. First, the sensitivity and specificity in 
the diagnosis of OME might be improved if a different gold standard is used (e.g., pneumatic-otoscopy, otomi-
croscopy or surgical confirmation of OME at time of ventilation tube insertion)20. However, whilst a myringotomy 
can serve as the gold standard for classifying an ear with OME, such a surgical procedure is invasive, and cannot 
be used to diagnose the presence of OME in patients with mild symptoms of middle-ear dysfunction. Although 
current clinical practice guidelines to diagnose OME primarily recommend pneumatic otoscopy, this examina-
tion is usually performed by an otologist who has a specialist training and experience on a visual inspection of 
tympanic-membrane mobility in response to pressure changes in a sealed ear canal. Second, in the present study, 
although we collected data from the normal middle ear condition and ears with OME from both children and 
adults, we are unlikely to be able to train a reliable machine learning model by dividing the current data into 
various age groups, due to limited sample size. Therefore, with a larger dataset, further analysis will be conducted 
to compare the accuracy across different age groups with various OME severity.

Conclusion
In this work, the accuracy and the area under the ROC curve obtained from the basic ML models were around 
75% and 80%, respectively. The convolutional neural networks show slightly better results than the other models. 
The promising results from this study indicate that the ML approach is a useful tool to help the non-specialist 
healthcare practitioner in providing an effective and accurate method for the automated diagnosis of OME. A 
region around frequencies between 1090 to 2310 Hz and pressures from − 40 to + 90 daPa extracted from the 
WAI by the RF classifiers and the statistical significance tests indicates important areas to identify differences 
between normal and ears with OME. The significance of the results provide clear guidance to practitioners to 
better understand and interpret the WAI data, and further facilitate its clinical applications. Future studies will 
focus on analyzing more WAI data on various middle ear disorders, e.g., otosclerosis, chronic otitis media and 
tympanic membrane perforation, using more robust DL tools.

Data availability
No additional data are available. However, the original data that support the findings derived from this study 
can be requested by emailing fzhao@cardiffmet.ac.uk.
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