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INTRODUCTION

Stroke is currently the second leading cause of death worldwide, and results in significant
morbidity, and poorer quality of life for those affected (1). Stroke can be classified under two
major sub-types: ischaemic and haemorrhagic. Ischaemic stroke accounts for ∼70% of all stroke,
and results from arterial occlusion, usually through embolism or small vessel thrombosis (2).
Haemorrhagic stroke is a result of arterial rupture in the brain (2). However, the two sub-types
frequently co-exist, with similar risk factors (e.g., hypertension), and overlap in pathological
mechanisms (3).

Although stroke incidence has declined in high-income countries, it remains a prevalent issue
amongst low and middle-income countries, disproportionately affecting a younger, working age
population in these areas (1). The treatment of acute ischaemic stroke (AIS) has advanced over
recent decades. Notably, the advent of both thrombolysis and mechanical thrombectomy has
revolutionised themanagement of AIS, associated with reducedmortality, and improved functional
outcome (2, 4, 5). Despite these advances, the management of haemorrhagic stroke has lagged
behind, and treatment options are largely confined to reversal of anticoagulants and intensive
blood pressure (BP) lowering (2). Conversely, in AIS, the target for BP management remains
uncertain, and trials have largely shown equivalence (6, 7), or harm (8), associated with aggressive
BP management strategies. To understand the mechanistic implications of BP lowering in AIS,
studies have investigated the temporal changes in cerebral autoregulation (CA) following stroke
(9). In healthy states, CA maintains a constant cerebral perfusion, despite fluctuations in systemic
BP (10). However, the ability of the brain maintain CA may be compromised in the acute phase of
stroke, increasing the vulnerability of the brain to hypoperfusion with intensive BP management
strategies (11, 12). Conversely, surges in BP during this vulnerable phase may risk haemorrhagic
transformation of the infarct, resulting in poorer outcomes (11, 12). Thus, understanding the
temporal nature of CA in the acute phase of stroke could provide important mechanistic insights
to guide BP management strategies in the clinical setting.

A related concept to CA is the physiological mechanism of neurovascular coupling (NVC).
Under healthy conditions, neuronal activity is tightly coupled to cerebral blood flow (CBF), such
that increases in neuronal activity will result in increases in CBF to ensure the metabolic demands
of the brain are met. Intact NVC is integral to maintain optimal cognitive function, and thus
may be an important physiological mechanism in the chronic or rehabilitation phase of stroke.
The following sections consider the evidence to support a role for CA and NVC as important
mechanistic factors in the acute and chronic phases of stroke, and the key clinical and research
implications going forward.
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CA

Dynamic cerebral autoregulation (dCA) has now been carefully
characterised at rest in AIS (13), acute intracerebral haemorrhage
(ICH) (14) and chronic stroke (15) states. Furthermore,
several studies have modelled the relationship between arterial
CO2 (PaCO2), cerebral blood flow and dynamic cerebral
autoregulation (16, 17). Hypercapnia causes vasodilation
and deteriorates CA, with hypocapnia conversely causing
vasoconstriction and an improvement in CA status (16, 17).
Meta-analyses, albeit with significant heterogeneity, have
demonstrated transfer function analysis parameter [phase and
autoregulation index (ARI)] impairment in large and small
artery AIS, lower phase in ICH and “rebounding phase” in
chronic stroke (13). Unfortunately, limitations of existing
transcranial Doppler based haemodynamic studies include low
assessment frequency post stroke [particularly lacking data
in ultra-acute (hours) and medium to longer term (weeks to
months)] and clarification of dCA “cut-points” for impairment.
Until very recently, there was a lack of dCA data peri- mechanical
thrombectomy (MT), however, recent studies have shown worse
dCA in the first 24 h associated with higher rates of haemorrhagic
transformation and lower rates of recanalization (18). Specific
learnings from this data suggest incomplete recanalisation of
large-vessel occlusion, with impaired autoregulation status
confer complication—raising the importance of adequate
blood pressure control in this context (18). Whilst there are
confounders to consider when assessing dCA pre-, during or
post- MT including blood pressure (19, 20), end-tidal carbon
dioxide level (21) and mode of anaesthesia (22)—their behaviour
and interactions are yet to be determined. Higher end-tidal
CO2 levels in those with incomplete recanalisation, especially
beyond 72 h post large-vessel occlusion (LVO) is of significant
interest (18). In ICH, the storey differs, with severe hypocapnia
(low arterial CO2 levels) associated with poor prognosis (23).
Furthermore, lowering BP during acute hypertensive states
during ICH, in the setting of low arterial CO2 levels, leads to a
greater risk of ischaemic lesions on MRI imaging (23). These
differences in acute haemodynamics between stroke sub-types
could be explained by nature of structural lesion (infarct vs.
haematoma), existence of pre-existing chronic hypertension
or differing responses to blood pressure lowering. Given
personalised autoregulation-based BP targets are now possible
in both a ward based stroke setting (24) and neurocritical care
(25). Unfortunately, there still remains an inability to quantify
the potential modulation of dCA by chronic hypertension
before, during and immediately after acute stroke. The perceived
“rightward shift” in the dCA curve is yet to be proven in
acute (within 96 h) and sub-acute (7 to 14 days) contexts with
ongoing hypertension or antihypertensive treatment being

administered (26).
Recent advancements have further highlighted the need to

recognise inter-subject variability (27) and responders vs. non-

responders (28). There is evidence to suggest dCA impairment

is greatest in regions with critically reduced perfusion (greatest
volume of viable tissue), though dCA impairment can be present
across the entire hemisphere to varying degrees (27). In ICH,

through routinely obtained MRI scans in the first 7 days post-
event, initial BP, nadir BP, and arterial CO2 were independent
predictors of diffusion-restricted lesion incidence (23). Pooled
individual patient data meta-analyses from the ATACH-2 and
MISTIE III trials demonstrated in a heterogeneous cohort of
patients with ICH, diffusion-weighted imaging (DWI) lesions
were associated with 2.5-fold heightened risk of stroke among
ICH survivors—with elevated risk persisting for AIS but not for
recurrent ICH (29). In order to determine whether ischaemic
lesions noted on DWI are preventable, or indeed governed by
therapeutic variation in BP approaches (30)—mechanistic dCA
studies at time of BP lowering, with continuous end-tidal CO2

measurement are needed, with MRI DWI assessment at 7 days.
White matter ischaemic change may be attributed to by high
blood pressure variability in addition to adverse adaptations of
CA. In hypertensives without acute stroke disease, dCA (assessed
using ARI) and CO2 reactivity were not related to white matter
lesions—however, relationships with duration of hypertension
and nocturnal BP dipping were shown (31). Ultimately, there
exists a complex interdependent relationship between acute and
chronic hypertensive states, dCA, and chronic cerebrovascular
ischaemic injury. Crucially, we have evidence to support the
hypothesis that carbon dioxide change in the acute setting post-
stroke may modify risk, through interaction with BP lowering
and dCA status, increasing the ischaemic stroke risk post
ICH (23).

In both AIS and ICH, there exist adverse pathophysiologically
driven complications including vasogenic oedema and
haematoma expansion, respectively. The behaviour of
cerebrovascular tone (critical closing pressure, CrCP)
and resistance (resistance area product, RAP) is less
well-understood. There is debate as to the sensitivity
of CrCP to variation in intracranial pressure (ICP)
(32). However, the presence of a haematoma in ICH as
compared to controls, during normocapnic and hypocapnic
conditions, showed significant differences in CrCP and RAP
(33). Beyond common indices of dCA, there is limited
knowledge of tone and resistance parameters in acute
cerebrovascular states as compared to the traumatic brain
injury literature.

NVC

To date, the majority of studies have focussed on changes in CA
in the acute, subacute, and chronic phases of stroke, with fewer
studies investigating the effects on NVC (34). Animal models
suggest that NVC is impaired early after stroke as a result of
the reduction in neural activity which drives increases in CBF
via feed forward mechanisms under normal conditions (35). In a
mouse model of stroke, NVC processes were disrupted early after
small-scale stroke, with disturbances peaking in the subacute
period post-infarction, and remaining in the chronic phase (8
weeks post-event) (36). Impairments have been found to be
widespread, occurring beyond the site of initial infarction (35,
36), and recovery of neural activity lags behind the restoration
of perfusion (36). Perfusion in the acute phase was found to be
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predictive of neuronal outcome and recovery, in keeping with
clinical studies discussed below (36).

In a systematic review, sixteen studies investigated changes in
brain activation using transcranial Doppler or positron emission
tomography based imaging (34). The review found mixed
findings, with variable changes in response in both the affected
and unaffected hemispheres (34). However, studies varied in
the paradigm used to evoke CBF responses (sensorimotor, word
finding, object recognition, word repetition and reading tasks),
the phase of stroke studied, and the imaging modality used (34).
Thus, it remains unclear to what extent these mixed findings are
as a result of the heterogeneity in the methods used to assess
NVC in stroke (34). Salinet et al. found NVC responses were
reduced bilaterally to a passive motor paradigm within 48 h of
stroke onset, and this correlated with stroke severity, and poorer
functional outcome at 3 months (37). In a separate analysis, this
was found to be as a result of myogenic, rather than metabolic
impairment in NVC mechanisms (38). In a functional magnetic
resonance imaging (MRI) study of chronic stroke patients, motor
activity was associated with increases in CBF and cerebral blood
volume (CBV) on arterial spin labelling, but with no discernible
blood-oxygen level dependent response (39). However, CBF and
CBV responses were attenuated when compared to healthy adults
suggesting persistent abnormalities in NVC in chronic stroke,
but these were dependent on the imaging modality used (39).
The effects of thrombolysis on NVC processes are not fully
understood, but may be as a result of effects on endothelial
N-methyl-D-Aspartate receptor signalling (40, 41). However,
function at the neurovascular unit has been suggested as one
mechanism for the variability in inter-individual outcome with
thrombolysis (42). In particular, patency of the microvasculature
is essential to the recovery of neuronal function, and the level
of injury in the unit determines the outcome with thrombolytic
therapy (42).

To date, the majority of human studies have been cross-
sectional, and longitudinal studies investigating the temporal
evolution of NVC changes post-stroke are lacking. In particular,
the role of NVC in the pathogenesis and outcome in
haemorrhagic stroke has not been researched. Available evidence
suggests NVC disruption in the early phases is predictive of
functional outcome in ischaemic stroke (36, 37, 43), however
cognitive outcomes have not been widely studied. The majority
of human studies have focussed on sensori-motor rather than
cognitive paradigms (34), which may be more relatable to
recovery of motor rather than cognitive function. Importantly,
up to one third of patients after stroke will experience long

terms problems with memory and cognition, and severe stroke
can bring forward the onset of dementia by up to 25 years
(44). However, the relationship between cognitive function and
NVC disruption remains under-researched. Thus, significant
gaps remain in our understanding, particularly concerning how
NVC process may be modulated to enhance functional and
cognitive recovery in patients after stroke.

NVC AND CA RECOMMENDATIONS

Given the evolution of the field and the desire to utilise
haemodynamic studies to deduce treatment response, prognostic
indices and optimise physiological profiles—there is an ever-
increasing individualised approach. However, gaps have emerged
across both NVC and CA lines of investigation, offering an
opportunity to highlight necessary short- and medium-term
study recommendations:

• What is the longitudinal behaviour of NVC beyond sub-acute
stroke and into chronic stroke states?

• Does NVC behaviour differ post ICH as compared to AIS?
• Can NVC be modulated to enhance functional and cognitive

recovery in patients post stroke?
• Is there a longitudinal relationship between CO2 change post

stroke and development of white matter lesions?
• To what extent does BP lowering cause harm due to its

interaction with hypocapnia in AIS and ICH?

In order to address these pending research questions, multi-
modality and inter-disciplinary studies are necessary. In addition,
pooling of existing datasets to minimise research data waste
and to maximise validity and statistical power is essential.
There already exist multi-centre efforts to this effect, across
cerebrovascular (45) and non-cerebrovascular (46) disease states.
We encourage those working within the field to support
these initiatives.
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