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Abstract

For years, GluN3A was solely considered to be a dominant-negative modulator of NMDARs,

since its incorporation into receptors alters hallmark features of conventional NMDARs com-

posed of GluN1/GluN2 subunits. Only recently, increasing evidence has accumulated that

GluN3A plays a more diversified role. It is considered to be critically involved in the matura-

tion of glutamatergic synapses, and it might act as a molecular brake to prevent premature

synaptic strengthening. Its expression pattern supports a putative role during neural devel-

opment, since GluN3A is predominantly expressed in early pre- and postnatal stages. In this

study, we used RNA interference to efficiently knock down GluN3A in 46C-derived neural

stem cells (NSCs) both at the mRNA and at the protein level. Global gene expression profil-

ing upon GluN3A knockdown revealed significantly altered expression of a multitude of neu-

ral genes, including genes encoding small GTPases, retinal proteins, and cytoskeletal

proteins, some of which have been previously shown to interact with GluN3A or other iGluR

subunits. Canonical pathway enrichment studies point at important roles of GluN3A affect-

ing key cellular pathways involved in cell growth, proliferation, motility, and survival, such as

the mTOR pathway. This study for the first time provides insights into transcriptome

changes upon the specific knockdown of an NMDAR subunit in NSCs, which may help to

identify additional functions and downstream pathways of GluN3A and GluN3A-containing

NMDARs.
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Introduction

Ever since its discovery in 1995, the N-methyl-D-aspartate receptor (NMDAR) subunit

GluN3A was considered to be a dominant-negative regulator of NMDARs by abolishing their

Mg2+ block and by reducing their Ca2+ permeability and current responses [1–5]. Conse-

quently, it was generally assumed that GluN3A has a neuroprotective function by decreasing

glutamate-induced excitotoxicity [6–9]. Recently, evidence for a more diverse role of the

GluN3 subunits than simply being down-regulators of NMDAR function has accumulated.

GluN3 was suggested to support the developmental switch from GluN2B and GluN2D (prena-

tally) to GluN2A and GluN2C subunits (postnatally) [10, 11] via the interaction with PACSIN1

(protein kinase C and casein kinase substrate in neurons protein 1), which is involved in cla-

thrin-mediated endocytosis and actin rearrangement [12]. Immature GluN1/GluN2B/

GluN3A triheteromers are rapidly removed from glutamatergic synapses, undergoing endocy-

tosis and transport to early endosomes, a process which relies on the interaction of GluN3A

with PACSIN1 [12]. GluN3A undergoes clathrin-mediated endocytosis also through binding

to the clathrin adaptor complex AP2 [13]. Recently, it was suggested that the incomplete

removal of juvenile GluN3A-containing NMDARs might contribute to the pathophysiology of

Huntington’s disease [14, 15].

Findings in GluN3 mouse models support an involvement of GluN3 subunits in the proper

maturation of glutamatergic synapses. GluN3A-overexpressing mice are severely impaired

both in learning and long-term memory storage and show reduced hippocampal LTP [16].

Moreover, the number and size of synapses in these mice are decreased, as is the density of

dendritic spines [16]. Consistent with these findings, in GluN3A knockout (KO) mice, den-

dritic spine density is increased [2] and glutamatergic synapses mature more rapidly [17].

Thus, GluN3A might act as a molecular brake, which inhibits the premature strenghtening of

glutamatergic synapses [16–18].

In this study, we aimed to further elaborate the role of GluN3A during neural development.

To this end, we used the 46C embryonic stem cell (ESC) system. This murine stem cell line

was generated by cloning the coding sequence (CDS) of eGFP as well as a puromycin resis-

tance gene under control of the Sox1 promoter in E14Tg2a.IV cells [19, 20]. Since Sox1 is the

earliest known neuroectodermal marker [21], the cells fluoresce greenly as soon as they are dif-

ferentiated into neuroepithelial precursor cells (NEPs), which express Sox1. In turn, NEPs can

be differentiated either into neurons via treatment with retinoic acid (RA), or into radial glia-

like neural stem cells (NSCs) via prolonged cultivation in the neuroinductive medium N2B27

supplemented with basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF)

[22–24]. 46C-derived NSCs can then be differentiated into astrocytes via the addition of fetal

calf serum (FCS) [23, 25]. We and others have shown that 46C ESCs and their derivatives

express the appropriate stem cell and differentiation markers [20, 22–26]. In this study, the

expression of GluN3A in 46C-derived cells was determined via quantitative real time PCRs

(qRT-PCRs) and Western blots. Next, an siRNA approach was used to knock down GluN3A

in 46C-derived NSCs, and the knockdown was confirmed both at the mRNA and protein lev-

els. Finally, global gene expression profiling was performed to examine the effect of GluN3A

knockdown on gene expression. Besides a variety of pathways involved in cell growth, prolifer-

ation, motility, and survival being significantly affected by the GluN3A knockdown, we found

that the mRNA expression of several neural genes is affected by the knockdown of GluN3A.

Some of the corresponding gene products have been previously shown to interact with

NMDARs or other iGluR subunits. Although we have previously shown that 46C-derived

NSCs do not express functional NMDARs [27], the NSCs served as an in vitro-system to inves-

tigate the transcriptome changes in neural cells after knockdown of GluN3A. The detected up-
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and downregulated genes can serve as guidance for researchers interested in putative

NMDAR-regulated proteins.

Materials and methods

Synthetic siRNAs against GluN3A

The CDS of GluN3A (Mus musculus; Accession No: NM_001276355) was submitted to the

siRNA services of various companies (Clontech, Eurogentec, GE Dharmacon, Thermo Fisher

Scientific Ambion, and Invitrogen) to receive putative siRNA sequences directed against

GluN3A. Using a scoring system for siRNAs [28], the two highest scoring siRNA sequences

were identified and two scrambled siRNAs were designed (www.siRNAwizard.com/

scrambled.php) as negative controls. All sequences were checked if they match any murine

mRNA other than that of GluN3A using BLAST (Basic Local Alignment Search Tool; blast.

ncbi.nlm.nih.gov./Blast.cgi), which they did not. The four RNA sequences (siRNA1, siRNA2,

scrambled siRNA1, and scrambled siRNA2; Table 1) were synthesized by Microsynth.

Cell culture

46C ESCs were kindly provided by Prof. Austin Smith (University of Cambridge, UK). All

46C-derived cell cultures were maintained at 37 ˚C and 5% CO2. 46C ESCs were cultured in

GMEM containing 10% FCS, 10% tryptose phosphate, 0.1 mM 2-mercaptoethanol, 1.8 mM

glutamine, and 1000 U/ml leukemia inhibitory factor (LIF; Merck Millipore). NEPs were dif-

ferentiated from 46C ESCs by incubation in a neuroinductive medium (N2B27) as described

previously [20]. NSCs were differentiated from NEPs by the prolonged cultivation in N2B27

medium and the addition of EGF and bFGF (both 10 ng/ml; Preprotech) [22]. NEPs were dif-

ferentiated into neurons via the treatment with RA (10 μM) for 10 days, and NSCs were differ-

entiated into astrocytes by adding 5% FCS to the medium for 14 days. Cells were allowed to

grow for 2 days before RNA or protein isolation.

Transfection of 46C-derived NSCs

To evaluate the most efficient transfection method for 46C-derived NSCs, cells were plated on

3.5 cm cell culture dishes and transfected with an eGFP plasmid. The following lipofection

reagents were compared: Arrest-In (Open Biosystems), FuGene HD (Roche), Gene Juice

(Novagen), LipoD293 (SignaGen Laboratories), Lipofectamine Plus (Invitrogen), Metafectene

Easy (Biontex), Metafectene Pro (Biontex), TransIt Neural (Mirus), and X-tremeGENE siRNA

(Roche) (Table 2). If not explicitly demanded otherwise by the manufacturer’s instructions,

46C-derived NSCs were transfected 4 hours after passaging. Cytotoxicity and transfection rate

were analyzed 48 hours after transfection by counting the number of dead and transfected

cells, respectively. Dead cells were identified by Trypan Blue (Sigma Aldrich) staining, trans-

fected cells by their green fluorescence. Afterwards the percentage of both dead and transfected

cells was calculated.

Table 1. Synthetic siRNA and scrambled siRNA sequences.

Sequence (5’!3’)

siRNA1 cacccacaauggugauguutt

scrambled siRNA1 gacaguaccgcauucuagutt

siRNA2 gaagaaugauccagagaaatt

scrambled siRNA2 gaggcaacaacaauagauatt

https://doi.org/10.1371/journal.pone.0192242.t001
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For the lipofection of 46C-derived NSCs with GluN1-1a-peGFP-N1, 1x106 cells were plated

on 10 cm cell culture dishes 4 hours prior to transfection and transfected with 10 μ plasmid

DNA and 20 μl FuGene HD (Roche).

For the lipofection of 46C-derived NSCs with synthetic siRNAs, X-tremeGENE siRNA

(Roche) was used. To this end, 1x105 46C-derived NSCs were plated on 3.5 cm cell culture

dishes 24 hours prior to transfection and transfected with 12 μg siRNA and 60 μl X-treme-

GENE siRNA (Roche).

Reverse transcription and quantitative real time PCR

Total RNA was isolated from cell cultures and control tissue (mouse whole brain from postna-

tal day 3; P3) using the GenElute Mammalian Total RNA Mini-Kit (Sigma-Aldrich) or

NucleoSpin RNA Kit (Macherey-Nagel). Prior to RNA isolation, cells were gently washed with

1 X PBS to remove dead cells and residual medium. 2 ml of 1 X PBS were added to the cell cul-

ture dishes, and the cells were dissociated mechanically from the cell culture vessels with sterile

cell scrapers. The cell suspension was then briefly centrifuged for 5 min at 1000 rpm to pellet

the cells. Whole brain RNA of neonatal (P3) C57BL/6 mice served as positive control. Frozen

whole mouse brains (P3) were kindly provided by the laboratory of Prof. Hanns Hatt (Ruhr

University Bochum, Germany). All animal procedures were performed in accordance with the

German Animal Welfare Act. Brains were dissected into hemispheres; a single hemisphere was

cut into small pieces with a scalpel and suspended in 2 ml of 1 X PBS. The following steps of

RNA isolation for both cells and control tissue were performed following the manufacturer’s

instructions. The total RNA isolation procedure included a DNase I (Promega) treatment on

the purification column according to the manufacturer’s protocol. To generate cDNA, 2 μg of

RNA per sample was reverse-transcribed by SuperScriptII Reverse Transcriptase (Thermo

Fisher Scientific Invitrogen) using random hexamer primers (Promega). Subsequently, 50 ng

of cDNA per sample were used as template in qRT-PCRs on the Roche Light Cycler 2.0 using

the FastStart DNA MasterPLUS SYBR Green I Kit (both Roche Diagnostics) or the QuantiTect

SYBR Green RT-PCR Kit (Qiagen) according to the manufacturers’ instructions. For primer

sequences, see Table 3. qRT-PCR results were analyzed using Roche LightCycler Software 3.5

(Roche Diagnostics).

The qRT-PCR reaction was performed with an initial pre-incubation for 10 min at 95 ˚C,

followed by 40 amplification cycles (95 ˚C for 10 s, 59 ˚C for 10 s, and 72 ˚C for 20 s). In addi-

tion, melting curve analysis was performed to analyse the specificity of the primers and the

amplified DNA fragment. For this, at the end of each qRT-PCR run, the temperature was

raised from 65 ˚C to 95 ˚C at a rate of 0.1 ˚C/s and the fluorescence in the samples was

Table 2. Transfection conditions of different lipofection reagents. 46C-derived NSCs were plated in 3.5 cm cell culture dishes.

Lipofection reagent eGFP plasmid DNA Hours (after passaging) Cell density

10 μl Arrest-In 2 μg 24 2x105

6 μl FuGene HD 3 μg 4 1x105

3 μl Gene Juice 3 μg 24 2x105

15 μl LipoD293 5 μg 24 5x105

4 μl Lipofectamine + 16 μl Plus 1.6 μg 4 3x105

20 μl Metafectene Easy 20 μg 0 7x105

6 μl Metafectene Pro 3 μg 4 3x105

10 μl TransIt Neural 2.5 μg 24 3x105

60 μl X-tremeGENE siRNA 12 μg 24 1x105

https://doi.org/10.1371/journal.pone.0192242.t002
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measured continously. Roche LightCycler Software 3.5 (Roche Diagnostics) was used to calcu-

late the melting point.

Quantitative real time data was obtained by mathematical modeling [29]. The expression of

the genes of interest was normalized to the mean expression of the three housekeeping genes

β-actin, GAPDH, and ubiquitin (2ΔCt method). To additionally compare the expression of

genes in different 46C-derived cell types to their expression in a control, the data was also nor-

malized to the expression of genes in mouse whole brain (2ΔΔCt method). Statistics were calcu-

lated using Prism 5.0 software (GraphPad).

Transcriptome analysis

Total RNA was isolated from the cells using the GenElute Mammalian Total RNA Mini Kit

(Sigma-Aldrich), and 2 μg of RNA were used in reverse transcriptions to generate cDNA. Sub-

sequently, cRNA was generated from cDNA and labelled with digoxigenin (DIG) in an in vitro
transcription reaction using the RT Labeling Kit (Thermo Fisher Scientific Applied Biosys-

tems). The cRNA was then hybridized to AB1700 murine microarray chips and detected fol-

lowing the manufacturer’s protocol (Thermo Fisher Scientific Applied Biosystems). With an

AB1700 Chemiluminescent Microarray Analyzer (Thermo Fisher Scientific Applied Biosys-

tems), the expression of 32 966 validated murine genes was analyzed. For each condition (cells

transfected with either a mixture of GluN3A siRNA1/GluN3A siRNA2 or with a mixture of

Table 3. Primers used in qRT-PCRs.

Gen Sequence 5’!3’

GluN1 gctgtacctgctggaccgct

gcagtgtaggaagccacgatgatc

GluN2A gctacgggcagacagagaag

gtggttgtcatctggctcac

GluN2B gctacaacacccacgagaagag

gagagggtccacactttcc

GluN2C aaccacaccttcagcagcg

gacttcttgcccttggtgag

GluN2D cgatggcgtctggaatgg

agatgaaaactgtgacggcg

GluN3A gatggagctggacttggtca

ccagttgttcatggtcaggat

GLAST ccaaagcaacgagaagagc

ctccccagggaacgaaaagta

Pax6 agttcttcgcaacctggcta

cccgggcaaacacatctgga

Prominin gacactccctatctgctcaag

gctcttccttcctgtgttatc

Nestin ggaccggttgcagcccactga

ggcaagggggaagagaaggatgt

β-actin cgttgacatccgtaaagacct

caaagccatgccaatgttgtctct

GAPDH catcaacgaccccttcatt

ctccacgacatactcagcac

Ubiquitin ctgggcggttgcttt

ggttgactccttctggatgtt

https://doi.org/10.1371/journal.pone.0192242.t003
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scrambled siRNA1/scrambled siRNA2), two different batches of 46C-derived NSCs were

transfected to measure two biological replicates; for each biological replicate two technical rep-

licates were measured as well, totaling 4 replicates per condition (2 technical replicates x 2 bio-

logical replicates). The microarray data were extracted and median-normalized. Data quality

was determined using a QC procedure [30]. Data were normalized using NeONORM with

k = 0.02 [31–33]. Subtraction profiling was performed on merged technical replicates for each

biological replicate as described previously [34, 35] using the CDS test [36]. Differentially

expressed genes were classified using Ingenuity Pathway Analysis software to detect network

and pathway enrichments. Transcriptome data were deposited in the public database MACE

(http://mace.ihes.fr) using Accession No: 3109613596.

Protein biochemistry

Total membrane proteins of cell cultures and control tissue (whole brain from P3 C57BL/6

mice; kindly provided by the laboratory of Prof. Hanns Hatt, Ruhr University Bochum, Ger-

many) were prepared by hypotonic lysis. To this end, cells were gently washed with 1 X PBS to

remove dead cells and residual medium. 2 ml of 1 X PBS were added to the cell culture dishes,

and the cells were dissociated mechanically from the cell culture vessels with sterile cell scrap-

ers. The cell suspension was then briefly centrifuged for 5 min at 1000 rpm to pellet the cells.

Frozen whole mouse brains (P3) were dissected into hemispheres, and a single hemisphere

was cut into small pieces with a scalpel and suspended in 2 ml of 1 X PBS. Cells and tissues

were incubated in lysis buffer (10 mM HEPES/KOH, 1.5 mM KCl, 10 mM MgCl2, 0.5 mM

DTT) for 15 min at 4 ˚C. Subsequently, the samples were transferred into a douncer and the

cell membranes were disrupted by approximately 20 strokes with a loose-fitting pestle. The

homogenous cell solution was then centrifuged for 10 min at 2000 rpm at 4 ˚C, and the super-

natant was ultracentrifuged to pellet membrane-bound proteins (100 000 x g; 1 h). The mem-

brane protein pellet was resuspended in 2 X Laemmli buffer with urea such that 25 μl buffer

was used per 1x106 cells. The cell number was determined by counting an aliquot of the cell

nuclei in a Neubauer counting chamber.

Plasma membrane proteins of cell cultures were isolated using biotinylated concanavalin A

(10 μM; Sigma-Aldrich) followed by ultracentrifugation (100 000 x g; 1 h). A sample of the

supernatant, which contains total protein, was collected prior to the following precipitation.

The remaining supernatant was precipitated with streptavidin-agarose beads (Fluka), incu-

bated for 3 hrs and again pelleted by a 2-min spin at 13 000 x g. The final pellets were boiled in

Laemmli buffer (containing urea) for 10 min to disrupt protein binding to the beads.

For SDS-PAGE (7.5% acrylamide), 50 μg of membrane proteins were loaded per sample.

After transferring the proteins to nitrocellulose membranes, the membranes were reversibly

stained with Ponceau S (0.2% Ponceau S, 3% trichloroacetic acid, 3% sulfosalicylic acid) to

check for the proper transfer of proteins onto the membrane. For immunoblot analysis, unspe-

cific binding sites of the nitrocellulose membranes were blocked by incubation for one hour in

blocking solution (5% dry milk powder w/v in PBS-T) at room temperature and under con-

stant agitation. The membranes were then washed twice for 5 min each with 1 X PBS-T and

subsequently incubated with the appropiate primary antibody (1 h at room temperature under

constant agitation). The following primary antibodies were used: anti-calnexin (1:500 in 1 X

PBS-T; Santa Cruz Biotechnology), anti-GluN3A (1:1000 in 1 X PBS-T; Merck Millipore

Upstate), and anti-GluN1 (1:1000 in in 1 X PBS-T; Merck Millipore Upstate). For detection,

appropriate HRP-conjugated secondary antibodies (1:10 000 in blocking solution; Sigma-

Aldrich) were used. For the removal of antibodies from previously probed Western blots to

allow reprobing of the membranes with another antibody, the membranes were incubated for
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2 h in stripping buffer (25 mM glycine; pH 2.0, 1% SDS). Densitometric analysis of Western

blots was performed with the Fiji/ImageJ 1.51n software [37, 38].

For immuncytochemical stainings, 46C-derived NSCs were briefly washed twice with PBS/

A (PBS + 0.1% (w/v) BSA). The cells were fixed with 4% (w/v) PFA for 10 min at room temper-

ature and incubated with the primary antibody diluted in PBT1 (PBS + 1.0%(w/v) BSA + 0.1%

(v/v) Triton X-100) at RT for 30 min. The following primary antibody was used: anti-GluN3A

(1:100; Santa Cruz Biotechnology). After incubation with the primary antibody, the incubation

with the Cy3-coupled species-specific secondary antibody (1:500; Dianova) diluted in PBS/A

was performed at RT for 30 min. Finally, the nuclei were stained with Hoechst 33342 (1 μg/ml;

Thermo Fisher Scientific) and mounted in PBS/glycerol (2:1). Pictures were taken at an Axio-

plan2 microscope with the AxioCam HRc camera using the AxioVision 4.4 and 4.5 software

(Zeiss).

Results

Expression of GluN3A in 46C-derived NSCs

First, the mRNA expression of GluN3A in different 46C-derived cell types (ESCs, NEPs,

NSCs, neurons, and astrocytes) was investigated by qRT-PCRs (Fig 1). GluN3A transcripts

were expressed in all 46C-derived cell types, even weakly in undifferentiated ESCs (approxi-

mately 0.8% compared to its expression in mouse whole brain). Notably, the transcript

expression of GluN3A in NSCs was approximately 70% of that observed in early neurons dif-

ferentiated from 46C-derived NEPs and 26% compared to its expression in mouse whole brain

P3. To investigate GluN3A protein expression in 46C-derived NSCs, total membrane fractions

of NSCs were analyzed via Western blot. GluN3A is expressed at the protein level in 46C-

Fig 1. Expression of GluN3A mRNA in 46C-derived cells. GluN3A was expressed in all 46C-derived cells at the

mRNA level and its transcript expression in 46C-derived NSCs amounted to 26% of its expression in mouse whole

brain. Data represent means +/- SEM; there were no statistically significant differences in GluN3A expression between

either of the depicted cell types as tested by one-way ANOVA followed by Tukey’s multiple comparison test; n = 3

(ESCs, NEPs, and astrocytes), 6 (neurons), or 21 independent experiments (NSCs).

https://doi.org/10.1371/journal.pone.0192242.g001
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derived NSCs and in the positive control (protein isolated from mouse whole brain P3), but

not in undifferentiated 46C ESCs (Fig 2A). Additionally, the plasma membrane expression of

GluN3A was investigated in GluN1-transfected 46C-derived NSCs (Fig 2C). GluN3A protein

expression was detected in total protein isolated from NSCs, but not in NSC plasma membrane

protein. GluN1 surface expression in the same plasma membrane protein preparations of

GluN1-transfected 46C-derived NSCs is shown to demonstrate that the biotinylated concanav-

alin A-treatment of NSCs successfully enriched plasma membrane proteins. Immuncytochem-

ical stainings of 46C-derived NSCs for GluN3A confirmed its expression in the cytoplasm

(Fig 2D).

Synthetic siRNA-mediated knockdown of GluN3A in 46C-derived NSCs

In order to target as many cells as possible, the most efficient transfection method for 46C-

derived NSCs was determined beforehand by transfecting an eGFP plasmid using various lipo-

fection reagents. Whenever possible, 46C-derived NSCs were transfected 4 hrs after passaging,

which was previously determined to be the best transfection time point for 46C-derived NSCs.

However, some lipofection reagents required to be used at different time points (0 h after pas-

saging, or 24 hrs after passaging). For the transfection with the synthetic siRNAs, we used X-

tremeGENE siRNA (Roche), which was specifically developed to deliver synthetic siRNAs into

cells and yielded satisfying transfection results in the transfection experiments with the eGFP

plasmid (Fig 3). Since the synthetic siRNAs are considerably smaller than the eGFP plasmid, it

can reasonably be assumed that the transfection rate with X-tremeGENE siRNA was at least

comparable to the eGFP plasmid control. Moreover, the transfection rate of siRNAs may even

be significantly higher than the transfection rate of the eGFP plasmid, as suggested by the

strength of knockdown of the target mRNA (see below).

48 hours post transfection, the knockdown of GluN3A was analyzed both at the mRNA and

at the protein level. To verify the knockdown of GluN3A transcripts in transfected 46C-

derived NSCs, qRT-PCRs were performed (Fig 4A). While the mRNA expression of GluN3A

did not differ significantly between non-transfected and scrambled siRNA-transfected 46C-

derived NSCs, GluN3A transcripts were significantly downregulated in 46C-derived NSCs

transfected with either siRNA1 or siRNA2 compared to 46C-derived NSCs transfected with

scrambled siRNA1 or scrambled siRNA2, respectively (p< 0.001 and p< 0.01). Compared to

non-transfected 46C-derived NSCs, the mRNA expression of GluN3A was decreased to

approximately 24% in 46C-derived NSCs transfected with siRNA1 or siRNA2. Fig 4B shows

an exemplary image taken after qRT-PCR products were separated by agarose gel electropho-

resis to visualize the DNA fragments. Whereas the signals of the bands of the housekeeping

genes β-actin and ubiquitin are of the same strength in the cDNA sample from 46C-derived

NSCs transfected with scrambled siRNA1 and in the cDNA sample from 46C-derived NSCs

transfected with siRNA1 directed against GluN3A, the bands of the GluN3A fragment are con-

siderably weaker in cDNA from 46C-derived NSCs transfected with siRNA1 directed against

GluN3A than in cDNA from scrambled siRNA1-transfected 46C-derived NSCs. The same

holds true for the 46C-derived NSCs transfected with scrambled siRNA2 or siRNA2 directed

against GluN3A, respectively. Non-transfected 46C-derived NSCs show weak GluN3A

expression.

To further verify the identity of the GluN3A qPCR products, the melting points of the

amplified fragments were determined after the qRT-PCRs. For this, the temperature was raised

from 60 to 95 ˚C at a rate of 0.1 ˚C/s and the fluorescence in the PCR samples was measured

continuously. Fig 4C shows the melting points of GluN3A and of β-actin, which were ampli-

fied from cDNA isolated either from 46C-derived NSCs transfected with siRNA1 directed
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Fig 2. Protein expression of GluN3A in whole brain, 46C ESCs, non-transfected NSCs, and GluN1-transfected

NSCs. A: GluN3A expression in total protein preparations. Bands at the expected molecular weight of GluN3A (130

kDa) were visible in the positive control (mouse whole brain P3) and in non-transfected 46C-derived NSCs.

Undifferentiated 46C ESCs did not express GluN3A proteins. B: Expression of the housekeeping protein calnexin (90

kDa) as a control. C: GluN3A expression in total and plasma membrane protein preparations from GluN1-transfected

46C-derived NSCs. GluN3A protein expression was not detectable in the plasma membrane fraction of 46C-derived

NSCs. GluN1 (130 kDA) surface expression in GluN1-transfected 46C-derived NSCs in the same total and plasma

membrane protein preparations is shown to demonstrate that the biotinylated concanavalin A-treatment of NSCs

successfully enriched plasma membrane protein. D: 46C-derived NSCs were immuncytochemically stained for

GluN3A (red fluorescence), and cell nuclei were stained with Hoechst 33342 (blue fluorescence). The staining

confirmed the expression of GluN3A in the cytoplasm of 46C-derived NSCs. Scale bars: 50 μm.

https://doi.org/10.1371/journal.pone.0192242.g002
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against GluN3A or from 46C-derived NSCs transfected with scrambled siRNA1. Whereas the

melting curves of the β-actin fragment show one single melting point at approximately 91 ˚C,

the melting curves of GluN3A differ. In cDNA from 46C-derived NSCs transfected with

scrambled siRNA1, its melting curve shows one single melting point (at approximately 88 ˚C),

while in cDNA from 46C-derived NSCs transfected with siRNA1 directed against GluN3A,

the melting curve shows two melting points: one at approximately 86 ˚C and one at approxi-

mately 82 ˚C.

As the abovementioned results point to an efficient knockdown of GluN3A at the mRNA

level, we next tested whether the GluN3A siRNAs also affected GluN3A protein levels via

Western blot analysis (Fig 5). The Western blot signal at the expected molecular weight of

GluN3A (130 kDa) was substantially weaker in membrane protein isolated from 46C-derived

NSCs transfected with siRNA1 or siRNA2 directed against GluN3A when compared to mem-

brane protein isolated from 46C-derived NSCs transfected with scrambled siRNA1 or scram-

bled siRNA2 (Fig 5A and 5C). Additionally, membrane protein isolated from mouse whole

brain P3 and from undifferentiated 46C ESCs was applied as positive and negative control,

respectively. In contrast, the Western blot signals obtained by immunodetection with an anti-

body directed against the housekeeping protein calnexin were equally strong in all samples

(Fig 5B and 5D), thus proving that approximately the same amount of protein had been

applied in all lanes. For all samples, the signal intensities for GluN3A were analyzed densito-

metrically and normalized to the signal intensity of calnexin. Thus, the normalized protein

expression of GluN3A was determined. Additionally, the normalized protein expression of

GluN3A in siRNA1- and siRNA2-transfected 46C-derived NSCs was further normalized to its

expression in scrambled siRNA1- or scrambled siRNA2-transfected cells, respectively. The

Fig 3. Cytotoxicity and transfection rate of various lipofection reagents for 46C-derived NSCs. 46C-derived NSCs were transfected with an eGFP plasmid

using various lipofection reagents. If the corresponding transfection protocol allowed to freely choose the transfection time point, NSCs were transfected 4 hrs

after passaging. Otherwise, cells were transfected as suggested by the reagent’s manual (0 h or 24 hrs after passaging). X-tremeGENE siRNA (Roche) was used

to transfect 46C-derived NSCs with synthetic siRNAs in the following experiments.

https://doi.org/10.1371/journal.pone.0192242.g003
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densitometric analysis showed that compared to the scrambled transfected cells, the protein

expression of GluN3A was downregulated to approximately 10% after transfection with

siRNA1 and to approximately 22% after transfection with siRNA2 (Fig 5E). In summary, the

transfection of synthetic siRNAs proved to be an efficient tool to induce a knockdown of

GluN3A in 46C-derived NSCs.

To verify that the knockdown of GluN3A did not alter the neural character of the stem

cells, transfected cells were analyzed for their expression of a set of NSC and radial markers as

Fig 4. siRNA-mediated knockdown of GluN3A mRNA in 46C-derived NSCs. 46C-derived NSCs were either transfected with scrambled siRNA or siRNA directed

against GluN3A. A: qRT-PCRs were performed to analyse the knockdown of GluN3A at the mRNA level. GluN3A was significantly downregulated upon transfection

with siRNA against GluN3A. There were no statistically significant differences in GluN3A expression between non-transfected NSCs and NSCs transfected with either

scrambled siRNA1 or scrambled siRNA2. B: Agarose gel electrophoresis after qRT-PCR. The band of GluN3A is much weaker in 46C-derived NSCs transfected with

siRNA1 or siRNA2 directed against GluN3A than in 46C-derived NSCs transfected with scrambled siRNA1 or scrambled siRNA2, respectively. Non-transfected 46C-

derived NSCs show weak GluN3A expression as well. Expected fragment sizes: 368 bp (β-actin), 240 bp (ubiquitin), and 417 bp (GluN3A). C: Melting point analysis

was performed after the qRT-PCRs to determine the melting points of β-actin and GluN3A in transfected 46C-derived NSCs. The melting points of the GluN3A

fragments differed in cDNA isolated from 46C-derived NSCs either transfected with scrambled siRNA1 or with siRNA1 directed against GluN3A, whereas the melting

points of β-actin were identical in both NSC populations. Data represent means +/- SEM; statistical significances were assigned by unpaired Student’s t-test. ��p< 0.01;
���p< 0.001. n = 6-9 independent experiments.

https://doi.org/10.1371/journal.pone.0192242.g004
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well as for their expression of the other NMDAR subunits. Compared to their expression in

46C-derived NSCs transfected with a mixture of scrambled siRNA/scrambled siRNA2, the

mRNA expression of NMDARs (GluN1, GluN2A, GluN2B, GluN2C, GluN2D, and GluN3B)

did not change significantly when 46C-derived NSCs were transfected with a mixture of

GluN3A siRNA1/GluN3A siRNA2 (Fig 6A). Moreover, this also holds true for the mRNA

expression of the NSC and radial glia markers GLAST [39], nestin [40], Pax6 [41], and promi-

nin [42] (Fig 6B).

Transcriptome analysis of 46C-derived NSCs after knockdown of GluN3A

In order to identify downstream targets and pathways of GluN3A, the effects of its knock-

down were investigated by global gene expression profiling. As initial tests showed that the

Fig 5. siRNA-mediated knockdown of GluN3A proteins in 46C-derived NSCs. 46C-derived NSCs were either transfected with scrambled siRNAs or with

siRNAs against GluN3A. A: GluN3A. A strong band at the expected molecular weight for GluN3A (130 kDa) is visible in the positive control (membrane protein

isolated from mouse whole brain P3), but not in the negative control (membrane protein isolated from undifferentiated 46C ESCs). In membrane protein

preparations isolated from 46C-derived NSCs transfected with siRNA1 directed against GluN3A, the protein expression of GluN3A was much weaker than in

46C-derived NSCs transfected with scrambled siRNA1. C: The same holds true for 46C-derived NSCs transfected with siRNA2 directed against GluN3A. B, D:

Expression of the housekeeping gene calnexin (90 kDa). Calnexin expression was not affected by siRNA transfection. E: Densitometric analysis of the signal

intensities of GluN3A and calnexin showed that GluN3A protein expression was reduced to approximately 10% after transfection with siRNA1 and to

approximately 22% after transfection with siRNA2, when compared to scrambled siRNA1- and scrambled siRNA2-transfected cells, respectively.

https://doi.org/10.1371/journal.pone.0192242.g005
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knockdown of GluN3A mRNA was most efficient when a mixture of both siRNAs was used

(see S1 Fig), 46C-derived NSCs were either transfected with scrambled siRNAs1+2 or with

siRNAs1+2 directed against GluN3A. Therefore, the transcriptome of two biological repli-

cates (consisting of two technical replicates each) of 46C-derived NSCs upon GluN3A knock-

down was compared to the transcriptome of 46 NSCs transfected with the scrambled control

siRNAs. Initially, the variability of the generated transcriptome data was monitored by hier-

archical clustering of all biological and technical replicates using the Euclidean Distance of

the signals as a distance metric (Fig 7), revealing that the technical replicates (sample 1 vs.

sample 2, sample 3 vs. sample 4, sample 5 vs. sample 6, and sample 7 vs. sample 8) cluster

together and are more closely related to each other than to their respective biological repli-

cates (samples 1+2 vs. samples 3+4, and samples 5+6 vs. samples 7+8, respectively). Further-

more, the biological replicates of 46C-derived NSCs transfected with scrambled siRNAs and

the biological replicates of 46C-derived NSCs transfected with GluN3A siRNAs are more

closely related within each group (samples 1, 2, 3, 4 for the group of scrambled siRNA and

samples 5, 6, 7, 8 for the group of GluN3A siRNA) than to any sample of the respective con-

trol group.

Transfection of 46C-derived NSCs with a mixture of GluN3A siRNA1 and GluN3A

siRNA2 significantly (p< 0.01) changed the mRNA expression of 749 (2.27%) out of 32 966

murine genes analyzed when compared to 46C-derived NSCs transfected with a mixture of

non-targeting scrambled siRNA1/siRNA2 as a control (Fig 8A). Of these genes, 533 were upre-

gulated and 216 were downregulated (Fig 8A). Fig 8B to 8G exemplarily show genes whose

expression is affected after knockdown of GluN3A in 46C-derived NSCs. Several of these

genes encode for proteins involved in neural function and were clustered into groups based on

the functions of their gene products. Among the regulated genes, 17 encode protein folding

and trafficking proteins, 15 encode transmembrane proteins, 9 encode proteins involved in

cell differentiation and neurogenesis, 8 encode proteins involved in neurotransmission, 5

encode Ca2+-dependent proteins, and 4 encode synaptic proteins.

Fig 6. Expression of NMDAR and NSC marker mRNAs in transfected 46C-derived NSCs. A: NMDARs. B: NSC markers. 46C-derived NSCs were either

transfected with a mixture of scrambled siRNA1/scrambled siRNA2 or with a mixture of GluN3A siRNA1/GluN3A siRNA2. The expression of NMDARs and

NSC markers did not change significantly in 46C-derived NSCs upon transfection with siRNA against GluN3A. Data represent means +/- SEM; statistical

significances were assigned by unpaired Student’s t-test. hk gene = housekeeping gene; n.s. = not significant. n = 3-8 independent experiments.

https://doi.org/10.1371/journal.pone.0192242.g006
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Discussion

GluN3A is stably expressed in 46C-derived NSCs

In this study, we show GluN3A mRNA expression in all 46C-derived cell types, with GluN3A

transcript expression in 46C-derived NSCs being approximately 70% of the level found in

46C-derived neurons. Moreover, 46C-derived NSCs readily express GluN3A at the protein

level. In agreement with our findings, in vivo, GluN3A mRNA expression can also be detected

Fig 7. Hierarchical clustering of transcriptome data. Hierarchically clustered biological and technical replicates of the transcriptome

data using the Euclidean Distance of the signals as a distance metric. scrambl = scrambled siRNA; siGluN3 = siRNA directed against

GluN3A.

https://doi.org/10.1371/journal.pone.0192242.g007

Knockdown of GluN3A in neural stem cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0192242 February 13, 2018 14 / 24

https://doi.org/10.1371/journal.pone.0192242.g007
https://doi.org/10.1371/journal.pone.0192242


Fig 8. Genes affected by the knockdown of GluN3A in 46C-derived NSCs. A: Heatmap of genes statistically significantly (�p< 0.05) differentially

expressed in 46C-derived NSCs upon knockdown of GluN3A. GluN3A was knocked down in 46C-derived NSCs using a mixture of GluN3A siRNA1/

GluN3A siRNA2 (siNR3), which was compared to a mixture of non-targeting scrambled siRNA1/scrambled siRNA2 (siCtrl) used as a control.

Differentially expressed genes were detected using global gene expression profiling. The log2-fold changes (L) for statistically significantly up- (red) and

down-regulated (blue) genes as well as the signal values (S) for two biological replicates per condition (Roman numerals) and the corresponding P-values

(P) are illustrated using a color code. B to G: Examples of regulated genes after knockdown of GluN3A in 46C-derived NSCs. The log2-fold change in

expression rate is depicted for genes significantly up- and downregulated in 46C-derived NSCs transfected with siRNA against GluN3A in comparison to

46C-derived NSCs transfected with scrambled siRNA. Only genes significantly up- or downregulated (�p< 0.05) are depicted. Red = upregulation;

blue = downregulation.

https://doi.org/10.1371/journal.pone.0192242.g008
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from an early stage on. Early GluN3A transcript expression is detected in the embryonic

rodent brain [1, 43, 44], is further upregulated during early postnatal development [1, 2, 4, 44]

and subsequently declines until adulthood [1, 4, 45]. The protein expression of GluN3A takes

a similar course and peaks at P8 [43, 46–50]. Thus, it is conceivable that GluN3A is expressed

both at the mRNA and protein levels in 46C-derived NSCs.

As mentioned above, 46C-derived NSCs expressed GluN3A protein, although not at the

plasma membrane. We have previously shown that the so-called obligatory NMDAR subunit

GluN1 is not yet expressed in 46C-derived NSCs at the protein level [27]. Thus, neither the

assembly of triheterotetrameric functional NMDARs nor the expression of functional excit-

atory glycine receptors composed of GluN1 and GluN3 subunits [51–53] is possible in 46C-

derived NSCs. Consistently, we have reported previously that patch clamp analysis of 46C-

derived NSCs showed no detectable current after application of NMDA and glycine, or gluta-

mate and glycine [27]. Therefore, we did not attempt to investigate any effect of the knock-

down of GluN3A on the survival or proliferation of 46C-derived NSCs. Nevertheless, 46C-

derived NSCs can serve as valuable tools to investigate the consequences of a GluN3A knock-

down in a system of in vitro-differentiated neural cells.

GluN3A is successfully knocked down in 46C-derived NSCs following

synthetic siRNA transfection

In 46C-derived NSCs transfected with either GluN3A siRNA1 or GluN3A siRNA2, GluN3A

mRNA levels were significantly decreased to 24% compared to 46C-derived NSCs transfected

with scrambled siRNA 1 or 2. This siRNA-mediated knockdown of GluN3A in 46C-derived

NSCs was also observed at the protein level. The transfection of scrambled siRNAs did not

alter the expression of GluN3A, neither at the mRNA nor at the protein level. Furthermore,

the mRNA expression of the other NMDAR subunits and of a set of NSC and radial glia mark-

ers was not significantly altered upon knockdown of GluN3A in 46C-derived NSCs. Thus, the

transfection of synthetic siRNAs proved to be a suitable and efficient tool to induce a knock-

down of GluN3A in 46C-derived NSCs.

The knockdown of GluN3A affects the mRNA expression of neural genes

and iGluR-interacting proteins

Global gene expression profiling revealed that the expression of 749 genes was altered upon

knockdown of GluN3A in 46C-derived NSCs. Several of these genes encode for proteins

(potentially) involved in neural function, some of which are of particular interest and thus are

described in more detail below.

Retina-expressed genes. Although GluN3A had initially been cloned from rodent retinal

cDNA [4], only a few studies investigated a possible physiological role of GluN3A in the retina.

Interestingly, functional Ca2+-permeable NMDARs are expressed in rodent and feline retinal

ganglion cells (RGCs) prenatally and in the first postnatal days before eye opening and the

transmission of visual signals [9, 54, 55]. After retinal maturation, i.e. with the onset of light-

evoked signal transmission upon eye opening, functional NMDARs are downregulated. There-

fore, it had been suggested that retinal NMDARs mainly play a role in the formation of retinal

synaptic connectivity and in synaptic fine-tuning at embryonic and early postnatal stages, but

not in the transmission of visual stimuli in the adult retina [54, 55]. Regarding GluN3A, its

protein expression can be detected from P3 on in rodent RGCs. It peaks at P10, and then

slowly decreases, although GluN3A protein is still expressed in the adult retina [9]. Strikingly,

in GluN3A KO mice, NMDA-evoked Ca2+ responses are larger than in wildtype (WT) mice,

indicating that GluN3A-containing NMDARs are present in WT RGCs [9]. Since GluN3A
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decreases the Ca2+ permeability of NMDARs [2, 4, 5], it is tempting to speculate that GluN3A

might play a neuroprotective role in RGCs by decreasing the presumably cytotoxic Ca2+ influx

through NMDARs [56]. This hypothesis is supported by the observation of an increased

NMDA-induced RGC death in GluN3A KO mice compared to WT mice [8].

Upon knockdown of GluN3A in 46C-derived NSCs, the mRNA expression of two retina-

expressed genes was altered in comparison to scrambled siRNA-transfected 46C-derived

NSCs: Gadd45b (growth arrest and DNA damage protein 45b) was upregulated (275% expres-

sion) upon knockdown of GluN3A in 46C-derived NSCs. Interestingly, Gaddb protects RGCs

from apoptosis caused by glutamate excitotoxicity [57], and its upregulation might compensate

for the lack of the presumably neuroprotective GluN3A subunit. Cngb3 (cyclic nucleotide-

gated channel beta 3), was highly upregulated (953% expression). Cyclic nucleotide-gated

channels are expressed in rod and cone photoreceptors where they mediate light-evoked signal

transmission [58].

Small GTPases. Small GTPases are heavily involved in protein trafficking, and several

GTPases regulate AMPAR endocytosis [59]. Furthermore, the small GTPases Rheb (Ras

homologue enriched in brain) and Rac1 (Ras-related C3 botulinum toxin substrate 1) have

been shwon to interact with GluN3A directly or via GTPase-activating proteins [60, 61].

Here, the knockdown of GluN3A in 46C-derived NSCs significantly changed the mRNA

expression of GTPases and regulators of GTPases, some of which have been shown before to

interact with iGluRs. Rab5c (Ras-related in brain 5c), whose expression was upregulated

(289%), regulates AMPAR endocytosis during LTD in an NMDAR-dependent manner [62].

The expression of the small GTPase Arf5 (ADP-ribosylation factor 5; 370%), as well as the

expression of the regulatory protein Rabac1 (Rab acceptor 1; 256%) was also highly upregu-

lated after knockdown of GluN3A in 46C-derived NSCs. These proteins could possibly be

involved in the trafficking of GluN3A-containing NMDARs.

Other genes. NMDARs interact with several cytoskeletal proteins. For example, GluN1

binds to α-actinin, thereby linking the NMDAR complex to the actin cytoskeleton [63]. Fur-

thermore, GluN3A is linked to the cytoskeleton via MAP (microtubule-associated protein) 1B

and 1S [64, 65]. The knockdown of GluN3A in 46C-derived NSCs results in an up-regulation

(429% expression) of MAP1lc3a, one of the light chains of MAP1. Since MAP1B is involved in

the control of neurite outgrowth and axon organization during development [66], its upregula-

tion might also interfere with the development of dendritic spines. Calmodulin 3 (calcium-

modulated protein), which targets (amongst others) CaMKII (Ca2+/calmodulin-dependent

kinase II), is upregulated in 46C-derived NSCs upon GluN3A knockdown (256% expression).

Consistent with these findings, CaMKII has been previously shown to be upregulated in

GluN3A KO mice as well, and the mice show enhanced learning and memory formation, indi-

cating a regulatory role of GluN3A for LTP formation in WT mice [67]. Strikingly, another

upregulated gene upon GluN3A knockdown in 46C-derived NSCs was Pdzk11 (PDZ domain-

containing 11; 227% expression). Pdzk11 contains a single PDZ domain, thus providing a

putative physical link to NMDARs, and interacts with the plasma membrane Ca2+-ATPase

(PMCA) [68], which in turn was suggested to have a neuroprotective function [69]. Since

GluN3A was also suggested to play a neuroprotective role [3, 6, 8, 9], it is tempting to speculate

that its knockdown leads to an increased interaction of Pdzk11 with conventional dihetero-

meric NMDARs and also to an increased interaction with PMCA to compensate for the loss of

GluN3A.

Three tetraspanins were upregulated upon GluN3A knockdown, namely Tspan4, Tspan17,

and Tspan31 (209%, 242%, and 297% expression, respectively). Members of the transmem-

brane family of tetraspanins have been shown to interact with iGluRs in previous studies [70].

Finally, PACSIN1 and PACSIN3 (protein kinase C and casein kinase substrate in neurons
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protein 3) were drastically downregulated upon GluN3A knockdown (27% and 6% expression,

respectively). Although PACSIN1 interacts with GluN3A through the C-terminal domain of

GluN3A, to date no interaction of GluN3A with PACSIN3 has been observed [12]. Neverthe-

less, the strong downregulation of PACSIN3 might indicate an interaction with the NMDAR

complex through other means, e.g. with another NMDAR subunit or an associated protein.

Notably, in 2000, the existence of a large NMDAR multiprotein complex (NRC) has been

discovered via proteomic analysis of mouse forebrain extracts [71]. This receptor-adhesion

molecule complex is composed of 77 proteins, among these cell adhesion proteins, cytoskeletal

proteins, and GTPases, some of which are also significantly regulated in the present microar-

ray study (e.g. calmodulin and MAP2B). However, whereas GluN1, GluN2A, and GluN2B

were detected in the NRC, GluN3A was not [71]. Thus, it is conceivable that triheteromeric

NMDARs interact with slightly different or additional proteins than NMDAR complexes with-

out GluN3A.

Based on the set of genes statistically significantly (p< 0.05) regulated by the knockdown of

GluN3A, we performed canonical pathway enrichment studies in order to identify cellular

pathways significantly impacted (p< 0.01) in this condition (Fig 9A). The observed pathways

cover key cellular functions such as cell growth, proliferation, motility, survival, cell cycle regu-

lation, and translation regulation (Fig 9A). The most significantly affected pathway is the

mechanistic target of rapamycin (mTOR) pathway, involving two direct interaction partners

of GluN3A: Ras homolog enriched in brain (Rheb) [61] and protein phosphatase 2 (PP2A)

[47] (Fig 9B). PP2A activity has been shown to be increased upon GluN3A binding [47] and

the interaction with Rheb has been previously suggested to affect mTOR signaling, whose dys-

regulation has been linked to alterations in spine density [61]. While some of the enriched

pathways (e.g. mTOR or eIF4 and P70S6K signaling) involve PP2A directly, others depend on

the PP2A targets or interaction partners protein kinase C (PKC) [72, 73] (e.g. Insulin receptor

signaling, glioma signaling, VEGF signaling, NGF signaling, and IGF-1 signaling), Janus

kinase 2 (JAK2) [74] (e.g. JAK/Stat signaling, CNTF signaling, and IGF-1 signaling) or cell

division cycle 6 (Cdc6) [75] (e.g. cell cycle regulation). Thus, our findings suggest a possible

functional role of GluN3A within the cellular pathways of its direct interaction partners PP2A

and Rheb.

To summarize, in the present study, the NMDAR subunit GluN3A was efficiently knocked

down at the mRNA as well as at the protein level in 46C-derived NSCs via an siRNA approach.

Following transcriptome analysis, it was revealed that GluN3A affects the mRNA expression of

a number of neural genes, whose corresponding gene products in part have been previously

shown to interact with NMDARs. Canonical pathway enrichment studies identified key cellu-

lar pathways involving the GluN3A interaction partners Rheb and PP2A to be targeted by the

knockdown of GluN3A. Though the mechanisms still need to be investigated in detail in future

studies, our results point to a regulatory function of this non-conventional NMDAR subunit

within biological pathways involved in cell growth, proliferation, and motility as well as cell

survival.

Supporting information

S1 Fig. siRNA-mediated knockdown of GluN3A mRNA in 46C-derived NSCs. 46C-derived

NSCs were either transfected with a mixture of scrambled siRNAs1+2 or with a mixture of siR-

NAs1+2 directed against GluN3A. A: qRT-PCRs were performed to analyse the knockdown of

GluN3A at the mRNA level. GluN3A was significantly downregulated upon transfection with

the mixture of siRNAs1+2 against GluN3A. There were no statistically significant differences

in GluN3A expression between non-transfected NSCs and NSCs transfected with the mixture
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Fig 9. Canonical pathways affected by the knockdown of GluN3A in 46C-derived NSCs. A: Canonical pathway enrichment studies for GluN3A

target genes. Canonical pathways statistically significantly (��p< 0.01) enriched for genes that were statistically significantly (�p< 0.05) affected by

GluN3A knockdown in 46C-derived NSCs were identified using Ingenuity Pathway Analysis software. The –log(P-value) (grey bars) as well as the ratio

(black dots) are illustrated. The P-value threshold (p< 0.01) is shown as a dotted line. B: The complete mTOR pathway (Ingenuity Pathway Analysis) is

illustrated. Connecting arrows are described below the image. Genes statistically significantly (p< 0.05) up-regulated are shown in red, those down-

regulated are shown in green.

https://doi.org/10.1371/journal.pone.0192242.g009
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of scrambled siRNAs1+2 or scrambled siRNA2. Data represent means +/- SEM; statistical sig-

nificances were assigned by unpaired Student’s t-test. ���p< 0.001. n = 3 independent experi-

ments.

(TIF)
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35. Eilebrecht S, Bécavin C, Léger H, Benecke BJ, Benecke A. HMGA1-dependent and independent 7SK

RNA gene regulatory activity. RNA Biol. 2011; 8:143–157. https://doi.org/10.4161/rna.8.1.14261 PMID:

21282977

36. Tchitchek N, Dzib JFG, Targat B, Noth S, Benecke A, Lesne A. CDS: a fold-change based statistical

test for concomitant identification of distinctness and similarity in gene expression analysis. Genomics

Proteomics Bioinformatics. 2012; 10:127–135. https://doi.org/10.1016/j.gpb.2012.06.002 PMID:

22917185

37. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source

platform for biological-image analysis. Nat Methods. 2012; 9:676–682. https://doi.org/10.1038/nmeth.

2019 PMID: 22743772

38. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Meth-

ods. 2012; 9:671–675. https://doi.org/10.1038/nmeth.2089 PMID: 22930834

39. Shibata T, Yamada K, Watanabe M, Ikenaka K, Wada K, Tanaka K, et al. Glutamate transporter

GLAST is expressed in the radial glia-astrocyte lineage of developing mouse spinal cord. J Neurosci.

1997; 17:9212–9219. PMID: 9364068

40. Lendahl U, Zimmerman LB, McKay RD. CNS stem cells express a new class of intermediate filament

protein. Cell. 1990; 60:585–595. https://doi.org/10.1016/0092-8674(90)90662-X PMID: 1689217

41. Zhang X, Huang CT, Chen J, Pankratz MT, Xi J, Li J, et al. Pax6 is a human neuroectoderm cell fate

determinant. Cell stem cell. 2010; 7:90–100. https://doi.org/10.1016/j.stem.2010.04.017 PMID:

20621053

42. Weigmann A, Corbeil D, Hellwig A, Huttner WB. Prominin, a novel microvilli-specific polytopic mem-

brane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epi-

thelial cells. Proc Natl Acad Sci U S A. 1997; 94:12425–12430.

43. Ishihama K, Kogo M, Wakisaka S, Turman JE. Prenatal development of NMDA receptor composition

and function in trigeminal neurons. Arch Histol Cytol. 2005; 68:321–335. https://doi.org/10.1679/aohc.

68.321 PMID: 16477151

44. Sun L, Margolis FL, Shipley MT, Lidow MS. Identification of a long variant of mRNA encoding the NR3

subunit of the NMDA receptor: its regional distribution and developmental expression in the rat brain.

FEBS Lett. 1998; 441:392–396. https://doi.org/10.1016/S0014-5793(98)01590-7 PMID: 9891978

45. Sun L, Shipley MT, Lidow MS. Expression of NR1, NR2A-D, and NR3 subunits of the NMDA receptor in

the cerebral cortex and olfactory bulb of adult rat. Synapse. 2000; 35:212–221. https://doi.org/10.1002/

(SICI)1098-2396(20000301)35:3%3C212::AID-SYN6%3E3.0.CO;2-O PMID: 10657028

46. Al-Hallaq RA, Jarabek BR, Fu Z, Vicini S, Wolfe BB, Yasuda RP. Association of NR3A with the N-

methyl-D-aspartate receptor NR1 and NR2 subunits. Mol Pharmacol. 2002; 62:1119–1127. https://doi.

org/10.1124/mol.62.5.1119 PMID: 12391275

47. Chan SF, Sucher NJ. An NMDA receptor signaling complex with protein phosphatase 2A. J Neurosci.

2001; 21:7985–7992. PMID: 11588171

48. Larsen RS, Corlew RJ, Henson MA, Roberts AC, Mishina M, Watanabe M, et al. NR3A-containing

NMDARs promote neurotransmitter release and spike timing-dependent plasticity. Nat Neurosci. 2011;

14:338–344. https://doi.org/10.1038/nn.2750 PMID: 21297630

Knockdown of GluN3A in neural stem cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0192242 February 13, 2018 22 / 24

https://doi.org/10.1093/nar/29.9.e45
http://www.ncbi.nlm.nih.gov/pubmed/11328886
https://doi.org/10.1016/S1672-0229(10)60006-X
https://doi.org/10.1016/S1672-0229(10)60006-X
http://www.ncbi.nlm.nih.gov/pubmed/20451162
https://doi.org/10.1186/1471-2105-6-307
https://doi.org/10.1186/1471-2105-6-307
https://doi.org/10.1016/S1672-0229(07)60002-3
http://www.ncbi.nlm.nih.gov/pubmed/17531797
https://doi.org/10.1016/S1672-0229(06)60021-1
https://doi.org/10.1016/S1672-0229(06)60021-1
http://www.ncbi.nlm.nih.gov/pubmed/16970549
https://doi.org/10.4161/rna.8.6.17015
http://www.ncbi.nlm.nih.gov/pubmed/21957495
https://doi.org/10.4161/rna.8.1.14261
http://www.ncbi.nlm.nih.gov/pubmed/21282977
https://doi.org/10.1016/j.gpb.2012.06.002
http://www.ncbi.nlm.nih.gov/pubmed/22917185
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019
http://www.ncbi.nlm.nih.gov/pubmed/22743772
https://doi.org/10.1038/nmeth.2089
http://www.ncbi.nlm.nih.gov/pubmed/22930834
http://www.ncbi.nlm.nih.gov/pubmed/9364068
https://doi.org/10.1016/0092-8674(90)90662-X
http://www.ncbi.nlm.nih.gov/pubmed/1689217
https://doi.org/10.1016/j.stem.2010.04.017
http://www.ncbi.nlm.nih.gov/pubmed/20621053
https://doi.org/10.1679/aohc.68.321
https://doi.org/10.1679/aohc.68.321
http://www.ncbi.nlm.nih.gov/pubmed/16477151
https://doi.org/10.1016/S0014-5793(98)01590-7
http://www.ncbi.nlm.nih.gov/pubmed/9891978
https://doi.org/10.1002/(SICI)1098-2396(20000301)35:3%3C212::AID-SYN6%3E3.0.CO;2-O
https://doi.org/10.1002/(SICI)1098-2396(20000301)35:3%3C212::AID-SYN6%3E3.0.CO;2-O
http://www.ncbi.nlm.nih.gov/pubmed/10657028
https://doi.org/10.1124/mol.62.5.1119
https://doi.org/10.1124/mol.62.5.1119
http://www.ncbi.nlm.nih.gov/pubmed/12391275
http://www.ncbi.nlm.nih.gov/pubmed/11588171
https://doi.org/10.1038/nn.2750
http://www.ncbi.nlm.nih.gov/pubmed/21297630
https://doi.org/10.1371/journal.pone.0192242


49. Musante V, Summa M, Cunha RA, Raiteri M, Pittaluga A. Pre-synaptic glycine GlyT1 transporter–

NMDA receptor interaction: relevance to NMDA autoreceptor activation in the presence of Mg2+ ions. J

Neurochem. 2011; 117:516–527. https://doi.org/10.1111/j.1471-4159.2011.07223.x PMID: 21348870
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