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ABSTRACT Understanding airborne survival and decay of microorganisms is impor-
tant for a range of public health and biodefense applications, including epidemio-
logical and risk analysis modeling. Techniques for experimental aerosol generation,
retention in the aerosol phase, and sampling require careful consideration and un-
derstanding so that they are representative of the conditions the bioaerosol would
experience in the environment. This review explores the current understanding of
atmospheric transport in relation to advances and limitations of aerosol generation,
maintenance in the aerosol phase, and sampling techniques. Potential tools for the
future are examined at the interface between atmospheric chemistry, aerosol phys-
ics, and molecular microbiology where the heterogeneity and variability of aerosols
can be explored at the single-droplet and single-microorganism levels within a bio-
aerosol. The review highlights the importance of method comparison and validation
in bioaerosol research and the benefits that the application of novel techniques
could bring to increasing the understanding of aerobiological phenomena in diverse
research fields, particularly during the progression of atmospheric transport, where
complex interdependent physicochemical and biological processes occur within bio-
aerosol particles.
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Aerosols injected into the atmosphere from the biosphere (bioaerosols) account for
a significant portion of all atmospheric aerosols (1). Despite their low numbers

relative to other natural aerosols, bioaerosols (whose sources include microorganisms
contained within wind-blown dust and sea spray) are speculated to impact climate
through their behavior as efficient cloud condensation nuclei (2, 3). Biological aerosols
are also important from the perspective of human health, as they are intimately
involved in the transmission of many respiratory pathogens (4, 5).

Risk analysis modeling aims to develop predictive models of transmission and
infection based on laboratory generation of aerosols containing respiratory pathogens.
These experimental models are invaluable for understanding epidemic transmission,
developing infection control measures, and advising bioterror preparedness for public
health (6–8). Effective risk modeling requires an in-depth understanding of experimen-
tal aerosol techniques and their potential impact on the final outcome, whether that is
aerosol decay, transmission rate, or infectious dose.

This article reviews the current understanding, advances, and limitations in labora-
tory aerobiological studies, where the relationship between microorganism prepara-
tion, aerosol generation, evaporation, transport, and fate cumulatively may affect the
final outcome of inhalational infection or survival in the environment. In this review, the
term “bioaerosol” is limited explicitly to infectious aerosol droplets containing living
species, specifically bacteria and viruses; the study of this subset of bioaerosols comes
with its own unique set of challenges that need to be recognized and addressed. The
PubMed database was searched to identify relevant studies using the following strings:
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aerosol AND survival, bioaerosol AND generation, bioaerosol AND sampling. The terms
bacteria and virus were interchanged for the term survival in the first search string; only
published studies were included. References with no relation to bioaerosol, defined as
“infectious aerosol droplets” (e.g., fungal spores, pollen) were generally discarded
unless the technology could be applied to the field. Retrieved studies were also
reviewed for additional references. Although intrinsically linked to the general theme of
this review, the development of inhalational animal models to replicate human disease
is considered outside the scope of this review, and readers are directed to the extensive
literature in this field (e.g., 9–11).

AEROSOL GENERATION, SAMPLING, AND POSTPROCESSING CONSIDERATIONS

Aerosol generation and sampling prior to microbiological analysis are conducted for
a range of bioaerosol-related research activities (e.g., determination of aerosol decay
rates and inhalational infectious dose, efficacy of decontamination strategies, and
evaluation of bioaerosol sampling technologies). These dynamic processes can cause
damage due to shear forces acting on the microbial cells (12–27). Table 1 outlines some
major aerosol generators and samplers used in aerobiological studies and their oper-
ating mechanisms. The majority of studies use reflux aerosol generators in conjunction
with impingement to collect the generated aerosol. This system can be safely used in
biocontainment laboratories for inhalational challenges and aerosol fate studies. How-
ever, comparative studies show that refluxing nebulizers produce the greatest loss of
physiological function as a function of time in bacteria (16, 19–21, 24). The loss of
function has been linked to membrane damage (13, 20, 24), release of ions into the
medium (e.g., PO4

2�) (28), cell fragmentation (15, 23), reduction in ATP activity (27), and
magnitude of associated electrical charge (29), as the bacteria remaining in the nebu-
lizer repeatedly pass through the device nozzles. Similar effects are observed for viruses
(25). Repair of bacterial cells damaged by nebulization appears to be an energy-
dependent process with a requirement for divalent cations, although independent of
de novo RNA or protein synthesis (13, 30); it is unlikely that repair occurs in viruses due
to their reliance on host cell factors for protein transcription and translation. In contrast,
it has been reported that damage is reduced in nonrefluxing aerosol generators, in
which the microorganisms pass through the nozzle once (16, 24).

Sampling methods for airborne microorganisms include impingement, impaction,
filtration, cyclonic separation, and electrostatic precipitation. This review will not cover
all bioaerosol samplers; rather, we selected the main sampling mechanisms and
representative sampler models. The reader is directed to a couple of comprehensive
reviews on bioaerosol sampling for further details (31, 32). Each sampling technique has
advantages and disadvantages for sampling microbial aerosols (Table 1) with the
potential to cause microbial damage. Dependent on the microbe, this damage may be
transient; for example, impingement (AGI-30; 15 to 60 min) causes structural damage
to Pseudomonas fluorescens cells with recovery achieved on nonselective media (15).
Aerosol sampling times for determining the infectious dose and aerosol decay rates
generally range from 1 to 10 min, a period which minimizes the effects of microbial
damage (22, 33). However, for infectious aerosols there are few comparative studies of
the bioefficiencies of different sampling mechanisms. Where studies comparing sam-
plers have been conducted, differences between microbial structures influenced sam-
pler bioefficiency; for example, infectivity and culturability differences were observed
between bacteriophages and influenza A virions sampled by the SKC biosampler and
NIOSH cyclone (25, 34). Similar species-dependent effects have been observed for
bacteria in terms of sampling bioefficiency; in particular, Bacillus spp. endospores tend
to be less affected by aerosol sampling method (15, 17, 21, 22). One reason for
differences in sampler bioefficiency is variations in sampling velocities; for impinge-
ment, the velocity reaches 260 m/s, 10-fold greater than other samplers (35) (Table 1).
Second, the rapid rehydration that occurs during sampling can be detrimental to
microorganisms (36–38).

Minimizing stresses that occur during aerosol generation and sampling is hence
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TABLE 1 Methods used to generate and sample microbial aerosols useful for aerosol fate and inhalational infection researcha

Step in generation and mechanism Apparatus example(s) Description Reference(s)

Aerosol generation
Reflux nebulization (1-, 3-, and

6-jet versions commonly used)
Collison nebulizer, Wells

atomizer, TSI 9302, FK-8
aerosol gun, Aeroneb Lab

Refluxing two-fluid atomizer operates via Venturi
effect and wall impaction; liquid recirculation
occurs every 6 s in the 3-jet version (134)

14, 16, 20, 23–25,
78, 79, 98, 121,
161–166

Increased jet numbers increase the rate of aerosol
generation and recirculation; reservoir evaporation
occurs over time, causing concn effects

Generally used for liquids, although the Wells
atomizer was used for dry powders; particle sizes
are small, 0.7–2.2 �m

Forces associated with reflux nebulization can cause
deagglomeration of aggregates, leading to
observed increase in bacterial concn in spray
suspension

Nonreflux nebulization Single-pass aerosolizer Atomization (as described above) without wall
impaction and recirculation

24

Aerosol bubbling SLAGb and variants Liquid dripped onto a membrane is broken into
droplets by airflow through the membrane

16, 24, 26

Droplets burst due to increased pressure gradient
inside vs outside the device, generating small
aerosol particles

Centrifugal atomization Spinning top aerosol generator Centrifugal forces move liquid applied to rotating
disc toward edges, producing ligands that break
into droplets

167

Flow focusing FFAG,c C-Flow nebulizer Liquid flows through an orifice forming microjets that
break up into particles by aerodynamic suction of
an accelerated air stream

20, 24, 168

Good monodispersity of droplets can be achieved

Aerosol sampling
Impingement Impingersd (AGI-4, AGI-30, AGI

model 7541 AGI); SKC
biosampler

The aerosol accelerates through a critical orifice,
causing inertial impaction into liquid

17, 18, 21, 22,
169–177

Efficiency is affected by physical parameters (e.g.,
sampling flow rate, nozzle no. and angle, distance
of nozzle from liquid, solution type and vol,
particle bounce, prolonged sampling time [liquid
evaporation, increased damage], and binding of
microorganisms to collection vessel wall)

Reaerosolization can occur due to liquid bubbling
Addition of glass beads can increase virus collection

efficiency
SKC biosampler possesses three angled nozzles,

creating gentler swirling motion of bioaerosol
during collection

AGI-30 impaction velocity reaches 265 m/s (the
velocity is much reduced in other samplers)

Impaction Single or multistage impactors:
Andersen, Mercer, Ultimate,
MAS-100, Burkard

Operate at constant flow rates, with air flowing
through orifice causing inertial impaction of
particles too large to remain entrained in airflow;
size fractionation possible

21, 22, 46, 178–180

Collection onto a range of different substrates (e.g.,
agar plates, gelatin-coated slides, filters) possible

Substrate choice can affect collection efficiency due
to effects on microbial viability and particle bounce

In the Burkard and sixth stage of Andersen impactors,
impaction velocities reach 12 and 24 m/s,
respectively

Filtration and impaction Gelatin filter, nitrocellulose,
polycarbonate

Greater physical sampling efficiencies; biological
sampling efficiency may be lower due to sensitivity
of collected microorganisms to air drawn past filter

21, 22, 47, 48

Elution of material from filter surface (e.g., vortexing,
shaking, solution vol and type) can influence
efficiency

(Continued on next page)
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critical to accurate representation of aerosol decay and infectivity. Aerosol generation
stresses can be reduced by using single-pass devices that reduce the probability of
microorganisms being damaged (24). Depending on sampler choice, maximizing re-
covery of microbes can be achieved in a number of ways. Prolonged sampling times are
a consistent cause of reduced viability, and hence collection times across all types of
samplers and should be minimized (22, 39). The cell membrane is a major site of
damage for Gram-negative bacteria when aerosolized as sampled, as demonstrated by
increased sensitivity to hydrolytic enzymes (12). Impingement requires collection into
a liquid which can be optimized to reduce osmotic shock and maximize repair and
recovery. For example, addition of compatible solutes and scavenging enzymes (e.g.,
trehalose, raffinose, polyhydric alcohols, betaine, and catalase) can facilitate survival
following the stresses associated with aerosol generation, transport, and sampling (37,
40–45). Particle bounce and viability loss in impactors for vegetative Bacillus subtilis
and Escherichia coli cells were reduced by applying a thin film of mineral oil, which
significantly enhanced collection efficiency (46). Filtration methods provide high phys-
ical collection efficiencies, but bioefficiency can be dependent on filtration time and
postprocessing procedures (21, 24, 47, 48). A major problem with filtration samplers is
continued drawing of air through the filter desiccate of collected microorganisms in a
time-dependent manner. However, filtration onto gelatin membranes provides a me-
dium that retains moisture and can be placed into warm media to recover collected
microorganisms providing good bioefficiency (21, 24).

Postsampling enumeration and storage are additional considerations. Enumeration
can introduce error, as organisms can be sensitive to impaction onto an agar surface
(49), sensitive to the plating medium (15), and sensitive to the process of spread plating
(50–52). Direct methods, such as microscopy or flow cytometry, in conjunction with
various dyes or quantitative PCR can indicate physiological activity of the collected
microorganisms (15, 17, 53). Storage temperature, sampling solution, and length of
time can prompt microbial replication (or death), causing misrepresentation of the
actual viability of the sampled bioaerosol (47). Samples should be processed as soon as
possible after aerosol sampling; however, this is highly dependent on the microorgan-
ism. For example, Bacillus spp. endospores have been demonstrated to be less affected
by storage temperature (4 and 25°C) than Escherichia coli; however, compared to
immediate enumeration, both species had increased counts after extended periods of
storage at 25°C (10 and 24 h for B. subtilis and E. coli, respectively), indicating significant

TABLE 1 (Continued)

Step in generation and mechanism Apparatus example(s) Description Reference(s)

Direct capture Microthreads Particles collected onto fine microthreads (e.g., spider
silk, glue thread) are wound onto a frame

77, 95–97, 122–124

Cyclonic separation NIOSH cyclonic biosampler Airflow drawn into cylindrical container that is
rotated, causing larger particles to deposit and
collect on walls by centrifugal force

25, 34

Electrostatic precipitation Ionizers (AS150, model 3100
aerosol sampler)

Airborne particles are electrically charged and
subjected to electric field, causing gentle
deposition velocity onto collection substrate

29, 35, 181

Bioefficiency for spores is greater than for Gram-
negative bacteria

Impaction velocities reach 0.01–1 m/s
Animal inhalation Rodents, primates Aerosol particles regionally deposited due to inertial

impaction, sedimentation, diffusion, interception,
and electrostatic effects in respiratory tract

182

Deposition is a function of airway geometry and
particle properties (e.g., size, shape, density,
hygroscopicity)

aNote that the list is merely representative and not exhaustive. Researchers are recommended to conduct rigorous validation of the aerosol experimental system for
each individual microorganism tested.

bSparging liquid aerosol generator.
cFFAG, flow-focusing aerosol generator.
dAll-glass impinger.
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disaggregation and/or multiplication in the collection medium, which in this case was
sterile deionized water containing a small quantity of detergent (47).

The data indicate that the method of aerosol generation can damage the micro-
organism at the subcellular level, at the very least subtly, and influence resultant
estimates of microbial viability in the aerosol phase. None of these mechanisms is
entirely representative of the natural transmission mechanisms of respiratory patho-
gens, e.g., coughing and sneezing followed by deposition in the respiratory tract (4, 5).
The complexity of fluid fragmentation and droplet formation of oro-respiratory secre-
tions during coughs and sneezes has recently been elucidated, with the viscoelastic
properties of respiratory secretions playing a defining role in final droplet size (54, 55).
Viscoelasticity of respiratory secretions will change with anatomical location (e.g., nasal,
bronchial) and disease state (e.g., chronic bronchitis, sinusitis, cystic fibrosis) as a result
of changes in mucin content, which will also affect droplet sizes (56, 57). Natural aerosol
transmission events are likely to be less violent than the aforementioned aerosol
generation processes. Therefore, selection and validation of experimental regimens
(aerosol generator, spray fluid composition, and sampling) to minimize microbial
damage, promote maximal recovery, and most closely replicate the natural event
being modeled are important for interpretation of aerosol data used in risk analysis
models. Based on this review and also more extensive reviews on sampling meth-
odology (31, 32), it is apparent that given the variability in microorganism responses
to the stresses of aerosol generation and collection, it is advisable to perform
method validation for each particular microorganism. Testing a range of aerosol
generators and samplers to ensure that the behavior of the microorganism within
the system is understood facilitates appropriate selection of apparatus and meth-
odology to maximize recovery during enumeration.

AEROSOL TRANSPORT AND PHYSICAL PROCESSING

The physicochemical properties of bioaerosol particles govern all of the biological
processes within. The conditions in a bioaerosol particle that a microorganism will
experience can be dramatically different than those in bulk liquid; the solute concen-
trations commonly reach supersaturation (58), while the rate of water transport within
the droplet can vary by orders of magnitude (59). Both of these properties are regulated
by the total water present in the droplet. Thus, a detailed understanding of the
hygroscopic properties of a bioaerosol as a function of solute composition (including
biological species itself) is critical for understanding and predicting longevity and
overall infectivity.

The typical trajectory in relative humidity (RH) for a respiratory pathogen would be
from a high level at the point of dispersion (�95%), to a low level during atmospheric
transport (ambient RH), to a high level upon inhalation (�95%) (60). During its lifetime,
the water activity (aw) within a droplet equilibrates with the atmospheric RH through
either the addition or removal of water (61). From droplets larger than 100 nm in size,
the water activity is equal to the gas-phase RH at equilibrium. The rate at which this
mass flux occurs and the final particle size attained are a reflection of the temperature
and humidity of the gas phase of the aerosol and the droplet solute (62, 63). Impor-
tantly, all microorganisms require water for activity of critical enzyme-driven biochem-
ical reactions (e.g., respiration). Interestingly, in studies looking at osmotic tolerance in
bulk liquid phase, depending on the bacterial species, multiplication and growth are
inhibited at aw values of 0.86 to 0.97, with further reductions inducing dormancy or
eventually reducing viability (64, 65).

The hygroscopic behavior of any multicomponent aerosol is dependent on the
relative abundance of each chemical species in the solute, where each component will
contribute a proportion to the uptake or loss of water (61). This paradigm holds true
for bioaerosols; for example, it has been shown that the solute concentration affects
hygroscopic growth of aerosolized B. subtilis and Pseudomonas fluorescens vegetative
cells (66). However, to study the hygroscopic behavior of an aerosol where the aim is
to generate predictive models, much information about the solute is required. The
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relative abundance of each component within the aerosol is mandatory (67–71), as is
a detailed understanding of how the various components within the solute interact
with one another (72). While this is somewhat straightforward with regard to nonbio-
logical aerosols, it remains a major challenge with bioaerosols. For example, infected
individuals coughing and sneezing will produce larger droplets with different concentra-
tions of mucus and other organic and inorganic solutes than those produced by healthy
individuals (57). Similarly, in laboratory studies, microbial culture conditions (liquid
broth, solid agar, and nutrient composition) and growth phase affect the concen-
tration and types of nutrients present in the spray suspension, and these factors
influence aerosol survival (25, 73–77). Indeed, survival of a viral simulant, the bacterio-
phage MS2, differed in human-derived saliva, artificial saliva, and cell culture medium,
with the greatest decay observed in human-derived saliva (78). This has been observed
for other viruses and bacteria upon comparing survival after aerosolization from body
fluids (natural or synthetic) and culture medium (79–82). This highlights the caution
needed in extrapolation of results from experimental to in vivo situations being modeled in
a risk analysis.

The primary challenge in experimental studies of the factors that regulate the
hygroscopic behavior of a bioaerosol is to control and know the complete composition
of the bioaerosol droplets. For example, a simple factor such as control of the number
of organisms per droplet/particle is not trivial when using conventional aerosolization
processes. To attempt to address this specific issue in studies of laboratory-generated
bioaerosols, a particular size is selected for a nebulized and dried bioaerosol sample,
allowing estimation of the number of species per droplet prior to hygroscopic analysis
(16). For more complex (and atmospherically relevant) bioaerosols, the hygroscopic
behavior of an anthropogenic bioaerosol has been estimated indirectly (83, 84). In these
studies, the relative growth in bioaerosol particle size with increases in RH was estimated
through correlation analysis between the temporal size distributions (aerodynamic
diameter) of airborne fungi with meteorological information (RH).

Thermodynamic models to predict the hygroscopic behavior of aerosol (e.g., uni-
versal quasichemical functional group activity coefficients [UNIFAC]) have been used for
bioaerosols to limited success (58, 85). Generally, these models are able to predict the
hygroscopic behavior of large and complex organic molecules through parameteriza-
tion of the functional groups present (such as carboxylic acids) (86). Even though,
organically, bioaerosol consists primarily of sugar alcohols and highly polar sugars (87),
it remains unclear the extent to which these models can be used to predict the
hygroscopic behavior of bioaerosols (88). The reason for this is that even when the
relative abundances of functional groups and chemical species within a single bioaero-
sol droplet are known, the accumulation of noncovalent interactions between these
species is not. The presence of cellular membranes within the droplet could kinetically
limit the hygroscopic behavior of all the chemical species within the aerosol.

The limited number of comprehensive studies that have explicitly focused on the
physicochemical properties of bioaerosols is problematic. Their absence has constrained
the means by which the longevity of a suspended bioaerosol can be investigated.

DETERMINING BIOAEROSOL LONGEVITY

Bioaerosol longevity is simply the length of time in which a biological species will
remain either infectious or viable while suspended as a single particle. In an ideal
experiment, the entire composition of the target bioaerosols would be explored; as
discussed in previous sections, this is technically challenging due to the selectivity of
samplers and the heterogeneity of bioaerosol composition. Despite this, numerous
studies on bioaerosol longevity have been published.

Techniques for investigating survival of bioaerosols in vitro (Table 2) maintain the
particles either in the air column (i.e., “dynamic bioaerosols”) or captured on a fine
substrate such as spider silk or glue fibers (i.e., “captured bioaerosols”). The rotating
drum is probably the standard procedure used for aerosol longevity studies, based on
the seminal design of Goldberg and colleagues (89). Modifications have permitted
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greater control (e.g., in situ monitoring of parameters) and accessibility to a range of
environmental parameters (e.g., temperature, UV, volatile organic compounds) and the
suspension of larger aerosol particle sizes for sufficiently long periods of time (90–93).
Methods based on capturing bioaerosols on microfibers derived from spider escape silk
and glue gun fibers have been utilized with success (77, 94–96). Comparative studies on
filoviruses have demonstrated that microthread-captured bioaerosols decay at a similar
rate as those held dynamically within rotating vessels (33, 97).

The methods for retention of microorganisms in the aerosol phase have been used
extensively to determine biological decay in the airborne state as a function of time and
under a range of environmental conditions (Table 3). The aerosol is sampled at time
intervals and the number of viable microorganisms is determined, enabling calculation
of the aerosol decay rate. Sampling method and subsequent microbiological process-
ing and enumeration can alter the number of recovered microorganisms (15, 17, 21,
22). Therefore, it is important to minimize microbial stress during aerosol collection to
facilitate accurate calculation of the decay rate. During method validation, it is impor-
tant to differentiate biological decay from physical losses due to deposition on the walls
of the vessel or removal from the microthreads due to turbulence (or the presence of

TABLE 2 Examples of experimental techniques used to study the fate of microorganisms
in aerosols

Device Mechanism
Aerosol
statea

Outdoor
use? Reference(s)

Rotating drum Rotational speed of drum
prevents aerosol from settling
for period of time dependent
on particle size

Dynamic N 33, 81, 82, 92, 93,
98, 110, 125,
162, 183

Microthread Aerosol captured on spider
microthreads or glue fibers
wound around a metal frame
that can be slotted into an
exposure apparatus

Captured Y 77, 95–97, 122–124,
129

Sphere Steel sphere with mixing fans Dynamic N 123, 184
Aerosol chamber Large chambers with mixing fans Dynamic N 185
Greenhouse No mixing fan Dynamic Y 186, 187
aDynamic refers to particles maintained as a buoyant aerosol, while captured refers to aerosol particles
immobilized on a substrate.

TABLE 3 Atmospheric, environmental, and microbial factors that affect survival and
infectivity of airborne microorganisms

Factor Description Referencesa

Relative humidity Levels studied generally from 20 to 90% RH 40, 44, 75, 79, 81, 98, 99,
112, 114, 162, 183,
188–192

Temperature Wide ranges studied, from subzero to 50°C 79, 163, 190, 191, 193
Solar radiation Variability in spectra examined but inclusive

of UV-A and UV-B wavelengths
45, 77, 114–117, 187

Oxygen Generation of ROSb during aerosol transport 43, 104–108, 164, 194
Ozone Reactive with pollutant gases and pinenes 121, 185
Pollutant gases, OAF CO, SO2, NO2, ethene, cyclohexene, and

SOAs (e.g., alkenes, turpenes)c

30, 92, 121–130, 184

Wet/dry prepn Droplets or dried particles 75, 111, 162, 188, 195
Growth phase Exponential or stationary 30, 164
Particle size Microbial aggregates have greater survival

than single microorganisms
30, 77, 129, 194

Aerosol age Infectivity decreased prior to culturability
with extended time in aerosol

196–198

aThe list of relevant references is reflective and not exhaustive.
bROS, reactive oxygen species.
cSOAs, secondary organic aerosols. Turpenes are volatile cyclic unsaturated hydrocarbon molecules released
by plants.
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antimicrobial substances on the silk). Physical loss in aerosol systems is determined by
using physical tracers that will not biologically decay, such as Bacillus spores, chemicals
(e.g., fluorescein), or polymer beads (21, 98, 99). The decay rates of the target micro-
organism and the physical tracer can be compared and the true biological decay rate
determined.

A disadvantage of these techniques is that they sample bulk aerosols, and it is
difficult to develop an appreciation of microenvironment heterogeneity occurring
within individual aerosol droplets from the physicochemical and biological per-
spectives. For example, each individual aerosol droplet is likely to have a different
chemical composition, exacerbated by differences in particle size that manifest
themselves biologically on the microorganisms incorporated within the droplets.
Such differences may be a source of variability in how microbes respond and
survive aerosol transport.

ENVIRONMENTAL FACTORS AFFECTING MICROBIAL LONGEVITY DURING
ATMOSPHERIC TRANSPORT AND BACTERIAL SURVIVAL MECHANISMS

A large number of environmental and meteorological factors can influence micro-
bial survival during aerosol transport (Table 3), and to provide greater context for
interpretation of results the environmental features of the sampling site should be
described. The fate of the microorganism is likely dictated by its physiological status,
which is a combinatorial consequence of the atomization process (e.g., spray device,
cough, sneeze) with the associated evaporative stresses of aerosol transport and rehydra-
tion during inhalation (or sampling into liquid). The mechanisms by which the micro-
organisms perish have been partially elucidated and depend on the composition of the
droplet and surrounding atmosphere.

Atmospheric oxidants (e.g., reactive oxygen and nitrogen species, sulfur dioxide,
ozone) will impact microbial longevity by acting either directly on the organism or with
constituents within the aerosol droplet (100, 101). The presence of oxygen has been
demonstrated to have a deleterious effect on airborne coliform bacteria, particularly at
RH less than 40%, and is hypothesized to be due to production of reactive oxygen
species by Maillard reactions (30, 102). Maillard reactions are amino-carbonyl reactions
that occur between amino groups on proteins and reducing sugars that cause oxida-
tion of macromolecules and death in microorganisms (103). In airborne microorgan-
isms, these reactions may be the cause of oxidative damage to critical enzymes (43,
104–106), phospholipids, and nucleic acids, causing at the molecular and physiological
levels of the bacterial cell (i) metabolic imbalance, (ii) membrane destabilization, and
(iii) reduction of repair activity (30). Interestingly, recently Maillard chemistry has been
implicated as a source of organic compounds within atmospheric aerosols altering
particle viscosity and hence the diffusivity rate of water and reactive gases (107).
Bioaerosols (including virus, vegetative bacteria, spores, and peptides) subjected to
atmospheric ozone concentrations and variations in RH showed temporal changes in
fluorescence spectra related to oxidation and hydrolysis of tryptophan (108–110).
Although survival is generally greater at higher RH (�80%), certain values (i.e., 70 to
85% RH for E. coli B) (40, 43) produce a large decrease in aerosol survival (40, 106, 111,
112). Likewise, RH-dependent changes in salt concentrations and pH within droplets
influence virus viability causing conformational changes in surface proteins and mem-
brane fluidity affecting infectivity (113).

Solar irradiation and atmospheric pollutant gases (including open air factor [OAF])
are two further environmental parameters that can significantly affect longevity in the
aerosol phase. Solar irradiation markedly decreased viability compared to control
conditions that simulated the night (45, 77, 114–117). Particle size-dependent survival
from solar irradiation has been observed, with bacterial clusters persisting for longer
periods (77, 116). Terrestrial solar spectral irradiance varies through the day, with
season, and with geographical location (118). The UV wavelengths are of most impor-
tance for inactivating microorganisms (115, 116), where UV-A and UV-B reach the
troposphere with the potential to cause a variety of DNA genomic lesions and damage
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to nucleic acids, proteins, and lipids due to generation of reactive oxygen species
(119, 120). It is important that studies using both simulated and natural solar irradiation
report variables such as solar intensity as accurately as is reasonably possible to
facilitate data interpretation and standardization between laboratories.

Atmospheric constituents, such as various pollutant gases and secondary organic
aerosols (SOAs) (Table 3) have been demonstrated to have significant deleterious
effects on aerosol longevity (30, 92, 121–129). Many of these may contribute to a
phenomenon known as open air factor, where aerosolized microorganisms exposed
to open climatic conditions decay more rapidly than those in enclosed laboratory
vessels subjected to similar temperature and RH (30, 122–124, 128, 129). The precise
nature of OAF is not fully understood but is hypothesized to involve a number of
highly reactive products (e.g., hydroxyl radicals) from photochemical interactions
between ozone and unsaturated hydrocarbons from anthropogenic sources (e.g.,
engine-related alkenes) and nonanthropogenic sources (e.g., plant turpenes) (30,
122). The reactive species rapidly oxidize and degrade macromolecules such as
lipids, proteins, and nucleic acids (30, 130). The effect of OAF is enhanced at high
humidity (80 to 90% RH) for both E. coli and Micrococcus albus (122). Such humidity
effects warrant further investigation in relating the increased water content of
aerosol particles at higher humidity.

How microbes regulate and survive aerosol transport is undetermined. Evidence
suggests that the ability for transcription and translation to occur in the environment
of an evaporating droplet is reduced (30, 131, 132). Evaporation and rehydration of
aerosol particles imparts osmotic and desiccative stresses on the microbe that are
reflective of the humidity of the surrounding atmosphere and composition of the
particle. The molecular response of many bacterial species to osmotic stress and
desiccation is well documented from research understanding survival in food matrices,
aquatic and marine systems, and terrestrial environments (65). Hyperosmotic stress
(i.e., reduced aw) causes a reduction in cytoplasmic volume as water exits the bacte-
rium; concomitantly, cell growth and respiration cease as the bacterium adapts to the
hyperosmotic conditions. Initially charged solutes (e.g., K� ions, glutamate) are accu-
mulated via specific uptake mechanisms (65, 133–135). Interestingly, the inability to
control efflux of K� ions is correlated with decreased survival in aerosolized E. coli cells
(28, 136). Synthesis of compatible solutes (e.g., trehalose) or uptake from the surround-
ing medium (e.g., glycine betaine, proline) stabilizes proteins, enzymes, and membrane
phospholipids to enable critical biochemical processes to continue in hyperosmotically
stressed bacteria. As the bacterial cell stabilizes, a number of proteins are synthesized,
prompting repair of DNA damage, scavenging of reactive oxygen species, and degra-
dation of misfolded proteins (65, 133–135). Osmotically adapted cells often show
cross-tolerance to other stresses, such as high temperature and oxidative shock (137).
Recently, E. coli subjected to a rapid downshift in aw (0.993 to 0.960) in medium was
demonstrated to control protein misfolding by transient expression of the RpoE and
RpoH regulons in conjunction with the RpoS regulon to facilitate prolonged adaptation
to the hyperosmotic conditions (138).

The molecular studies described above have all been conducted in bulk solution
phase and expose the microorganisms to hyperosmotic stress. Microorganisms will be
exposed to hyperosmotic conditions within an evaporating droplet (i.e., low aw con-
ditions), enabling speculation that similar molecular mechanisms play role in bacterial
survival within evaporating aerosol droplets. As discussed below, advances in atmo-
spheric chemistry and single-cell genomic techniques will allow investigation of
whether similar molecular mechanisms occur in an aerosol droplet as a function of
evaporation rate and droplet composition. Importantly, if airborne microorganisms can
induce adaptive responses promoting survival, then there is the potential that coloni-
zation and infection of the respiratory tract is primed while the bacteria are transported
in the atmosphere. Any induced virulence factors would offer attractive targets for
combating respiratory infection.
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NEW TECHNIQUES FOR ADVANCING AEROSOL SCIENCE AND AEROBIOLOGY

Bioaerosols, even when produced under controlled laboratory conditions, are com-
plex. They are generally polydispersed in terms of both physicochemical and biological
properties, and the heterogeneity in the nature of a bioaerosol evolves with time and
distance from the source. Technological advances in the fields of aerosol science and
molecular biology are timely to facilitate multidisciplinary approaches to understand
heterogeneity at the single-droplet and single-microorganism levels (including micro-
bial aggregates) and to explore the fundamentals of biological decay and survival in
aerosol droplets.

Optical techniques, such as optical tweezers and electrodynamic balances, where
single aerosol droplets can be captured and levitated within an electric field for periods
of time (seconds to days), have been extensively used in atmospheric chemistry to
investigate heterogeneous chemistry, phase separation, hygroscopicity, and ice nucle-
ation activity using analytical techniques, including Raman microspectroscopy (139–
144). Utilization of these techniques for biological aerosols has been limited to date.
However, optically trapped single biological cells in solution produce characteristic
Raman scattering signatures (145–148), and E. coli exposed to 1-butanol resulted in
spectroscopic and anisotropic detection of real-time phenotypic changes in fatty acid
composition and membrane fluidity (148). Although these studies were conducted in
liquid bulk solution rather than aerosol droplets, it exemplifies the power of the
technology. Furthermore, such techniques are being used to explore individual aerosol
particles containing microorganisms, fungal spores, and pollen (149–151). The electrody-
namic balance technique has been used to accurately deposit single particles containing
respiratory syncytial virus onto airway epithelial cells enabling the cellular response to
infection to be analyzed (152). This technique enables interaction at the air-cell interface
with single aerosol particles, a more representative scenario than the air-liquid interface
studies commonly conducted for in vitro infection studies. It is a technique that seems
applicable although currently rarely applied to understanding the heterogeneity of bio-
aerosols at the single-droplet and microorganism level.

Microbial cells respond to environmental stimuli by regulating gene expression resulting
in modulation of the quantities and composition of functional proteins available to combat
a particular stressful condition. Transcriptional analysis and insertional mutagenesis have
been used to identify bacterial genes regulated in response to stresses associated with
aerosol survival, such as desiccation and osmotic pressure (135, 153). Currently, these
techniques have not been applied to aerosolized microbial populations; however, it can
be hypothesized that similar responses may be expected and warrant exploration. The
relative abundance of particular proteins critical to aerosol survival will vary from cell to
cell. Exploring this heterogeneity at the single-cell level is complicated due to the
relatively low abundance of stress-responsive proteins. However, the last 5 years have
seen significant advances in molecular techniques enabling exploration of genomics
and proteomics (154–157). Techniques for isolating single cells, such as flow cytometry
and microfluidics, can be combined with techniques such as PCR and next-generation
sequencing for probing the transcriptional response of single cells (158). Indeed,
single-cell genomic techniques have been applied to understanding airborne meta-
genomes in urban settings (159, 160). Application to aerosolized populations in a
laboratory setting would seem straightforward. However, care in experimental design
is needed to discriminate the true effects of aerosol transport from the stresses of
aerosol generation and sampling.

These emerging technologies have the potential to dramatically impact numerous areas
of bioaerosol science. They will lead to improved parameterization of the fundamental
properties of bioaerosol, such as the interplay between environmental conditions with
species longevity and/or gene expression. These data will lead to better predictions of
disease dynamics in areas such as general industrial hygiene, animal husbandry, hospital
design, and biosecurity. Furthermore, the data collected from these laboratory-based
instruments will inform conventional research of environmental samples.
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CONCLUDING REMARKS

Experimental factors affect the microbiological sample taken forward for quantifi-
cation of infectious dose or biological decay rate. Therefore, a thorough understanding
of the sampling and enumeration process is critical to interpretation of the final data
set. Furthermore, no single aerosol generation or sampling method is likely to suit all
purposes (i.e., size selectivity, species sensitivity); therefore, the experimental apparatus
should be selected based on the hypothesis and microorganism being tested and the
data interpreted alongside the caveats associated with the methodology. For experi-
ments designed to generate data for input into risk analysis determination of human
inhalational exposure then it is recommended that aerosol generators, samplers (and
collection fluid) be used that cause minimal damage or promote maximal recovery of
the microorganisms during collection to prevent underestimation of risk estimates.

Fundamental questions remain regarding aerosol transmission of respiratory patho-
gens, particularly the underlying mechanisms of survival and/or death during aerosol
transport and the role the microenvironment of the droplet plays as it evaporates then
rehydrates during inhalation. However, as outlined in this review, advances in distinct
scientific fields could support a systematic dissection of the biological response of
microorganisms within compositionally controlled aerosol droplets within specific
atmospheric conditions. It is envisaged that within the next 10 years multidisciplinary
approaches combining existing and novel techniques in atmospheric chemistry, aero-
biology and molecular biology will converge and begin to dissect and empirically
understand the mechanisms of microorganisms survival and decay in the aerosol state
and the effect on infectivity and disease transmission.
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