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Dielectric multi-momentum meta-transformer
in the visible
Lei Jin1,9, Yao-Wei Huang 1,2,9, Zhongwei Jin1,9, Robert C. Devlin2, Zhaogang Dong 3, Shengtao Mei1,

Menghua Jiang1, Wei Ting Chen 2, Zhun Wei1, Hong Liu3, Jinghua Teng 3, Aaron Danner1, Xiangping Li 4,

Shumin Xiao5, Shuang Zhang 6, Changyuan Yu1,7, Joel K.W. Yang 3,8, Federico Capasso2* &

Cheng-Wei Qiu 1*

Metasurfaces as artificially nanostructured interfaces hold significant potential for multi-

functionality, which may play a pivotal role in the next-generation compact nano-devices. The

majority of multi-tasked metasurfaces encode or encrypt multi-information either into the

carefully tailored metasurfaces or in pre-set complex incident beam arrays. Here, we propose

and demonstrate a multi-momentum transformation metasurface (i.e., meta-transformer), by

fully synergizing intrinsic properties of light, e.g., orbital angular momentum (OAM) and

linear momentum (LM), with a fixed phase profile imparted by a metasurface. The OAM

meta-transformer reconstructs different topologically charged beams into on-axis distinct

patterns in the same plane. The LM meta-transformer converts red, green and blue

illuminations to the on-axis images of “R”, “G” and “B” as well as vivid color holograms,

respectively. Thanks to the infinite states of light-metasurface phase combinations, such

ultra-compact meta-transformer has potential in information storage, nanophotonics, optical

integration and optical encryption.
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Metasurfaces composed of tailored nanostructures
arranged two-dimensionally hold great capabilities to
locally control light’s phase, amplitude and polarization

states at the subwavelength scale1–7. Due to this control cap-
ability, metasurfaces can provide specific transmission (T) and
reflection (R) functions to work as planar photonic components
carrying customized information. Such information can be
unlocked via a distinguished field distribution reconstructed at
the observed region. When an incident light Uinc(x0, y0) impinges
upon a metasurface UT=R

meta x0; y0ð Þ, the field distribution can be
expressed by the convolution of UT=R

meta x0; y0ð ÞUinc x0; y0ð Þ and an
impulse response h(x, y, z) that relates the fields at the meta-
surface. Therefore, the field distribution on the observation plane
can be expressed as (more detail are shown in Supplementary
Note 1):

U x; y; zð Þ ¼
Z Zþ1

�1
UT=R

meta x0; y0ð ÞUinc x0; y0ð Þh x � x0; y � y0; zð Þdx0dy0

ð1Þ
The diversity of metasurfaces’ function UT=R

meta x0; y0ð Þ serves as the
base for realizing lenses8–10, color11–14, polarization filters15,16

and holograms17–20.
Multi-tasked metasurface is preferably desired for more com-

pact nanophotonic devices, which could reconstruct multiple
distinguished field distributions U(n) at observed regions. Based on
Eq. 1, previously reported multi-tasked metasurfaces can be
divided into three categories (shown in Fig. 1a–c). The first
approach takes advantage of spatial separation as shown in Fig. 1a.
By separating the observed regions (S(n))21,22 or interleaving

subarrays SðnÞ0

� �
23–29 specifically designed for each functionality

on the metasurface, the spatial multiplexed metasurface can
reconstruct different field distributions (U(n)), but its efficiency is
limited. The second approach resorts to adjusting functions U nð Þ

meta
of the metasurface by changing polarizations30–36, incident
angles37 or wavelengths38 of beams as shown in Fig. 1b. By tai-
loring meta-atoms, the structurally multiplexed metasurface
carries polarization-, angle- or wavelength-dependent responses
U nð Þ

meta to reconstruct different field distributions (U(n)). This
method can achieve higher efficiency than the previous one, but
the efficiency is still limited by the coverage of the required phases
that meta-atoms need to achieve. Another approach, as shown in
Fig. 1c, is based on OAM multiplexing chip to read out the pre-set
incident light (Ainc)39, which pre-generate various information-
carrying multifocal beams arrays with corresponding OAM states.
Each ring groove of the chip can out-couple a determined OAM
order40,41, which equivalently provides a “key” array to read out
the distributions U(n) locked in the preset beams by the spatial
light modulator (SLM)39. However, the outcoupling efficiency of
slits is much smaller than that in the previous two methods and it
needs the beam array to illuminate each meta-atom. So far, a
majority of reported multi-tasked metasurface are resorting to the
spatial freedom, structure complexity or pre-modulation with
decoupler, and there is a lack of a convenient way to realize multi-
tasked functionality by intrinsic properties of light.

In this paper, we report a transmission-type multi-momentum
meta-transformer, which transforms the intrinsic phases of OAM
(lħ) and LM (k0ħ) of the incidence light, into various distinct
patterns in the same plane (Fig. 1d). The meta-transformer is
made of the minimalist TiO2 nano-fin array (Fig. 1g, h) and
provides a phase profile ψmeta x0; y0ð Þ ¼ 2φ x0; y0ð Þ for the right
circularly polarized beam with spin angular momentum (SAM).
The phase is based on geometric phase and φ(x0, y0) is the
orientation angle of nano-fins as a function of position. For a
given fabricated metasurface, incident beams Uinc(x0, y0) carrying

OAM or LM are able to impart extra phase profiles ψOAM(x0, y0)
or affect impulse response h(k0) to the transmitted light to realize
distinct patterns in the same plane right on axis. A multi-OAM
phase retrieval algorithm is developed to design the OAM meta-
transformer, which can “read out” the order of the incident vortex
beam. To be more specific, an image which tells the order of the
incident vortex beam will be reconstructed at a given plane under
illumination of vortex beam with certain orders as shown in
Fig. 1e. In addition a multi-LM phase retrieval algorithm is
proposed to design a LM meta-transformer, that can reconstruct
patterns “R”, “G” and “B” in the same plane by illuminating it

with red k Rð Þ
0

� �
, green k Gð Þ

0

� �
, and blue k Bð Þ

0

� �
beams, respec-

tively (Fig. 1f). This is due to the impulse response in Eq. 1 which
is k0-dependent. Moreover, such LM meta-transformer has
demonstrated the capability to display vivid colorful images,
thanks to the high-efficiency of the dielectric metasurface and the
on-axis imaging feature for all wavelengths.

Results
Principle of multi-momentum meta-transformer. The meta-
surface consists of a set of amorphous TiO2 nano-fins arranged in
square pixels on a quartz substrate (Fig. 2a). The pixel size is
325 × 325 nm2 and the TiO2 nano-fin is 80-nm-wide, 250-nm-
long and 600-nm-high, which rotates in plane with an orientation
angle φ. When a circularly polarized beam is normally incident
on the metasurface from the side of quartz, the transmitted light
converts to the opposite circular polarization (CP) and acquires a
phase delay of ±2φ (Supplementary Note 2). Lumerical FDTD
solution is employed to optimize the geometrical parameters of
nano-fins, such that the conversion from one CP to the opposite
CP is efficient for the operation in broadband visible range (as
shown in Fig. 2b).

Figure 2c presents the schematic of OAM meta-transformer. A
collimated vortex beam with native phase profile ψOAM (x0, y0)
illuminates the metasurface with its own as-fabricated phase
ψmeta(x0, y0) from the quartz substrate, and the transmitted beam
carries the total phase profile ψT x0; y0ð Þ ¼ ψOAM x0; y0ð Þ þ
ψmeta x0; y0ð Þ on illuminating area (Supplementary Note 3). The
metasurface’s phase function ψmeta(x0, y0), which is fixed after the
fabrication, is defined by the in-plane orientation of nano-fin
array. The extra phase profile ψOAM(x0, y0) from the incident
vortex beam is dynamically changeable. As a degree of freedom of
light, by feeding different spiral phases to the single-phase
metasurface, one meta-transformer can, therefore, provide multi-
ple different phase profiles, resulting in different patterns on the
same plane.

The phase function ψmeta(x0, y0) of OAM meta-transformer is
designed by the multi-OAM phase retrieval algorithm (Supple-
mentary Note 4). The orientation angle of each nano-fin is
determined by the retrieval phase ψmeta(x0, y0). The schematic
diagram of the experimental setup is shown in Supplementary
Fig. 3a and its specification can be found in Supplementary
Note 6. As shown in Fig. 2d, at the given observation plane (z=
60 μm), a judiciously designed metasurface reconstructs an
“apple” pattern under illumination with a collimated Laguerre
Gaussian beam with l(1)=−5, while it shows a “spider”
pattern instead when the OAM of the incident beam is changed
to l(2)= 5. The reconstructed images restore the features of the
designed pattern and the crosstalk is suppressed.

Figure 2e presents the physical principle of LM meta-
transformer. The phase function ψmeta(x0, y0) of a metasurface
is defined by the in-plane orientation of nano-fin array, which
means that the designed metasurface is able to provide the
dispersionless phase profile. In the Fresnel region, the impulse
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response h of Eq. 1 is

h x; y; zð Þ ¼ eik0z

iλz
ei

k0
2z x

2þy2½ � ð2Þ

Therefore, when collimated monochromatic beams illuminate the
metasurface, this dispersionless phase profile ψmeta(x0, y0) can
control the monochromatic beams with different LMs to achieve
different E-field distribution in a given plane (shown in Fig. 2e).

To realize the LM meta-transformer, the key idea is to
reconstruct LM-dependent patterns in the same plane. In the
visible region, the monochromatic beams with different LMs
represent different colors. So three-primary colors (red 633 nm,
green 532 nm, and blue 488 nm) are chosen in this work. Based
on the k0-dependent impulse response, the multi-LM phase

retrieval algorithm (Supplementary Note 5) is deployed here to
calculate the phase distribution ψmeta(x0, y0). Hence, the
wavelength-dependent patterns are reconstructed in the same
plane (at Z0) and the unwanted patterns are moved out of
the observed plane. In this design, based on the retrieval phase
profile ψmeta(x0, y0), the nano-fins (600 × 600) with rotation
angles are fabricated on a total area of 192 × 192 μm2. The
schematic diagram of the experiment setup of color meta-
hologram is shown in Supplementary Fig. 3b and the specification
of the experiment setup can be found in Supplementary Note 6.
The image is captured by a CCD camera. Figure 2f shows the
holographic images of letter patterns “R”,”G”,”B” at a certain
distance (z=195 μm), corresponding to the RGB color incident
beams (633 nm, 532 nm, and 488 nm). The images corresponding
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Fig. 1 Comparative elaborations of multi-tasked metasurfaces (a–c) and our multi-momentum meta-transformer (d–h). a Schematic illustration of a
spatially multiplexed metasurface21–29. The spatial multiplexed metasurface reconstructed several distinguished field distribution UðnÞ based on the spatial
separations of metasurface SðnÞ0

� �
or observed region (S(n)). The x0 and y0 (x, y, and z) are the coordinated variables of the metasurface plane S0

(observation region S). b Illustration of a structurally multiplexed metasurface30–34,37,38. The structurally multiplexed metasurface reconstructed several
distinguished field distribution UðnÞ based on the metasurface function UðnÞ

meta. c Schematic illustration of a multi-beam meta-opener39. The multi-beam
meta-opener is formed by several kinds of “key arrays”, which is used to read out the distributions UðnÞ carried by the preset incident beams. d Illustration
of transmission-type multi-momentum meta-transformer. The multi-momentum meta-transformer decoder phase profile is implemented with TiO2 nano-
fin array with in-plane orientations on a quartz substrate. It controls multi-beams with different momenta (l(n) and k nð Þ

0 ) to reconstruct corresponding field
distributions UðnÞ Schematic of the OAM meta-transformer. Under the illumination of vortex beams with right circular polarization (RCP), the decoder can
generate distinct images at the same plane with left circular polarization (LCP). f Schematic of the LM meta-transformer. Under the illumination of different
LM beams with RCP, the meta-transformer can generate distinct LM-dependent field distributions at the same region on optical axis. g Top-view scanning
electron microscopy (SEM) images of a partial region of the fabricated TiO2 nano-fins arrays. Scale bar: 2 μm. h Oblique-view SEM image. Scale bar: 2 μm.
Each TiO2 nano-fin represents a phase pixel as defined in the meta-transformer
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to the RGB color incident beams are independent from each
other, and the cross-talk among different LMs is eliminated, due
to k0-dependent impulse response.

Discussion
The OAM meta-transformer can now work as an OAM displayer,
as demonstrated in Fig. 3a. This meta-transformer is formed by
300 × 300 nano-fins on the total area 97.5 × 97.5 μm2. As shown
in Fig. 3b, the designed OAM meta-transformer reconstructs the
patterns “0”, “3” and “6” with the incident 0th-, 3rd- and 6th-order
vortex beams, respectively. Compared with Fig. 2d, the OAM
meta-transformer in Fig. 3b has lower phase difference among the
incident vortex beams and encodes more OAM states, which may
reduce the performance. Nevertheless, the reconstructions in
Fig. 3b are clearly recognizable. The reconstructed patterns pre-
sent the incident beam’s topological charge values, which suggests
a potential application of OAM topological charge displayer
(OAM detection by direct reading) with such OAM meta-
transformer.

Based on k0-dependent impulse response, the LM meta-
transformer generates LM-dependent patterns on the identical
position (Fig. 2e, f). Under illumination of red, green and blue
beams simultaneously, these generated patterns overlapping each

other enable the realization of colorful holographic images
(Supplementary Note 7). The colorful holographic images contain
not only three-primary colors (RGB) but also their secondary
colors (cyan, magenta, yellow, as well as white). Moreover, the
LM meta-transformer can also support complex patterns with
gradient color (in Fig. 4a, b). Figure 4b reports the simulation and
experimental results for each color and their superposition. These
results indicate the accurate spatial control of the reconstructed
images, and the crosstalk among different LMs is eliminated. The
key feature for such gradient color image is that the color gamut
spans the whole color triangle. Therefore, the LM meta-transform
has the capability to display vivid colorful image.

The capability is a critical issue for the multi-tasked metasur-
face. Based on the multi-momentum phase retrieval algorithm
provided in this work, a single meta-transformer is able to sup-
port 5 OAM states ranging from −8 to 8 or 6 LM states in
the visible region (Supplementary Note 8). With the help of
the polarization-dependent response21,42,43 of TiO2 nano-fins, the
number of patterns encoded in a meta-transformer can increase
to 9 for OAM or 11 for LM. Furthermore, the capability of a
meta-transformer can also be improved by increasing the number
of units25, and widening the multi-momentum state region.
Besides, by considering the donut shapes of vortex beams,
introducing random phase mask44, and combining the LM and
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Fig. 2 Principle and demonstration of multi-momentum meta-transformer. a Geometry of the designed unit cell structure representing one pixel in the meta-
transformer, with the periodicity of 325 nm. The TiO2 nano-fin parameters are w= 80 nm, l= 250 nm, and h= 600 nm. The in-plane rotating angle φ
of nano-fin will introduce the geometric phase of 2φ for the incident beam with RCP. b Measured conversion efficiency of the meta-transformer. The
conversion efficiency is defined as the optical power of the transmitted light with opposite CP divided by the incident optical power. c Design principle of
OAM meta-transformer. Under the illumination of vortex beam 1 (l(1)=−5) with RCP, the transmitted beam with opposite CP carries the total phase profile
ψOAM¼�5 x0; y0ð Þ þ ψmeta x0; y0ð Þ and reconstructs “apple” pattern in the observation plane. When using vortex beam 2 (l(2)= 5) with RCP, the total phase
profile of the transmitted beam is ψOAM¼5 x0; y0ð Þ þ ψmeta x0; y0ð Þ, which causes the reconstructed pattern change to a spider-shaped pattern. d Simulated
(top) and measured (bottom) reconstructed patterns by vortex beam 1 (l(1)=−5) (left) and vortex beam 2 (l(2)= 5) (right). Scale bar: 20 μm. e Design
principle of LM meta-transformer. Under the illumination of right circularly polarized beam with LM ¼ k Rð Þ

0 �h, the transmitted beam with opposite CP carry
the dispersionless phase profile of metasurface ψmeta (x0, y0). Due to the convolution of Uinc x0; y0ð Þexp iψmeta x0; y0ð Þ� �

and impulse response h x; y; z; k Rð Þ
0

� �
,

the transmitted beam reconstructs patterns at the observation plane. Because the impulse response h is k0-dependent, by changing LM of incidence, the
reconstructed images “R”, “G” and “B” components can be shifted to one identical plane (z= Z0). f Simulated (top) and experimental (bottom)
reconstruction of three-primary color holograms at the imaging plane. Scale bar: 20 μm. The original “spider” image was obtained from PNG image website
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OAM simultaneously in the phase retrieval algorithm, the
multi-momentum meta-transformer has the potential to
remarkably increase the carried information states.

In summary, we report a synergetic strategy of engaging OAM
and LM of the incident beam with a single-phase metasurface,
which significantly enriches the output of reconstructed patterns.
OAM introduces the additional phase information from the
incident beam, while the LM affects the phase information of
impulse response. These two momentum degrees of freedom, in
principle lead to infinite combined states, which enables meta-
surface with a large number of functions and may lead to new
opportunities in 3D imaging, anti-counterfeiting, optical com-
munication, and real-time detection.

Methods
Numerical simulation. The amorphous TiO2 nano-fins were optimized by
Lumerical FDTD Solution (a commercial software). In this simulation, TiO2 nano-
fins with measured refractive index were placed on quartz substrate. Two sources
polarized along x- and y-axes with a 90° phase shift was used to form the right
circularly polarized incident beam, and this beam illuminated TiO2 nano-fins from
the substrate side. The periodic boundary condition was used along x- and y-
directions, and the perfect matched layer (PML) was chosen along z-direction.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The codes that support the plots within this paper and other findings of this study are
available from the corresponding authors upon reasonable request.
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