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Abstract

Background: DNA methylation is an important tissue-specific epigenetic event that influences transcriptional
regulation of gene expression. Differentially methylated CpG sites may act as mediators between genetic variation
and gene expression, and this relationship can be exploited while mapping multi-tissue expression quantitative trait
loci (eQTL). Current multi-tissue eQTL mapping techniques are limited to only exploiting gene expression patterns
across multiple tissues either in a joint tissue or tissue-by-tissue frameworks. We present a new statistical approach
that enables us to model the effect of germ-line variation on tissue-specific gene expression in the presence of effects
due to DNA methylation.

Results: Our method efficiently models genetic and epigenetic variation to identify genomic regions of interest
containing combinations of mRNA transcripts, CpG sites, and SNPs by jointly testing for genotypic effect and higher
order interaction effects between genotype, methylation and tissues. We demonstrate using Monte Carlo simulations
that our approach, in the presence of both genetic and DNA methylation effects, gives an improved performance (in
terms of statistical power) to detect eQTLs over the current eQTL mapping approaches. When applied to an
array-based dataset from 150 neuropathologically normal adult human brains, our method identifies eQTLs that were
undetected using standard tissue-by-tissue or joint tissue eQTL mapping techniques. As an example, our method
identifies eQTLs by leveraging methylated CpG sites in a LIM homeobox member gene (LHX9), which may have a role
in the neural development.

Conclusions: Our score test-based approach does not need parameter estimation under the alternative hypothesis.
As a result, our model parameters are estimated only once for each mRNA - CpG pair. Our model specifically studies
the effects of non-coding regions of DNA (in this case, CpG sites) on mapping eQTLs. However, we can easily model
micro-RNAs instead of CpG sites to study the effects of post-transcriptional events in mapping eQTL. Our model’s
flexible framework also allows us to investigate other genomic events such as alternative gene splicing by extending
our model to include gene isoform-specific data.

Keywords: eQTL, Multiple tissues, Tissue-specificity, DNA methylation, CpG islands, Gene expression, SNP, Score test,
Monte Carlo simulations, Brain

Background

It has been long established that regulatory regions
in higher eukaryotes activate gene transcription in a
tissue-specific manner [1, 2]. These regulatory regions,
which affect the binding affinities of transcription factors,
are susceptible to both genetic variation and epigenetic
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modifications that play a coordinated role in regulating
tissue-specific gene expression [3-7]. One form of epi-
genetic variation is DNA methylation that targets non-
methylated and noncoding GC-rich and CpG-rich regions
of the DNA sequence, which constitute approximately
70% of all annotated promoters [8]. DNA methylation is
linked to transcriptional silencing, and many CpG island
promoters are active in a tissue-specific manner. Previ-
ous studies have shown that inter-individual variation in
DNA methylation at distinct CpG sites has been consis-
tently linked to genetic variation such as single nucleotide
polymorphisms (SNPs), known as methylation eQTLs
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(mQTLs) [9-11]. Since an increased DNA methylation
at any of the distinct CpG sites located in the promoter
regions necessitate chromatin remodeling and subsequent
decrease in gene expression, any DNA sequence variation
within the CpG-rich regions that disrupts the methylation
process may have an opposite effect on gene expression.
Even though, mechanisms which regulate DNA methy-
lation are unclear, it is clear that there is some associa-
tion between genetic variation and quantitative changes
in methylation levels [12]. For example, Catechol-O-
methyltransferase (COMT) gene, which is implicated in
schizophrenia has a SNP, Val'>8 Met (rs4680) that is asso-
ciated with differential COMT expression across regions
of the brain during the course of the illness [13]. More
specifically, the substitution of a methionine (Met) for
a valine (Val) at position 158 results in reduced activity
of the COMT enzyme due to reduced protein stability.
Methylation of CpG islands associated with the afore-
mentioned variant affect the region-specific expression
of COMT [13]. Identifying and studying the mechanisms
through which genetic variation, DNA methylation and
gene expression interact may provide us yet another clue
to understanding regions within the genome that are
associated with complex disease phenotypes (Fig. 1a).
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We have previously proposed a score test-based
approach to map multi-tissue eQTLs where we model
tissue-specificity as a random effect and investigated
an overall shift in the gene expression combined with
tissue-specific effects due to genetic variants [14]. Current
approaches to delineate the role played by both genetic
and epigenetic variation in gene expression are limited
to identifying statistically significant pairs of mRNA -
SNPs and CpG - SNPs by performing independent eQTL
and mQTL analyses, respectively, within a tissue-by-
tissue (TBT) framework [4, 11, 15]. These pairs are then
expanded to combinations of mRNA transcript, CpG site
and a SNP wherever the SNP was significantly correlated
with either mRNA or CpG site of the mRNA - CpG pair.
First, any such TBT analyses have been shown to fall
short in fully exploiting patterns across the tissues thus
impacting eQTL or mQTL discovery [14, 16, 17]. Second,
independent eQTL and mQTL analyses do not reveal any
underlying effects of genetic variation on tissue-specific
gene expression due to DNA methylation. Consequently,
we propose to map eQTLs by leveraging DNA methyla-
tion and testing for any higher order interactions among
methylation, genotype and tissues. We extend this frame-
work to include methylation-specific effects and model
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Fig. 1 Tissue-specific gene expression is controlled by genetic, epigenetic and transcriptional regulatory mechanisms. a Figure illustrating the idea
that identifying and studying the mechanisms through which genetic variation, DNA methylation and gene expression interact may provide us with
clues to understanding regions within the genome that are associated with complex disease phenotypes. b Figure illustrating the role played by
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the combined effect of genetic and epigenetic variation on
gene expression (Fig. 1b).

Our main objective is to improve eQTL discovery by
accounting for epigenetic effects such as DNA methyla-
tion. We show using Monte Carlo simulations that our
joint score test is more powerful in mapping eQTLs by
controlling for methylation than any TBT approach that
uses methylation as a covariate (TBTm-eQTL). We also
show that the new joint score test is better at identifying
eQTLs in the presence of DNA methylation than our pre-
viously proposed multi-tissue eQTL and TBT methods.
Finally, we show that in cases where the interaction effects
of DNA methylation are absent, our approach is slightly
less powerful but remains competitive. We demonstrate
the effectiveness of our method by applying it to a publicly
available expression, methylation and SNP array datasets
from normal adult human brains [4] and show that by
jointly analyzing multiple brain regions (or tissues), we
identify eQTLs that may otherwise be not identified by
multi-tissue eQTL methods.

Results and discussion

Evaluating our new score test using Monte Carlo
simulations

We evaluate our approach through extensive simulation
studies. Briefly, each Monte Carlo simulated dataset was
comprised of data from a single locus and a single gene,
whose expression is measured across 5 tissues in 500
observations. For a given mRNA - SNP pair, the geno-
types at each SNP in all the individuals were simulated
as Binomial(2,0.3), i.e. a minor allele frequency 0.30 and
assuming Hardy-Weinberg equilibrium. Methylation data
for all tissues was generated from a multivariate normal
distribution with a positive definite variance-covariance
matrix. Since all the tissue-specific effects are modeled
as random effects, a test of whether there are any tissue-
specific effects is equivalent to testing whether the vari-
ances of the random effects (y and §) are zero. Thus, our
model involves testing four scalar parameters (8, ¢, y and
8). Simulations under the null hypothesis confirm that our
method has the correct type 1 error (see Additional file 1).
Since we model the effects of both epigenetic and genetic
variation, we evaluated any power loss in identifying
mRNA - SNP associations in the absence of any epigenetic
effect. This was accomplished by comparing our method’s
performance with TBT-eQTL approach by keeping all the
parameters associated with methylation in Eq. 5 at zero
(i.e. A = ¢ =68 =0 =0). We also compared our method with
a previously proposed multi-tissue eQTL method, imple-
mented in our software JAGUAR [18], which is made
available at Comprehensive R Archive Network (CRAN)
repository. Briefly, JAGUAR implements an approach that
jointly models the overall shift in the gene expression
due to genotype together with tissue-specific interaction

Page 3 of 11

with genotype in order to efficiently identify multi-tissue
eQTL. From Fig. 2a, we see that JAGUAR outperforms
both TBT-eQTL and our new joint score test. This loss of
power, though not substantial, may be attributed to testing
for an inexistent methylation effect. However, in the pres-
ence of a methylation effect our method outperforms both
TBT-eQTL and JAGUAR as evidenced by Fig. 2b. When
the number of tissues is increased from 5 to 10, the same
pattern in statistical power was observed (see Additional
file 1 section for figures).

We also compared our joint score test to a TBT-eQTL
approach that included methylation as a baseline covari-
ate [15], henceforth referred to as TBTm-eQTL analysis,
using the following linear regression model —

Y =Ma+ GB+GM¢p + & (1)

where Y is a nt-dimensional matrix of expression levels in
¢ tissues and # individuals, « is a fixed effect represent-
ing the tissue-specific intercepts, G is a nt-dimensional
matrix of genotypes, f is a fixed effect of genotype across
all tissues, M is an nt-dimensional matrix of methylation
information and ¢ is genotype x methylation interaction
effect (fixed effect). Minimum p value from the TBTm-
eQTL analysis across all the tissues is computed for power
calculations. Table 1 shows that our method significantly
outperforms TBTm-eQTL approach showing a clear sta-
tistical advantage in using our joint score test over the
TBTm-eQTL approach.

See Additional file 1 methods for more information on
the description of various null hypotheses being tested.

Region-specific DNA methylation impacts eQTL mapping
in adult human brains

In order to demonstrate the effectiveness of our method,
we applied it to Gibbs et al. [4] dataset comprising of
150 individual data obtained from four regions of human
brain. We performed data analyses that focused on only
cis candidate regions i.e., the proximity of an eQTL to the
transcription start site of a gene did not exceed 100 kilo-
base up- and down-stream of the transcription start site
of a gene/mRNA transcript (cis-SNP). CpG islands that
were less than 1.5 kilobase up- and down-stream of the
transcription start site of the same mRNA transcript were
paired with the mRNA transcripts. Each mRNA tran-
script was tested for an association with every cis-SNP in
the presence of a (methylated or unmethylated) CpG site
located in the promoter region.

Our joint score test method performed a total of 471,272
tests (totaling 11,076 mRNA transcripts, 14,244 CpG sites
and 144,393 cis-SNPs). Each such mRNA - CpG pair is
tested for an association with a cis-SNP. It is important
to note that our method does not test any direct associa-
tion between an mRNA transcript and its corresponding



Acharya et al. BMC Bioinformatics (2017) 18:455

Page 4 of 11

Proportion of variance explained by Gamma (%)

generated at a common variant allele frequency (MAF = 0.3)

a b
0 10 15 20 5 5 7 7 Gamma
0.8 5 7 5 7 Delta
0.61 z 0.75] =
z 5
& (=5
= =
0.41 = 050 5
a I @
2 o
g [¢]
2 <
o =
02 z 025 o
o
5 g g
S . <3
g 00 [ | [ | 5
E EJ- 0.0C TBT-eQTL
Z 08 2 JAGUAR
g £ [l voint Test
w
0.75]
0.6] z §
5
z Z
e B
4 = 0.5 2
0. E E
o
o g
g g
0.2 = 0.25] 5
@ 2
0.0{ 0.0

Fig. 2 eQTL identification using TBT-eQTL, JAGUAR and our method in the presence and absence of DNA methylation effects. a In the absence of
methylation data, statistical power from the joint analysis of genotype and tissue-specific interaction using JAGUAR is marginally better than our
joint score test. A tissue-by-tissue (TBT-eQTL) method is also used for comparison. The x-axis denotes the proportion of variance explained by the

G x T effect and the y-axis denotes the statistical power. These data were generated from 1,000 simulations run on 500 individuals and five tissues
with genotypes generated at a common variant allele frequency (MAF = 0.3). b In the presence of DNA methylation effect, our method out
performs JAGUAR and tissue-by-tissue analyses. The top two rows in the figure indicate PVEg« 7 and PVEGxmx T, respectively, on the x-axis. Statistical
power is denoted on the y-axis. These data were generated from 1,000 simulations run on 500 individuals and five tissues with genotypes

Proportion of variance explained by Gamma and Delta (%)

CpG site. Any resulting combinations of mRNA tran-
script, CpG site and a SNP would describe the relationship
between the mRNA and SNP in the presence of the cor-
responding promoter CpG site, i.e. identify an eQTL. Our
method identified a total of 5967 eQTLs that are sta-
tistically significant at 5% false discovery rate (FDR). In
order to account for the number of traits being tested,
the p values obtained from applying our joint score test
were adjusted for multiple testing using an optimized FDR
approach to obtain per-SNP g values (FDR adjusted p val-
ues) [19]. We observed that majority of these significant
results are driven by a combination of additive genetic
effect (93%) and G x T effect (81%) while the G x M and
G x M x T effects were barely observed. This may be due
to a lack of any distinct tissue-specificity in the methyla-
tion data, which we observed while preprocessing Gibbs
et al. data (see “Methods” section). However, we expect
that the aforementioned effects may be well pronounced
across diverse tissue types such as the ones made available
by the Genotype-Tissue Expression (GTEx) initiative [20].

We performed two region-by-region or TBT approaches
on the same set of mRNA transcripts, CpG sites
and SNPs as above, one with DNA methylation as a

covariate (TBTm-eQTL) and the other with no methy-
lation (TBT-eQTL) and compared the results with our
approach. We estimated g values from each set of p val-
ues (originated from each region-by-region analysis) and
minimum g value for a given mRNA - SNP pair across all
the brain regions was computed, which indicates the pres-
ence of a statistically significant pair in at least one brain
region. The number of significant associations in at least
one brain region were then assessed at 5% FDR (g value
< O'T?S where 4 is the number of brain regions). TBT-eQTL
approach identified a total of 5009 mRNA-cis-SNP pairs
or cis-eQTLs significant in at least one region of the brain
at 5% FDR. Roughly 79% of these TBT-eQTLs overlap with
eQTLs identified using our method. On the other hand,
TBTm-eQTL approach identified 5625 eQTLs with a 73%
overlap with eQTLs identified using our method.

In order to assess the role of brain region-specificity on
gene expression and the advantages in jointly modeling
all the brain regions on mapping eQTLs, we compared
our joint score test approach with a previously proposed
multi-tissue eQTL mapping method [14] implemented by
our software JAGUAR. JAGUAR identifies 7934 eQTLs
(96% of them overlap with the TBT-eQTLs, 80% of them
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Table 1 Table comparing the statistical power of our method
and TBTm approach

Additive G x MEffect PVEgumxt PVEsxt TBTm Joint Score
Genetic Effect Test
NO NO 0 0 0.041 0.045
NO NO 7 0 0.139 0141
NO NO 10 0 0415 0433
NO NO 0 7 0.097 0172
NO NO 7 7 0234 0332
NO NO 10 7 0472 0552
NO NO 0 10 0218 0433
NO NO 7 10 0341 0546
NO NO 10 10 0.547 0.721
NO YES 0 0 0351 0171
NO YES 7 0 0511 0337
NO YES 10 0 0719 0598
NO YES 0 7 0.388 0.363
NO YES 7 7 0.565 0.501
NO YES 10 7 0.708 0.679
NO YES 0 10 0.525 0.605
NO YES 7 10 0.653 0.694
NO YES 10 10 0782 0816
YES NO 0 0 0.155 0.244
YES NO 7 0 0296 0371
YES NO 10 0 0543 0601
YES NO 0 7 0229 0357
YES NO 7 7 0389 0513
YES NO 10 7 057 0702
YES NO 0 10 0425 0.606
YES NO 7 10 0522 0.692
YES NO 10 10 0.708 0.819
YES YES 0 0 0487 0423
YES YES 7 0 0.627 0572
YES YES 10 0 0.753 0.708
YES YES 0 7 0.536 0563
YES YES 7 7 069  0.689
YES YES 10 7 0.78  0.801
YES YES 0 10 0.648 0.719
YES YES 7 10 0.761 0.807
YES YES 10 10 0.821 0.856

This data were generated from 1,000 simulations run on 500 individuals and five
tissues with genotypes generated at a common variant allele frequency (MAF = 0.3)

overlap with TBTm-eQTLs, and 94% of them overlap with
the joint tests’s eQTLs) at 5% FDR. All the eQTLs that
overlap between JAGUAR and our new joint score test are
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mostly driven by the additive genetic effect and G x T
effect and not higher order methylation interaction effects
such as G x M and G x M x T. This absence of any pro-
nounced region-specific DNA methylation effect explains
the lower number of eQTLs identified by our joint test
method. However, as we have shown using simulation
data, in the presence of any region-specific interaction
effects involving methylation, our joint score test is far
more informative than the results from JAGUAR. Few of
the eQTLs identified by our method were not detected
by JAGUAR. This could be because a majority of these
eQTLs were driven by G x M x T interaction effect,
which is not tested by JAGUAR. For example, let us con-
sider a splice variant of LIM Homeobox protein coding
gene (LHX9; Ensemble ID - ENSG00000143355), located
on chromosome 1, which has 2 annotated cis-SNPs (SNP
IDs: rs10922303 and rs2047541) possibly in LD with each
other) and two promoter CpG sites (CpG IDs: cg07214572
and cg08008403) in our preprocessed datasets. Out of
these 4 (number of mRNA - CpG pairs x the number
of SNPs) combinations of mRNA transcript, CpG sites
and SNPs and a possible 2 eQTLs, our method identi-
fied all of them to be statistically significant. None of
them were found to be statistically significant by any
TBT-based or the multi-tissue eQTL approaches (Fig. 3a).
This is a good example of mapping eQTLs by leveraging
effects due to DNA methylation since there is tissue-
specific interaction effect clearly observed in Fig. 3b not
captured by either JAGUAR or TBT methods. Of note,
LHXO9 is ubiquitously expressed in brain and are known
to help in determining neuronal differentiation in humans
[21]. On the other hand, we also see many instances of
eQTLs that were observed to be statistically significant
using JAGUAR but not our joint score test method due to
the lack of any distinct tissue-specific DNA methylation
effects. For example, JAGUAR method identified gene
glutathione S-transferase mu 4 (GSTM4; Ensembl ID -
ENSG00000168765), a gene that belongs to a superclass
of glutathione S-transferases, which play a major role in
the development of brain tumors [22], to have a statisti-
cally significant association with a promoter eQTL (SNP
ID: rs524998), as illustrated by Fig. 4. However, we found
that GSTM4 gene has two promoter CpG sites (CpG IDs:
cg11903880 and cg15955341). Since there is no tissue-
specific methylation effect, our joint test method was less
powerful in detecting this eQTL . As seen in this figure,
the lack of any tissue-specific methylation effects may
have resulted in not being identified as a potential eQTL
by our joint score test method.

To assess the biological relevance of the genes with
eQTLs identified by TBT or multi-tissue methods includ-
ing our new joint score test, we performed a KEGG path-
way term enrichment analysis [23] for each set of results
separately (see Additional file 1). KEGG pathways were
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Fig. 3 An example of an eQTL for gene LHX9 identified as statistically significant by our joint score test method. a Barplot displaying all the statistics
computed for LHX9 gene and SNP rs10922303 from our joint test, TBT-meQTL, TBT-eQTL and JAGUAR methods. The vertical axis represent -log10
p values. b Interaction plot illustrating tissue-specific genotypic effect on gene expression. Given that the lines are nonparallel, there is an interaction

considered overrepresented if a set of at least three genes
from different linked regions is observed to be overrepre-
sented with an adjusted significance level of g value <0.05,
calculated from a hypergeometric test. Our method iden-
tified 5 overrepresented pathways (Metabolic pathways,
Ribosome, Fatty acid degradation, Purine and Pyramidine
metabolism), JAGUAR identified 2 pathways while TBT-
eQTL identified 1 overrepresented pathway. The over-
represented pathway, “Metabolic Pathways” (KEGGID:
hsa01100) is the only common pathway between TBT-
eQTL, JAGUAR and our method. On the basis of prior

knowledge of function, the overrepresented pathways
“Purine metabolism” (KEGGID: hsa00230) and “Pyra-
midine metabolism” (KEGGID: hsa00240) are plausible
functional candidate pathways for schizophrenia [24].
These information can be used to guide genetic analyses
by selecting these relevant pathways and genes associated
with the pathways for schizophrenia.

Conclusion
Overall, our efforts are primarily directed to understand-
ing two very specific aspects — 1) the overall effect of a
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Fig. 4 An example of an eQTL for gene GSTM4 not identified as statistically significant by our joint score test method. Left panel displays a
regression plot showing no association between DNA methylation of CpG site cg11903880 and gene expression of GSTM4. The middle panel shows
all the statistics computed for GSTM4 gene and SNP rs524998. Right panel illustrates the interaction plot of tissue-specific eQTL
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genetic variant on gene expression regulation by account-
ing for any changes in tissue DNA methylation levels, and
2) map eQTLs by leveraging tissue-specific methylation
effects. Currently, there are no methods that jointly model
the epigenetic and genetic control of tissue-specific gene
expression. Many eQTL studies fail to account for the
masking effect on a genetic variant due to DNA methyla-
tion, which may regulate gene expression across multiple
tissues. Our method provides an efficient framework to
integrate SNPs, DNA methylation and gene expression,
and investigate how the different forms of variation inter-
relate.

The dataset examined here used genome-wide asso-
ciation (GWA) study SNP array platform to interrogate
germline variation that includes an overwhelming number
of common variants. Although GWA studies have been
able to explain a small fraction of the genetic compo-
nents of common human diseases, it is hypothesized that
some of the missing heritability may be due to rare vari-
ation. Since standard common disease common variant
approaches are severely underpowered to tease out any
underlying variants that are moderate to extremely rare,
there is an emphasis on large sample sizes and gene-based
association tests in order to securely identify genetic risk
factors that may otherwise be outside the range detectable
by GWA studies [25]. One solution to the aforementioned
issue would be to prioritize genetic variants in a non
ad-hoc framework that preferentially weights genetic vari-
ants. Our method can provide a statistically disciplined
weighting framework within which genetic variants can
be either up- or down-weighted for any subsequent down-
stream analyses. Our method may also be useful in gener-
ating weights to any methods that use a reference data set
in which both genome variation and gene expression lev-
els have been measured to develop prediction models for
gene expression [26].

The absence of strong tissue-specific methylation
effects has an effect on mapping eQTLs using our joint
test method. In the absence of any tissue-specific methy-
lation effect, our method is less powerful while mapping
eQTLs. One potential way to overcome such situations
would be to run an omnibus test that identifies strongest
evidence between JAGUAR and our joint test model.
Specifically, we calculate the p value under each model,
and then compute the minimum of the two p values
and compare the observed minimum p value to its null
distribution. Deriving the analytical null distribution of
the minimum p value is not trivial considering the com-
plex correlation structure between the statistics and due
to the presence of higher order interaction effects (see
Additional file 1 section). This approach is purely specu-
lative and was not tested by us.

Since we are modeling the effects of non-coding regions
(via CpG sites) on gene expression using our model, we
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can easily use micro-RNA (miRNA) data instead of CpG
site methylation data and model post-transcriptional reg-
ulation of tissue-specific gene expression. miRNA expres-
sion, also a tissue-specific phenomenon, have been known
to post-transcriptionally silence expression of mRNA
transcripts. The presence of genetic variants such as SNPs
may have an effect on the biogenesis and function of
miRNA molecules leading to a downstream effect on gene
expression [27]. This tissue-specific interaction between
miRNA and SNP can be modeled in a similar fashion,
analogous to modeling the interaction effects of tissue-
specific DNA methylation and SNPs. The flexibility of
our model also enables us to incorporate new information
such as gene isoform data and accommodate the analy-
sis of next-generation sequencing data (such as RNA-seq)
by modeling gene transcripts in an analogous fashion to
tissues in our current model formulation. This type of
analysis would aggregate expression over all the splice
variants of a gene across multiple tissues and inform us of
tissue-specific alternative splice variant of a gene. These
results become relevant to studying genetic effects on
alternative splicing and its key role in important cellular
networks.

Methods

Our model

For a given mRNA transcript, tissue-specific gene expression
is modeled as a function of genotype and methylation —

Y =Ja+GB+Mr+MGp+Au+Bv+Cw+Dx+§& (2)

where Y is an nt-dimensional vector of expression levels
in t tissues and # individuals,  is a vector of tissue-
specific intercepts, G is nt-dimensional vector of geno-
types, B is a fixed effect of genotype across tissue, M is
nt-dimensional vector of methylation levels, A is an over-
all methylation-specific fixed effect, MG is nt-dimensional
vector of the product of methylation and genotype, ¢ is
the regression coefficient for genotype and methylation
interaction (fixed effect), u ~ N (0, rAAT) is a vector of
subject-specific random effect, v ~ N (O, yBBT) is a vec-
tor of tissue-specific random effects, w ~ N (O,(SCCT)
is a vector of random effects that describes the inter-
action effect between genotype, methylation and tissue,
x ~ N (0, GDDT) is a vector of random effects describ-
ing tissue-specific methylation effects and & ~ N (0, €1,¢).
The matrices /, A, B, C, and D are design matrices with B
being a function of genotype, C is a function of both geno-
type and methylation data and finally, D is a function of
just the methylation data. J is nt x t dimensional matrix
denoting the design matrix for the tissue-specific inter-
cepts. A is nt x n design matrix for the subject-specific
intercepts. B is a nt x t design matrix of stacked genotypes.
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C is a nt x t design matrix of stacked (product of) tissue-
specific methylation and genotype data. D is nt x ¢ design
matrices of stacked tissue-specific methylation data. The
parameters of interest are v, §, 8 and ¢; «, A, T, 6 and € are
nuisance parameters. Alternatively, we can represent the
distribution of Y conditional on methylation and genotype
as —

(YIM =m,G=g) ~N (Ja+ G +Mr+ MG, %)

From our model, the log-likelihood function of the
parameters conditional on the genotype and methylation
data is given by —

(& YIM=mG=yg)
1 1
:-c—§10g|2| —E(Y—]a—Gﬁ—MA—MG¢)T

> NY = Ja — GB — Mr — MG)
(3)

where © represents the vector of all the variance compo-
nents involved in ¥ and c is a constant. We test the null
hypothesis that Hy : B = ¢ = y = § = 0, i.e. the variant
does not affect gene expression across any of the tissues.
To do so, we compute the efficient scores for y, §, 8 and ¢
by projecting off components correlated with the nuisance
parameters. The reduced model under the null is —

Yo, =Jo + MA +Au+Dx + &

The efficient scores evaluated under the null are given
by —

Additive Genetic Effect := Ugy, = Y73, (G-G)

G x M Effect == Uy, = Y7, (MG — MG)

1ora .
G x T Effect == Uy, = iYTE;lBBTE_lY

1ora .o
G x M x T Effect := Usp, = inz;lccTz;ly

where ¥ are the residuals from the model, G is an nt-
dimensional vector of mean-centered genotypes, MG is an
nt-dimensional vector of mean-centered product of geno-
types and methylation, and 2 = éI +tZZ7 +0DD”. Our
joint score test will test for the effect of genotype on 1)
an overall shift in the gene expression, 2) tissue-specific
interaction (G x T), 3) overall methylation (G x M), and
4) tissue-specific methylation (G x M x T). More on the
individual components of our score test can be found in
the Additional file 1 section.

We propose a weighted sum of the above components
(under the null) to arrive at our joint score test statistic,
U;. Since Ug and Uy are linear in Y while U, and Us
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are quadratic, we propose the following rule to combine
them —

U

(aﬂu’% + a¢LI¢% +a,U, + a3U3)

T [aﬁ (G- G) (G- G)T +ay (MG — 7G)
Tic\ L 1o 1 ~1|s-19
(MG — MG) +ay BB +as55CC ]zn Y
(4)

where ag, a4, a, and as are scalar constants chosen to
minimize the variance of U;. Under the null, U, is dis-
tributed as a mixture of chi-square random variables.
We use Satterthwaite method [28] to approximate the
p values from a scaled x2 distribution by matching the

. Var(U,

first two moments as U; ~ « x2 where k = ;g[(uf])
_ 2E[U)?

and v = Vardly)”

Simulations

For a positive integer ¢ that represents number of tissues, if
1 denotes a column vector of ¢ ones and I denotes the cor-
responding ¢ x ¢ diagonal matrix, following the ¢-variate
normal law denoted by Ny [i, ] with mean u € R’ and
variance ¥ € R, expression levels of a target gene j at a
single locus by using the following vectorized form of the
linear mixed model —

vij = o + 1B;g; + 1hjmy; + 1¢jmyig; + la; + big; + cjmyg;
j.i.d.
+dimy+&; & < N(O€l)

(5)

where y;; is a t x 1 vector of gene expression data, a; is
the tissue-specific intercept («; € R’), §; describes the
main additive genotypic effect (8; € R1), A; describes the
overall effect due to methylation (A; € RD), ¢ describes
the interaction effect between the overall methylation and
genotype (¢; € R1), g; is the value of a bi-allelic genotype
such that g € (0, 1, 2) represents the number of copies of
the minor allele. The random effect b; € R’ represents
tissue-specific effect of the genotype, ¢; € R represents
tissue-specific interaction effect between methylation and
genotype, d; € R represents tissue-specific methylation
effect, and a; € R! is a subject-specific random intercept.
We assume that all the random effects are independent
and that a; ~ Ny (0,7), b; ~ N; (0, yI), ¢j ~ N (0, 8T) and
dj ~ N (0,6I). Methylation data was generated indepen-
dently from a multivariate normal distribution with mean
zero and positive definite variance-covariance matrix.
We use 1000 data replicates to evaluate the type I error
and for power calculations. Simulations were performed
by varying the following parameters- 8 (additive genetic
effect), ¢ (G x M effect), the proportion of variation
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explained by the G x T effect (PVEJ, = (m))
and the proportion of variation explained by the G x M x

T effect (PVE5 = (Hriﬁ)) A linear mixed effects

model was fit using the package Ime4 [29, 30] in the sta-
tistical environment R (R Core Team). The significance of
an association between a mRNA - SNP pair in a tissue-
by-tissue (TBT-eQTL) analysis is assessed by the p value
obtained using /m function in R by fitting the following
linear regression model.

For each mRNA - cis-SNP pair, TBT-eQTL analysis was
performed using the following linear regression model —

Y=8+pG+e

where Y is either gene expression data and G represents
genotypes encoded as the number of copies of minor
allele. The test statistic is the minimum p value over the
total number of tissues from linear regressions performed
separately in each tissue for each mRNA - SNP pair. Sta-
tistical significance was determined at a nominal p value
of 0.05 for all power simulations (in case of TBT-eQTL

analysis, it is % where k is the number of tissues).

Preprocessing Gibbs et al datasets

Data description

Fresh frozen tissue samples of the cerebellum (CRBLM),
frontal cortex (FCTX), caudal pons (PONS) and temporal
cortex (TCTX) were obtained from 150 neuropatholog-
ically normal samples [4]. Genotyping was performed
using Infinium HumanHap550 beadchips (Illumina) to
assay genotypes for 561,466 SNPs, from the cerebel-
lum tissue samples. CpG methylation status was deter-
mined using HumanMethylation27 BeadChips (Illumina),
which measure methylation at 27,578 CpG dinucleotides
at 14,495 genes. Profiling of 22,184 mRNA transcripts
was performed using HumanRef-8 Expression Bead-
Chips (Illumina) The datasets are publicly available (GEO
Accession Number: GSE15745; dbGAP Study Accession:
phs000249.v1.p1).

Gene expression data
Gene expression on four brain regions are publicly avail-
able as rank-invariant [31] normalized gene expression
data (“series matrix file”). All the negative values in the
gene expression dataset are changed to a 1 and the entire
dataset was then log2 transformed. Before generating the
PCA plots, samples with African and Asian ancestry (n =
2) were removed from the analysis in order to keep the
study a homogenous mixture of European-Caucasians. All
the gene expression probes on sex chromosomes X and Y
were removed from the analysis.

Each gene expression probe was then adjusted for
known variation contributed by batch effects and biolog-
ical covariates such as tissue bank, gender, hybridization
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batch and numeric covariates such as post-mortem
interval (PMI) and age as well as unknown variation using
surrogate variable analysis (SVA) model [32].

Gene Expression ~ Biological Covariates
+ Known Batch Effects
+ Unkown Variation

+ Measurement Error

It has previously been shown that the number of cis-
eQTL detected significantly improved when multiple PCs
were removed from the expression data [33].

Methylation data

Methylation data, obtained as a “series matrix file” con-
sisted of Beta-values, which represent the ratio of methy-
lated probe intensity and the overall intensity (sum of
methylated and unmethylated probe intensities) [34]. We
followed the previously mentioned method to preprocess
methylation data using the SVA model. The biological
covariates here include tissue bank, gender, hybridiza-
tion batch and numeric covariates such as post-mortem
interval (PMI) and age.

Genotype data

The genotype data was obtained from dbGAP database
(phs000249.v1.pl) following requisite author permis-
sions. The genotype data was recoded into a SNP matrix
of values 0, 1 and 2 representing minor allele counts. Sam-
ples with African and Asian ancestry were removed from
the analysis in order to keep the data relatively homo-
geneous with patients of European-Caucasian ancestry.
These SNPs were filtered on the missing-ness of the indi-
vidual data and the SNP data (excluded SNPs with missing
values), followed by MAF (included SNPs with MAF >
0.05)and Hardy-Weinberg equilibrium (HWE; p-values <
0.001) in the same order using PLINK [35] software. The
resulting dataset has 400,097 SNPs after preprocessing.

Additional file

Additional file 1: Supplementary material. Supplementary material
expanding on 1) Our model, 2) Individual components of our joint score
test statistic, 3) Description of various null hypotheses, 4) Null and power
simulations of our joint score test statistic, 5) Gibbs et al. dataset
preprocessing, 6) Design of our data analysis, 7) KEGG pathway analysis on
the results from Gibbs et al brain data, 8) JAGUAR, 9) A potential strategy to
combine two models to maximize eQTL discovery, and 10) Reproducibility.
(PDF 635 kb)
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