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ABSTRACT: The intermediate subdiffusion of diffusive particles in
crowded systems is studied for two model systems: the continuous
time random walk (CTRW) model and the obstruction-binding
model. For the CTRW model with an arbitrarily given longest
waiting time τmax, we find that the diffusive particle exhibits
subdiffusion below τmax and recovers normal diffusion above τmax.
For the obstruction-binding model with randomly distributed
attractive obstacles, the diffusion of the diffusive particle is
dependent on the binding energy and the density of obstacles.
Interestingly, diffusion curves for different binding strengths can be
overlapped by rescaling the simulation time, indicating that the
diffusive particle in the obstruction-binding model can change from
the intermediate subdiffusion to the normal diffusion at a long-term
simulation scale. The results of the two model systems show that the diffusive particles only exhibit intermediate subdiffusion below
the longest waiting time. Therefore, long timescale subdiffusion would only be observed in the CTRW model with an infinitely long
waiting time and in the obstruction-binding model with an infinitely large binding strength.

1. INTRODUCTION
Subdiffusion is a ubiquitous dynamical phenomenon for
diffusive particles in crowded systems, characterized by a
sublinear increase of the mean-squared displacement (MSD)
of the diffusive particle with time t, namely, <Δr2(t)> ∼ tα,
with the diffusion exponent α <1.1−3 Subdiffusion is often
related to obstructed diffusion in crowded environments with
spatial heterogeneity or complex interactions.1−9 It was found
that the exponent α of trace proteins in a mixed protein
solution decreases with the increase of the total protein
concentration, clearly demonstrating that the subdiffusion is
related to crowding.10 The subdiffusion of particles in
biological systems like living cells and membranes was
intensively studied.3,11−17 Subdiffusive behavior was observed
for the diffusion of trace proteins in living cells crowded with
different fillers, such as chromatins, actins, lipid membranes,
cytoskeletons, nuclei, and others.2,8,10,18,19 It was pointed out
that subdiffusion may play an important role in cellular
functions, e.g., subdiffusion of particles in the cellular
environment increases their probability of finding nearby
targets.20 Subdiffusion is also closely linked to drug delivery,
the activity of biopolymers in cellular environments, and the
functionality of many bio-related devices.21 On the other hand,
the diffusive property of traces can reflect the surrounding
crowded environments. Subdiffusion was also observed for
active particles in heterogeneous media with a high enough
density of randomly distributed obstacles, and such kind of

motion was believed of prime importance for the survival of
most organisms.22

Subdiffusion of passive particles has received intensive study
in physics as well as in biophysics.1−9,18,19 A lot of subdiffusive
models were introduced to explain the subdiffusive properties
of particles in crowded environments with obstacles.2,7,12,23−28

There are three main subdiffusion models: the continuous time
random walk (CTRW), the fractional Brownian motion
(FBM), and the random walk on a fractal structure (RWF).
The commonly accepted explanations for the origin of
subdiffusion are the geometric constraint and the random
attraction of obstacles. Geometric constraints are related to the
crowded environment around the diffusing par-
ticles.2,7,10,23,29−31 Subdiffusive behavior occurs at a high
density of obstacles where the molecules are trapped by
entropic barriers as the voids are barely interconnected, leading
to a stark slowing down of transport and subdiffusive
motion.7,10 On the other hand, the random attractions
between diffusing particles and obstacles not only slows
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down the diffusion32 but also induces intermittent jumping
motion for the diffusing particles.33,34 When the attraction is
strong enough, subdiffusion could occur at a relatively low
density of obstacles or weak entropic barrier.34,35 It was found
that the diffusion was decreased and subdiffusive behavior
appeared when the strength of nonspecific interactions of
obstacles within the cytoplasm was increased.35 The stronger
the attractive interaction, the more obvious the subdiffusive
behavior due to the higher free energy barrier for the
diffusion.6,36 Spatial heterogeneity is an important factor for
subdiffusion. Simulations found that polymers always display
normal diffusion in systems with orderly distributed
obstacles.37 However, subdiffusion of polymers is exhibited
in systems with randomly distributed, attractive obstacles.36,38

Randomly distributed, attractive obstacles bring about spatial
heterogeneity, which changes the adsorption/desorption
behavior of polymers, and polymer chains tend to diffuse
toward the places of high obstacle density where the attraction
is strong and polymer chains stay there for a long time.36,38 To
date, the origin of subdiffusion is complex and not well
understood. And simple subdiffusion models are not enough to
describe the subdiffusive behaviors of tracers in real physical
systems due to the complicated conditions.19,33

Subdiffusion of particles, including proteins and polymer
chains, in crowded systems was often explained by the CTRW
model. The CTRW model is a generalization of a random walk
in which the diffusing particle waits for a random waiting time
between jumps. The distribution of the waiting time is long-
tailed and cannot be averaged, e.g., P(τ) ∝ τ−(1+α) with 0 < α <
1. The ergodic breaking due to the heavy tail of the waiting
time results in the subdiffusion with the exponent α (0 < α <
1) of particles.24−26 A typical example is that at each walk the
diffusing particle is subject to an exponentially distributed
potential V, P(V) = V0

−1 exp(−V/V0), with kBT/V0 <1.23 Here,
kB is the Boltzmann constant and T is the temperature.
Simulations and experiments on the diffusion of polymers in
crowded environments with attractive obstacles revealed a
heavy long waiting time tail for subdiffusion, although the
distribution cannot be expressed exactly by P(τ) ∼ τ−(1+α), with
α the diffusion exponent.33,39,40 It was pointed out that the
longest waiting time for the polymer chains might be infinite
because of the very large binding energy for the adsorbed
polymers on attractive obstacles.37 The waiting-time distribu-
tion of nonspecific interactions, abundant in the cell, might be
nonaverageable and thus the CTRW model is a good
microscopic model for one type of anomalous subdiffusion
in cells.16,33

However, some experimental and simulation studies on the
dynamics of particles in crowded systems showed that the
subdiffusion only appeared at an intermediate timescale and
then follows a normal diffusion at long timescale. The
intermediate subdiffusion can persist for over one or several
orders of magnitude timescale. It was found the intermediate
subdiffusion of gold-labeled organic molecule in fetal rat skin
keratinocyte cells lasted about 2 orders of magnitude timescale
and was explained by a finite hierarchy model with different
trapped times.41,42 An experimental study on the colloidal
diffusion over a quenched two-dimensional (2D) random
surface also found such an intermediate subdiffusion.31

Intermediate subdiffusion was observed in intracellular
diffusion of quantum dots by single-particle tracking (SPT)
and diffusion of fluorophore-labeled dextran in granular layers
by integrative optical imaging (IOI) method.43,44 Recently, it

was uncovered that the timescale of the intermediate
subdiffusion of nanoparticles in semiflexible networks was
also dependent on the rigidity of networks.45 On the other
hand, it is necessary to temper the broad power-law time
distribution because of the finite lifetime of biological particles.
For example, a tempered CTRW model using a power-law and
exponential decay function was introduced.46 Such a system
exhibits subdiffusion at short times and eventually a normal
diffusion at long times.46

It is very interesting to understand what controls the
timescale of the intermediate subdiffusion. In this work, to
access the transition from subdiffusion to normal diffusion, the
distribution of waiting time within the CTRW framework is
truncated with a finitely long timescale. Our simulation results
show that the timescale for the subdiffusion-normal diffusion
transition can be regulated by the longest waiting time, i.e., an
intermediate subdiffusion below and a normal diffusion above
the longest waiting time. We further study the diffusion of the
particle in the obstruction-binding model. For all binding
strengths, the particle can change from the intermediate
subdiffusion to the normal diffusion at a sufficiently long
timescale. We therefore conclude that the diffusive particles
only exhibit intermediate subdiffusion below the longest
waiting time.

2. MODELS AND SIMULATION METHODS
Simulations on the random diffusion of particles are performed
on a 2D square lattice with system size L in both the x and y
directions. There are total S = L2 lattice sites. Periodic
boundary conditions (PBCs) are employed in the two
directions. At the beginning of the simulation, the particle is
placed randomly at one lattice site. Then, it moves to one of its
four nearest neighbors randomly. We have used three models
to study the dynamics of the diffusive particle. To clearly
express our results, we use α in the general expression for
anomalous subdiffusion, αCT in the expression in the power-
law waiting time distribution, and αsim obtained from the
simulation results.

2.1. CTRW Model with Quenched Disorders. To
simulate quenched disorders,47 each lattice site is assigned a
fixed waiting time τ in advance. In the simulations, τ is an
integer value ranging from 1 to τmax with an integer interval
value Δ. Waiting times are assigned a priori for each lattice site
randomly with a distribution P(τ) ∝ τ−(1+αCT). For a finite
s y s t e m , P ( τ ) i s n o r m a l i z e d a s
P( ) /(1 )

1
(1 )CT max CT= +

=
+ for τ ranging from 1 to

τmax. As the probability decreases with increasing τ, the longest
waiting time τmax is defined as P(τmax)L2 ≥ M and P(τmax + Δ)
L2 < M, that is, at least one lattice site is assigned τmax. We set
Δ = 1 and M = 1 in the simulation. Therefore, the longest
waiting time τmax increases with increasing system size L but is
given in advance. The diffusive particle stays for the assigned
waiting time τ on the lattice site before moving to a nearby
lattice site. We can also alter Δ to change τmax for a given
system size or adjust M to maintain τmax for different system
sizes.

2.2. CTRW Model with Annealed Disorders. The
diffusive particle moves after an assigned waiting time τ as in
the previous model. But τ is not assigned on each lattice in
advance of the simulation. Instead, we assign a new waiting
time when the diffusive particle moves to other lattice sites. To
understand the effect of τmax on the dynamics of particles, the
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value of τmax is arbitrarily given in advance in our simulations.
In the simulations, τ is an integer value and is randomly chosen
from 1 to τmax with the distribution P(τ) ∝ τ−(1+αCT). In the
simulation, the waiting time τ is obtained through τ = r−1/αCT

with r an evenly distributed random number between 0 and 1.
When τ > τmax, we discard this value and reproduce a new
value. Here, the longest waiting time τmax is independent of the
system size L. Moreover, we can change the value of τmax
artificially in the simulations.

2.3. Obstruction-Binding Model. Immobile obstacles
with density f = n/S are randomly placed in the system. Here, n
is the number of obstacles. Each obstacle is assigned a binding
energy −ε to the adjacent diffusive particle. The diffusive
particle can only move to the vacant nearest neighbor lattice
sites not occupied by obstacles. At every Monte Carlo step, the
diffusive particle tries to move randomly to one of the vacant
lattice sites. And the trial move may result in an energy shift
ΔE between the binding energy of the new site and that of the
original site. The dynamic movement of the diffusive particle
obeys the Metropolis algorithm, i.e., the escape probability for
the move is set as p = exp(−ΔE/kBT) for the energy shift of
the trial move ΔE > 0 or p = 1 for ΔE ≤ 0. Here, kBT is set as
1. The situation described by the obstruction-binding model is
quite close to the diffusion of polymers in crowded
environments.39 The subdiffusion of the obstruction-binding
model was studied in the literature.42,48 In the present work,
we find a new phenomenon when we enlarge the simulation
time. The detailed simulation method will be addressed in the
next section.

For all three model systems, the MSD of diffusive particles is
calculated as

r rr t t t t( ) ( ) ( )2
0 0

2= | + | (1)

Here, r(t) denotes the position vector of the diffusing particle
at time t. Here, t0 is set as 0. The average is taken over
independent samples. In this work, the number of independent
samples is 10,000 for these three model systems. However, to
complete independent samples, different strategies are used for
different model systems. For the CTRW model with quenched
disorders, it is a time-consuming process to generate the initial
waiting time distribution for all lattice sites, so we use 100
different sets of waiting time distributions and 100 random
walks for every set of waiting time distributions. For the
CTRW model with annealed disorders, we use 10,000 random
walks with different random sequences for the waiting times.
Finally, for the obstruction-binding model, we use 10,000
different sets of obstacle configurations and we run one
random walk for every set of obstacles. The error of our
simulation results is small, so we do not plot the error bar for
our simulation results.

The evolution of the MSD of diffusive particles is described
by

r t t( )2 sim (2)

with αsim a subdiffusion index. The diffusion is denoted as
normal diffusion when αsim = 1 and subdiffusion when αsim < 1.
The error bar for αsim is less than 0.02.

3. RESULTS AND DISCUSSION
3.1. CTRW Model with Quenched Disorders. Simu-

lations are performed in three systems with sizes L = 1000,
10,000, and 20,000. We at first set αCT = 0.5, i.e., the

probability of waiting time is P(τ) ∝ τ−1.5. The longest waiting
times are about 17,950, 367,400, and 890,000 for systems of
size L = 1000, 10,000, and 20,000, respectively. Figure 1

presents the log−log evolution of the MSD ⟨Δr2⟩ with time t
for the diffusing particle in these systems. We find a transition
from subdiffusion at short times to normal diffusion at long
times. The crossover time τcross for the transition is larger than
the longest waiting time τmax. As shown in the inset of Figure 1,
we find that τcross/τmax decreases gradually with increasing τmax.
We expect that it tends to a certain value at sufficiently large
τmax. So we expect that the relative difference between the
crossover time and τmax becomes smaller with the increase of
τmax. Therefore, τmax is used simply for describing the transition
from subdiffusion to normal diffusion. The result indicates that
the subdiffusion only exists below τmax. Therefore, the
simulated subdiffusion exponent αsim is estimated from the
slope of the curve below τmax. We find that the exponent αsim is
roughly independent of the system size and estimate αsim =
0.56 for P(τ) ∝ τ−1.5. Here, the simulated value αsim = 0.56 is
close to the given αCT = 0.5 for the distribution of the waiting
time.

Based on the three curves shown in Figure 1, the value of
⟨Δr2⟩ above τmax decreases with an increase in the system size
L. This is because, in the simulation, we have set a larger τmax
for a larger system size. However, if τmax is set the same for
different system sizes, values of ⟨Δr2⟩ are the same too. The
results suggest that ⟨Δr2⟩ is determined by τmax and not the
system size L.

We have also simulated the diffusion of particles for other
probability distributions of the waiting time P(τ) ∝ τ−(1+αCT)

with different values of αCT in the system of size L = 10,000.
The longest waiting time τmax decreases with increasing α.
Figure 2 presents the simulation results for the given αCT = 1,
0.9, 0.7, and 0.5. We again find subdiffusion below τmax even
for the case of αCT = 1. The variation of αsim with the given αCT

Figure 1. Log−log plot of the mean-squared displacement (⟨ Δr2⟩)
versus time t for the diffusing particle in different systems (L = 1000,
10,000, and 20,000 from top to bottom) with the probability of
waiting time P(τ) ∝ τ−1.5. Curves of L = 10,000 and 20,000 are shifted
downward by factors of 1/10 and 1/100, respectively. The longest
waiting times indicated by magenta arrows are 17,950, 367,400, and
890,000 for the systems of size L = 1000, 10,000, and 20,000,
respectively. The olive arrow indicates the crossover time τcross. The
red and blue lines have slopes of 0.56 and 1, respectively. The inset
shows τcross/τmax versus τmax.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c05945
ACS Omega 2023, 8, 34188−34195

34190

https://pubs.acs.org/doi/10.1021/acsomega.3c05945?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05945?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05945?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05945?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c05945?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


is presented in the inset of Figure 2. We find αsim ≈ αCT when
αCT is close to 0.6. However, αsim deviates from αCT when αCT
is close to 0 or 1. Such a deviation was also observed in
simulations on the diffusion of polymer in a crowded system. It
was found that the subdiffusion index αsim in MSD curves of
polymer chains was different from αCT in probability
distributions of the waiting time.39,40

In short, our simulation results show that the intermediate
subdiffusion of particles is observed. In the CTRW model with
quenched disorders, the given longest waiting time τmax is
roughly the crossover time for the transition from subdiffusion
to normal diffusion. Therefore, the behavior of particle
diffusion will be strongly dependent on the experimental
time and the longest waiting time of the system. Subdiffusion
will be observed if the duration of the experiment or simulation
is shorter than the longest waiting time of the system. On the
other hand, we may observe intermediate subdiffusion if the
duration is longer than the longest waiting time, while long-
time normal diffusion will be observed if the duration is much
longer than the longest waiting time. For example, subdiffusion
was observed for protein diffusion in a short experimental time
and crossover from intermediate subdiffusion to long-time
normal diffusion was observed for acetylcholine receptors on
membranes in prolonged experiments.14,49 For the same
reason, long-time subdiffusion was observed for polymer
chains in crowded environments due to the long waiting
time.40

3.2. CTRW Model with Annealed Disorders. Simu-
lations for the CTRW model with annealed disorders are
performed in a system of size L = 10,000. Figure 3 presents the
simulation results of the MSD for three values of αCT = 0.2,
0.5, and 0.8. Here, we set the longest waiting time τmax = 109,
longer than the simulation time 107. We find subdiffusive
behaviors for all cases. And we find αsim = αCT for αCT = 0.5
and αsim deviates from the given value of αCT for αCT = 0.2 and
0.8. The values of αsim are estimated for different values of αCT.
The variation of αsim with given αCT is plotted in the inset of
Figure 3. We find that the deviation is small for moderate
values of αCT from 0.5 to 0.7. However, the deviation becomes

a little bigger when αCT is small or large, for example, we have
αsim = 0.21 for αCT = 0.1 and αsim = 0.9 for αCT = 1.

For the CTRW model with annealed disorders, we have also
checked the transition from subdiffusion to normal diffusion by
using a smaller τmax in the simulation. Figure 4 shows the

results for the distribution P(τ) ∝ τ−1.5 with τmax = 104, 106,
and 108. Analogous to the results of the CTRW model with
quenched disorders, we find a transition from subdiffusion to
normal diffusion when the simulation time is longer than τmax.
The crossover time τcross is estimated from the intersection of
two straight lines fitting for subdiffusion and normal diffusion,
as shown in Figure 4. The values of τcross/τmax are presented in
the inset of Figure 4. For the CTRW model with annealed
disorders, we find τcross/τmax is about 0.7 independent of τmax.

Figure 2. Log−log plot of mean-squared displacement (⟨Δr2⟩) versus
time t for the diffusing particle in systems of different probability
distributions of waiting time P(τ) ∝ τ−(1 + αCT) with αCT = 1, 0.7, and
0.5 from top to bottom. The blue lines have a slope of 1, while the
slopes of the red curves are presented. The inset presents the variation
of αsim with given αCT. The straight line shows the relation αsim = αCT.

Figure 3. Log−log plot of the mean-squared displacement ⟨Δr2⟩
versus time t for systems with different distributions of waiting time
P(τ) ∝ τ−(1 + αCT). From top to bottom, the given exponent αCT is 0.8,
0.5, and 0.2, respectively. The system size L = 10,000, and the longest
waiting time τmax = 109. Solid lines with the slope of values αsim
presented in the plot are a guide to the eye. The inset presents the
variation of αsim with given αCT. The straight line shows the relation
αsim = αCT.

Figure 4. Log−log plot of the mean-squared displacement ⟨Δr2⟩
versus time t for systems with different longest waiting times τmax (104,
106, and 109 from top to bottom). Solid straight lines with slopes are a
guide to the eye. The red arrow indicates the crossover time τcross. The
inset shows τcross/τmax versus τmax.
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Again, τmax is used simply for describing the transition from
subdiffusion to normal diffusion.

3.3. Obstruction-Binding Model. In the obstruction-
binding model, the dynamics of the diffusive particle is affected
by the immobile obstacles through the excluded volume and
binding energy. The diffusive particle cannot move to the
occupied sites by obstacles. When the diffusive particle is at the
adjacent site of obstacles, we assign a binding energy −ε (in
the unit of kBT). Here, ε is referred to as the binding strength
of obstacles. For the value of the total binding energy E of the
particle, there were two simulation models.48 One is a uniform
binding energy model where the total binding energy is
independent of the number of adjacent obstacles, i.e., E = −ε.
The other is the variable binding energy model where E = −nε,
with n the number of adjacent obstacles. For example, the total
binding energy of the diffusive particle shown in Figure 5 is E =
−ε for the uniform binding energy model, while E = −2ε for
the variable binding energy model. The variable binding energy
model is used in the present work.

The diffusive particle can move to nearby vacancies. Figure 5
shows a sketch of the system where obstacles (black circles)
are immobile. The dynamic move of the diffusive particle (red
circle) obeys the Metropolis algorithm, i.e., the escape
probability for the move is set as W = exp(−ΔE/kBT), with
ΔE the energy increment for the move. For both the uniform
binding energy and variable binding energy models,
intermediate subdiffusion and long-timescale normal diffusion
were discovered.48 It was pointed out that the diffusion is
anomalous in the obstruction-binding model with a non-
Gaussian distribution of binding times.5 Moreover, the
equilibrium of initial condition on the dynamics of the
diffusive particle was examined.48 It was found that the system
with random initial conditions (without equilibrium) exhibits
more obvious intermediate subdiffusion and has a lower
diffusion exponent than that with thermal equilibrium initial
conditions.48 After thermal equilibrium, the diffusive particle
has a larger probability to locate at a lower energy position.

In the present work, we use Metropolis dynamics for the
dynamics of the diffusive particle. For every move, the binding
energies Eold and Enew before and after the particle’s move,
respectively, are calculated. The energy increment ΔE = Enew −
Eold can be expressed as ΔE = −(nnew − nold)ε, with nold and
nnew the numbers of adjacent obstacles before and after the
particle’s move, respectively. The diffusive particle is placed

randomly on one of the vacant sites on the surface. However,
closed areas as shown in Figure 5 are not allowed for the initial
position of the diffusive particle.

The MSD of the diffusive particle is calculated after the
system is equilibrated with time teq. The time unit is Monte
Carlo step (MCS) where the particle is tried to move once in
one MCS. Figure 6a presents the evolution of MSD for

different teq values for the system with binding strength ε = 5.
MSD decreases with increasing teq in the short timescale,
consistent with the results of the uniform as well as variable
binding energy models.48 The particle will locate at low-energy
sites after equilibrium, so the particle moves slowly after
equilibrium. However, MSD almost does not change with teq
when teq reaches 106. As it is easy to equilibrate a system with
low ε, we here set teq = 106 for other ε. We have also checked
the system size effect on the evolution of MSD. Figure 6b
shows the evolution of MSD for three system sizes L = 200,
400, and 800. We find the results are roughly independent of
the system size. Therefore, we use the system of size L = 400 in
our simulations.

Figure 7 shows the evolution of MSD for different obstacle
densities f for the system with binding strength ε = 5. For small
f = 0.05 and 0.1, we find normal diffusion with ⟨Δr2⟩ ∝ t at a
large timescale t > 108. From the results of CTRW, the results
indicate that the longest waiting time τmax is about 108 for small
f. However, for large f = 0.3 and 0.4, we do not observe normal
diffusion for the longest simulation time, implying that the
longest waiting time τmax increases with f. We have checked the
state of the diffusive particle. The state is defined as the
number of adjacent obstacles, n. Since ε = 5 is large, we find
the most probable state of the particle is n = 2, for instance, we

Figure 5. Sketch of the simulation system with immobile obstacles
(black solid circles) and a diffusive particle (red open circle). The
diffusive particle can move to vacant sites A or B. Vacant sites marked
by “C” are closed areas, and they are forbidden for the initial position
of the diffusive particle.

Figure 6. Log−log plot of the mean-squared displacement of particle
⟨Δr2⟩ versus time t for systems with different equilibration time teq (a)
and with different sizes L (b). The obstacle density is f = 0.4, the
binding strength is ε = 5, and the equilibration time is teq = 106. The
straight line in (a) has a slope of 1.
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have p(2) = 0.61 and 0.86 for f = 0.1 and 0.4, respectively. The
diffusion of particles is accompanied by a change of state. So
we have calculated the transfer probability for the diffusive
particle. The inset of Figure 7 shows some of the most
important state transfer probabilities for f = 0.1 and 0.4. For f =
0.4, the diffusive particle is mostly trapped in the state with n =
2, so the diffusion is small. While for f = 0.1, there is a relatively
large transfer probability between states n = 1 and 2. Thus, the
diffusion of the particle at a small f is large.

The inset of Figure 8 presents the MSD ⟨Δr2⟩ versus time t
for systems with different binding energies. Here, the system

with ε = 0 means only the excluded volume effect of obstacles
is considered. We find normal diffusion in the simulation time
region since f = 0.4 is lower than the percolation point.
Analogous to the ε = 0 case, we also find normal diffusion for
the system with a small ε (ε = 1 and 2) in the simulation time
region. The reason is that the longest waiting time τmax is small
at small ε. With the increase of ε, the longest waiting time τmax
increases. When τmax is larger than the simulation time, the
system always shows subdiffusion in the simulation time
region, as those curves of ε > 3. However, all of the MSD
curves are similar for different ε values. Therefore, it is possible
to switch from subdiffusion to normal diffusion over an even
longer simulation time. Thus, we have tried to overlap these
MSD curves by rescaling these MSD curves.

According to the theory of CTRW, the number of diffusion
steps grows with time as n(t) ≈ Atα.50 So we scale the
simulation time t to t* = tf(t) = tC1t−β for ε > 0. By properly
choosing pre-factor C1 and exponent β for every ε, we find
different curves can collapse into one main curve. As shown in
Figure 8, we thus conclude that all of the systems could exhibit
normal diffusion at large t*. The results thus suggest that the
diffusive particle in the obstacle-binding model will always
show normal diffusion at a sufficiently long timescale. This is in
agreement with the diffusion of colloid particles on a 2D
random surface where subdiffusion was observed only at an
intermediate timescale.31 Also, long-time normal diffusion was
observed for particles diffusing among larger attractive
crowding spheres.51 On the other hand, we find that C1
decreases while β increases with increasing the binding energy,
indicating that the diffusion of particles becomes slow at strong
binding.

The normal diffusion behavior of the obstruction-binding
model can be understood from the distribution of waiting time
for the particle jumping to a nearby site. The jump probability
equals the escape probability p = exp(−ΔE/kBT) if the energy
increment for the jump ΔE > 0. In the obstruction-binding
model, ΔE can be ε, 2ε, or 3ε. For each ΔE, the distribution of
waiting time τ = k satisfies geometric distribution, P(τ = k) =
(1 − p)k−1p, with p = exp(−ΔE/kBT). The mean waiting time
of the geometric distribution is finite as ⟨τ⟩ = 1/p = exp(ΔE/
kBT), which is different from the infinitely large mean waiting
time for CTRW. Therefore, we will always find the normal
diffusion behavior at a long timescale for the obstruction-
binding model.

4. CONCLUSIONS
The intermediate subdiffusion of diffusive particles in crowded
systems is studied for two model systems: the continuous time
random walk (CTRW) model and the obstruction-binding
model. For the CTRW model, by introducing arbitrarily the
longest waiting time τmax, we find the diffusive particle exhibits
subdiffusion below τmax and recovers normal diffusion above
τmax. Therefore, for the real CTRW model with an infinitely
large τmax, a long-timescale subdiffusion will be found. In the
obstruction-binding model with randomly distributed attrac-
tive obstacles, the diffusion is dependent on the binding energy
and density of obstacles. Interestingly, we find different
diffusive curves for different binding energies can be over-
lapped by rescaling the simulation time. The result implies that
the diffusive particle in the obstruction-binding model can
change from the intermediate subdiffusion to the normal
diffusion at a long-term simulation scale. However, the
timescale increases with increasing binding energy; thus, the

Figure 7. Log−log plot of the mean-squared displacement ⟨Δr2⟩
versus time t for systems with different obstacle densities f = 0.05, 0.1,
0.3, and 0.4. System size L = 400, obstacle-binding strength ε = 5, and
equilibration time teq = 106. Straight lines have a slope of 1. The inset
shows some of the most important state transfer probabilities for f =
0.1 and 0.4. The integer and digit in circles indicate the state of the
particle and the corresponding probability. While the digit near the
arrows shows the state transfer probability.

Figure 8. Log−log plot of the mean-squared displacement ⟨Δr2⟩
versus rescaled time t* = tC1t−β for systems with different binding
strengths ε. Values of pre-factor C1 and exponent β are (0.3, 0.0),
(0.039, 0.0), (0.0033, 0.0), (0.00033, 0.04), (0.00013, 0.12) for ε = 1,
2, 3, 4, and 5, respectively. The inset presents ⟨Δr2⟩ versus the
simulation time t for ε = 0, 1, 2, 3, 4, and 5 from top to bottom.
System size L = 400, obstacle density f = 0.4, and equilibration time
teq = 106.
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intermediate subdiffusion will last a long time window at a
large binding energy.
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