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Abstract

RAS is the founding member of a superfamily of GTPases and regulates signaling pathways

involved in cellular growth control. While recent studies have shown that the activation state

of RAS can be controlled by lysine ubiquitylation and acetylation, the existence of lysine

methylation of the RAS superfamily GTPases remains unexplored. In contrast to acetyla-

tion, methylation does not alter the side chain charge and it has been challenging to deduce

its impact on protein structure by conventional amino acid substitutions. Herein, we investi-

gate lysine methylation on RAS and RAS-related GTPases. We developed GoMADScan

(Go language-based Modification Associated Database Scanner), a new user-friendly appli-

cation that scans and extracts posttranslationally modified peptides from databases. The

GoMADScan search on PhosphoSitePlus databases identified methylation of conserved

lysine residues in the core GTPase domain of RAS superfamily GTPases, including resi-

dues corresponding to RAS Lys-5, Lys-16, and Lys-117. To follow up on these observations,

we immunoprecipitated endogenous RAS from HEK293T cells, conducted mass spectro-

metric analysis and found that RAS residues, Lys-5 and Lys-147, undergo dimethylation

and monomethylation, respectively. Since mutations of Lys-5 have been found in cancers

and RASopathies, we set up molecular dynamics (MD) simulations to assess the putative

impact of Lys-5 dimethylation on RAS structure. Results from our MD analyses predict that

dimethylation of Lys-5 does not significantly alter RAS conformation, suggesting that Lys-5

methylation may alter existing protein interactions or create a docking site to foster new
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interactions. Taken together, our findings uncover the existence of lysine methylation as a

novel posttranslational modification associated with RAS and the RAS superfamily

GTPases, and putative impact of Lys-5 dimethylation on RAS structure.

Introduction

The small GTPase RAS is a signaling switch, cycling between active GTP- and inactive GDP-

bound states. As dysregulation of RAS activity promotes cancer [1–6] and developmental dis-

orders [7–10], wide-scale efforts are in place to generate agents that antagonize aberrant RAS

function. Although development of direct inhibitors of RAS has historically proven challeng-

ing [11–15], compounds that target a specific oncogenic mutant (KRAS G12C) [16–18] are

now in phase I clinic trials (Clinical Trial number: NCT03600883, NCT03785249). While

these inhibitors appear quite promising, they target one out of many possible oncogenic RAS

mutants. Moreover, oncogenic RAS mutants are populated in the active GTP-bound state, and

these covalent inhibitors react with the less active GDP-bound state. Hence, understanding

novel mechanisms of RAS regulation may prove helpful in identifying new therapeutic

approaches for targeting RAS-driven tumors and developmental disorders.

RAS proteins contain a core guanine nucleotide binding (G)-domain that consists of five

conserved G boxes [19,20]. These G boxes are the basis of the high affinity and specificity of

RAS proteins for guanine nucleotides (GDP and GTP). Binding of either GDP or GTP pro-

motes distinct conformational changes in two key regions, termed switch I and II. In an unsti-

mulated cell, cellular RAS is populated in the ‘inactive’ GDP-bound conformation, despite the

high GTP/GDP intracellular ratio. Guanine nucleotide Exchange Factors (GEFs) bind and

upregulate RAS activity by promoting nucleotide exchange to facilitate association of the more

abundant cytosolic GTP, whereas RAS GTPase activating proteins (GAPs) bind to RAS and

accelerate the intrinsic rate of GTP hydrolysis to downregulate RAS activity [21–23]. The

active RAS GTP-bound conformation of the two switch regions is recognized by effector tar-

gets and culminates in downstream signaling.

Oncogenic mutations in RAS promote dysregulated cell proliferation [1–10]. While

mammalian cells encode four closely related RAS proteins, (HRAS, NRAS, and KRAS4A/

4B), most oncogenic mutations occur in KRAS [10,11,24–26]. Hot spot mutations found at

glycine-12 and glycine-13 in the G1 box, and less frequently at glutamine-61 in the G3 box,

populate the active GTP-bound form of RAS by interfering with GAP-mediated GTP hydro-

lysis. A subset of RAS mutations in G4 and G5 boxes leads to RAS activation by promoting

nucleotide exchange [27–30]. For example, the G5 box, or the S-A-X motif, contains resi-

dues that interact with the guanine moiety and is required for selective and high affinity

binding of RAS to guanine nucleotides. Mutations of the alanine residue, Ala-146, in the

S-A-X motif have been found in cancers and developmental disorders and promotes activa-

tion of RAS by increasing GDP exchange and GTP loading [28,30–35]. Residue X in the

S-A-X motif corresponds to Lys-147 in RAS, and is ~ 55% conserved in RAS proteins across

species and in a number of RAS-superfamily GTPases including RHOA, RAP, RAL, RAB,

RHEB and RAN [19]. Oncogenic mutations are also found in residues outside the G-box.

Lys-5 shows about 70% conservation within the RAS superfamily GTPases and lies within

the amino terminus of RAS [19]. While the role of Lys-5 is not well understood, two mis-

sense mutations (K5N and K5E) have been identified in cancers [31–33] and in patients
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with Noonan, Cardiofaciocutaneous, and Costello syndromes [34–37], suggesting that these

are activating mutations.

Precise control of RAS function is essential for cellular growth control. Unlike genetic

lesions, reversible post-translational modifications (PTMs) provide a distinct mechanism to

regulate RAS activity and function. In fact, RAS GTPases are regulated by a number of lysine

PTMs, including acetylation and ubiquitylation [38,39]. While polyubiquitylation of RAS pro-

motes proteasome dependent degradation [40–43], lysine monoubiquitylation of KRAS at

lysine 147 in the G5 box, has been shown to upregulate KRAS activity by impairing GAP-

mediated GTP hydrolysis [44,45]. Lysine 147 is also a site of KRAS acetylation [46,47], how-

ever, the role of lysine acetylation at this site is unclear. It is becoming increasingly clear that

lysine acetylation can alter protein function outside its well-documented role in histone-medi-

ated transcriptional regulation [48–50].

In contrast to lysine acetylation, the role of lysine methylation beyond chromatin regulation

is less well-characterized, despite its earlier discovery in Salmonella typhimurium flagellin pro-

tein in 1959 [51]. Lysine modifications are more diverse than acetylation and can involve the

transfer of one, two or three methyl groups to the ε-amine of a lysine side chain. Lysine meth-

ylation been identified in a host of abundant cellular proteins, including histones [52], cyto-

chrome c [53], ribosomal proteins [54,55], myosin [56], and EF-Tu [57,58], suggesting a

fundamental role in eukaryotes and prokaryotes. However, identification of this PTM has long

relied on analyses that require large amounts of the target protein, such as Edman sequencing,

radiolabeled assays or immunoblotting of the targeted site. Furthermore, it has been challeng-

ing to deduce the role of lysine methylation, since, as opposed to lysine acetylation, methyla-

tion does not alter the lysine side chain ε-amine charge and thus amino acid substitutions do

not adequately mimic lysine methylation. Chemical biology methods have been developed to

chemically introduce methylated lysine into proteins in vitro [59,60], but are limited by the

requirement for recombinant protein, expertise in chemistry and yield of the desired modifica-

tion. Consequently, our understanding of the biological significance of this PTM has been lim-

ited to a few proteins, including histones [61–64] and p53 [65–68].

In this study, we explored a possible new layer of small GTPase regulation by lysine methyl-

ation using a new application, GoMADScan, in combination with mass spectrometry

approaches. Our MS analysis identified novel methylation sites at conserved lysines, Lys-5 and

Lys-147, within the core RAS GTPase domain. Importantly, GoMADScan also identified Lys-

5 methylation in the RAN GTPase, suggesting lysine methylation at this site may represent a

conserved mechanisms of regulation. Results from molecular dynamics (MD) simulations

indicate that Lys-5 dimethylation does not significantly alter RAS structure or dynamics.

Rather, we posit that lysine methylation at this site alters existing interactions or creates a bind-

ing interface to foster new interactions. Together, this study identifies for the first time using

MS analyses, a novel layer of RAS modification. We also highlight the use of GoMADScan and

MD simulations as a systematic and versatile approach to extract lysine methylation sites from

databases and assess their potential impact on the activity of small GTPases.

Material and methods

Materials

Anti-RAS (#05–516) was obtained from EMD/Calbiochem; rat monoclonal anti-RAS (Y13-

238)-conjugated agarose (#sc-34 AC) from Santa Cruz; anti-Flag (M2) antibody and bovine

serum albumin (BSA) (Fraction V) were purchased from Sigma-Aldrich. Bis-Tris gels were

obtained from Invitrogen.
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Mass spectrometry analysis

Endogenous RAS proteins were immunoprecipitated with monoclonal rat anti-RAS antibody

(238) from HEK293T and subjected to SDS-PAGE for mass spectrometry analysis as in [44].

MS/MS spectra were acquired using collision-induced dissociation. They were searched

against the reversed and concatenated Swiss-Prot protein database (v. 55.8, UniProt) with a

fixed modification for methionine methylation (+15.99490) and the variable modifications for

monomethylation (+14.0156), dimethylation (+28.0106) and trimethylation (+42.0106) using

the Sequest algorithm associated with the Proteomics Browser Software (Thermo Scientific,

San Jose, CA). RAS peptides were identified by database scoring. Peptides modified by methyl-

ation were validated manually to be sure that all b- and y- series ions were consistent with the

modified residue. Additional validation was performed using GraphMod software in Proteo-

mics Browser Software (Thermo Scientific, San Jose, CA). The peptide false discovery rate was

less than 1.5% based on reversed database hits.

GoMADScan version 1.0

GoMADScan (version 1.0) is written in the Go programming language, and can run on multi-

platforms where the GTK library is available. We tested GoMADScan running in OS X 10.11

with Go 1.3 and 10.14 with Go 1.8. Briefly, GoMADScan is designed to do simple keyword

searches on delimiter-separated values (DSV) files with some drop-down lists and a scale bar

to graphically change search conditions. This type of file format is widely used in biological

databases. In particular, PhosphoSitePlus archives the large DSV-based dataset to extract pro-

tein modification sites. Thus, we applied GoMADScan for the PhosphoSitePlus dataset and

used keywords to search for modifications within RAS superfamily GTPases [19]. GoMADS-

can is freely available at https://github.com/carushi/GoMADScan.

Database search for modified RAS superfamily GTPases

Methylated peptides were downloaded from PhosphoSitePlus(R) (http://www.phosphosite.

org) [69,70]. Lysine methylation sites were extracted using GoMADScan using name ‘matches’

within the gene list (Table 1). For scanning, we used the gene names adapted from [19] as

below. After this curation, 72 methylation sites were identified in 40 RAS genes out of a total

19,745 methylation sites as of March 3th, 2019. For scanning, we used the gene names adapted

from [19] and included their synonyms as the following:

Molecular dynamic simulations

The starting structures for the GDP- and GTP-bound forms of KRAS were PDB ID 4lpk [16]

and PDB ID 6god [71], respectively. The C-terminal helix of the GDP-bound structure was

extended by 6 residues using PyMOL [The PyMOL Molecular Graphics System, Version 2.3

Schrödinger, LLC] for consistency with the GTP-bound structure. The GNP residue in 6god

was converted to GTP by converting the N3B atom into O3B. The N-terminal serine from

6god was mutated to methionine for consistency with 4lpk. Lysine 5 in KRAS was dimethy-

lated using MLY from 3mp6 [72] as a template. Molecular dynamics (MD) simulations were

completed in triplicate for each of the four configurations (GDP- and GTP-bound with and

without dimethylated Lys-5) for a total of twelve simulations. MD simulations were conducted

using the CUDA version of PMEMD [73] [74,75] from the Amber16 suite of programs

(UCSF) [76]. Protein parameters were from the ff14SB force field [77], while the force field

parameters for dimethylated lysine were adapted from [78]. Force field parameters for GDP

and GTP were obtained from the Bryce Group Computation Biophysics and Drug Design
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Amber Parameter Database (www.pharmacy.manchester.ac.uk/bryce/amber) [79]. To initiate

the simulations, RAS proteins were placed in a TIP3P octagonal water box extending 16.0 Å
from the protein edge with Na+ counter ions included. Topology and starting files were gener-

ated using the tleap program. Electrostatic interactions were calculated using the particle-mesh

Ewald method with a cutoff of 8 Å for non-bonded interactions. The SHAKE algorithm was

applied to constrain bonds involving hydrogens. All MD simulation production runs were

conducted under constant volume and constant temperature periodic boundary conditions

with an Andersen thermostat. For equilibration, 10000 minimization steps were applied at the

beginning, including 5000 steepest descent and 5000 conjugate gradient minimization steps.

The system was then heated from 0K to 300K using 500 ps of constant volume dynamics. This

was followed by 500 ps constant pressure to reach a density of 1g/cm3 for the entire system.

Production simulation replicates were each run for a total length of 200 ns with a 2 fs timestep,

recording snapshots every 10 ps. Based on the analysis of the backbone Cα root-mean-square-

deviation (RMSD), the first 10 ns of the trajectories were excluded from the further analysis as

the systems equilibration time. The trajectories were then subjected to distance-based cluster-

ing analysis using GROMACS 2018 [80] clustering algorithm [81]. The distance cutoff for

Table 1. The list of gene symbol of Ras family.

AGS1 ARL10B GBTS1 NY-MEL-1 RAB29 RAB5B RAN RHEBL1 RIF WRCH-2

APMCF1 ARL10C GEM R-RAS RAB2A RAB5C RAP1A RHES RIG WTH3

ARD1 ARL11 GES R-RAS2 RAB2B RAB5CL RAP1B RHO6 RIN YL8

ARF1 ARL2 GIE1 R-RAS3 RAB30 RAB6A RAP2A RHO7 RIS

ARF3 ARL2L1 GIE2 RAB10 RAB31 RAB6B RAP2B RHO8 RIT1

ARF4 ARL3 GOV RAB11A RAB32 RAB6C RAP2C RHOA RIT2

ARF4L ARL4 H-RAS RAB11B RAB33A RAB7A RAR RHOB RND1

ARF5 ARL5 H-RASIDX RAB12 RAB33B RAB7B RAR-2 RHOBTB1 RND2

ARF6 ARL6 H-RAY RAB13 RAB34 RAB7L1 RAR2A RHOBTB2 RND3

ARFD1 ARL7 H-YPT3 RAB14 RAB35 RAB8A RAR3 RHOC RNF46

ARFRP1 ARL8 HRAS RAB15 RAB36 RAB8B RARL RHOD ROC1

ARFRP2 ARL9 HRAS2 RAB16 RAB37 RAB9A RASD1 RHOE ROC2

ARHA ARLTS1 HRASP RAB17 RAB38 RAB9B RASD2 RHOF RRAD

ARHB ARP HSPC137 RAB18 RAB39 RAB9L RASEF RHOG RRP22

ARHC BBS3 KIR RAB19 RAB39A RABL RASL10A RHOH SAR1A

ARHD CDC42 KRAS2A RAB19B RAB39B RABL2A RASL10B RHOH12 SAR1B

ARHE CDC42HS KRAS2B RAB1A RAB3A RABL2B RASL11A RHOH6 SARA1

ARHF CDC42L1 KREV-1 RAB1B RAB3B RABL3 RASL11B RHOH9 SARA2

ARHG CHP LAK RAB1C RAB3C RABL4 RASL12 RHOHP1 SEC4L

ARHH CMRD LOC339231 RAB20 RAB3D RABL5. RASL7A RHOI SMGP21

ARHH D2-2 LOC401884 RAB21 RAB40A RABS10 RASL7B RHOJ SRPRB

ARHI DBC2 M-RAS RAB22A RAB40B RAC1 RASL8C RHON TC10

ARHJ DEXRAS MASRA2 RAB22B RAB40C RAC2 RAY RHOQ TC10BETA

ARHN DI-RAS1 MEL RAB23 RAB41 RAC3 RAYL RHOT TC21

ARHQ DI-RAS2 MIRO-1 RAB24 RAB42 RAD REM1 RHOT1 TC25

ARHS E-RAS MIRO-2 RAB25 RAB43 RAD3D REM2 RHOT2 TCL

ARHU FBP N-RAS RAB26 RAB45 RAH REM3 RHOU TEM2

ARHV FLJ22595 NKIRAS1 RAB27A RAB4A RALA RERG RHOV TRIM23

ARL1 FLJ22655 NKIRAS2 RAB27B RAB4B RALB RHEB1 RIBA TTF

ARL10A G25K NOEY2 RAB28 RAB5A RAM RHEB2 RIBB WRCH-1

https://doi.org/10.1371/journal.pone.0219436.t001
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each system was selected by analyzing the corresponding RMSD distributions with respect to

the starting structures. The cutoff was then selected as the value corresponding to the peak of

the distribution. The centroids of most populated clusters were then selected as the representa-

tive structures of the complexes. Trajectories were analyzed using a density-based clustering

algorithm. The inputs of the analysis were 25 points as the minimum number required to form

a cluster and distance cutoff of 0.7 between points for forming a cluster. The appropriate dis-

tance cutoff was analyzed using a K-dist plot which shows the Kth farthest distance for each

point, sorted by decreasing distance. The minimum number of points required to form a clus-

ter is the value of K used in the K-dist plot.

GST-cRAF1 RAS binding domain (RBD) pull-down assay

Flag-His- (FH)-tagged KRAS4B mutants were generated by the standard polymerase chain

reaction (PCR) method and subcloned into pCMV2. RAS activation was measured as

described previously[44,82]. Briefly, FH-KRAS4B were transfected with Fugene 6 to

HEK293T cells. Twenty four hours after the transfection, cells were rinsed with cold PBS and

lysed with Buffer A; 0.5%NP-40, 40 mM HEPES [pH 7.4], 150 mM NaCl, 10% glycerol, 1

mM DTT, 1 μg/ml leupeptin, 2 μg/ml aprotinin, 1 μg/ml pepstatin A, 100 μM AEBSF, and

Halt phosphatase inhibitor cocktail (Thermo Scientific). The soluble fraction of cell lysates

were isolated by centrifugation at 13,000 rpm for 10 min and incubated with 10 μg of

GSH-Sepharose bound GST-RBD in the presence of 1 mg/ml BSA for 30 min. The pull-

downed proteins were washed three times with Buffer A and subjected to SDS-PAGE and

western blot analysis.

Results

Methylation site scanning identifies lysine methylation in the G domain of

RAS superfamily GTPases

To explore whether lysine methylation occurs in RAS related proteins by database search, we

developed GoMADScan (Go language-based Modification Associated Database Scanner:

https://github.com/carushi/GoMADScan). GoMADScan is a prototype scanning software for

complex data mining to extract post-translationally modified peptides based on type of modifi-

cation, peptide motif and protein domain (Fig 1). We applied GoMADScan to extract methyl-

ated peptides associated with RAS superfamily GTPases from the protein modification

database PhosphoSitePlus(R) (http://www.phosphosite.org) [69,70], and identified 18 lysine

methylated peptides in 13 small GTPases (Fig 1B). The RAN GTPase (Ras-related small

nuclear protein; regulator of the nucleocytoplasmic transport) as well as RAB GTPases

(involved in membrane trafficking), were among the small GTPases identified. While it is pos-

sible that monomethylation is specific to RAN and RAB GTPases, RAN GTPases may have

been identified because of their high cellular abundance (~ 100 μM, 0.36% of total cellular pro-

teins [74, 75]. Similarly, RAB is the largest family among the RAS superfamily GTPases, con-

sisting of ~60 members in mammalian [83–85]. In contrast, pan-RAS concentrations in a

HeLa cells have been reported as 0.4 μM [86], which is ~250-fold less abundant than RAN.

Tandem mass spectrometry analysis of endogenous RAS identifies Lys-5

and Lys-147 as methylation sites

To examine whether RAS undergoes lysine modification, endogenous RAS proteins were

immunoprecipitated with a monoclonal anti-RAS antibody, Y13-238, from HEK293T cells.

This antibody reacts with HRAS and KRAS, but not with NRAS [87,88]. After SDS-PAGE and
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Coomassie blue staining, the corresponding RAS protein band was isolated (Fig 2A). The

immunoprecipitated, endogenous RAS protein was digested with chymotrypsin followed by

liquid chromatography-tandem mass spectrometric analysis (LC-MS/MS). The LC-MS/MS

analysis identified dimethylation at Lys-5 and monomethylation at Lys-147 in RAS (Fig 2B).

As the methylated Lys-5 peptide sequence is identical in all RAS isotypes (Fig 2C), we were

unable to deduce which RAS isotype (i.e. HRAS or KRAS), or isoform (i.e. KRAS 4A or 4B),

undergoes methylation at Lys-5. However, we were able to determine isotype and isoform

specificity for Lys-147, as the Lys-147 peptide sequence is unique to the HRAS (Fig 2C). Given

that our previous work has shown that amino acid substitutions at Lys-147 to alanine, cysteine

or leucine did not alter RAS activity [44,45], we predict that methylation of Lys-147 may not

alter RAS structure. GoMADScan did not detect methylation at the equivalent position to Lys-

147 in other small GTPases.

In contrast, Lys-5 methylation occurs in the RAN GTPase, suggesting that methylation at

this site may represent a conserved mechanism of regulation. As Lys-5 mutations are found in

cancer and RASopathies, we employed molecular dynamics (MD) simulations to investigate

the putative impact of Lys-5 dimethylation on RAS structure and dynamics.

Fig 1. Identification of lysine methylation in the core GTPase domain of several RAS superfamily GTPases by the

GoMADScan. (A) GoMADScan is a free GUI-based search application available at https://github.com/carushi/GoMADScan that

scans to extract posttranslationally modified peptides from databases. The screenshot of GoMADScan is shown in left. GoMADScan

analysis consists of three simple steps: Step 1- input file such as methylation- or ubiquitylation-site dataset. For the present work, the

PhosphositePlus(R) database was used. Step 2—select a keyword file for the proteins of interest. Keywords can include any features

such as gene name, motif sequence, or modification type. At Step 3, GoMADScan extracts a part of database containing the specified

keywords. Instruction video is available at https://www.youtube.com/watch?v=PCXOWjk9d_E (B) GoMADScan identification of

methylated lysine peptides associated with RAS superfamily members.

https://doi.org/10.1371/journal.pone.0219436.g001
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Molecular dynamic simulations predict that dimethylation of Lys-5 in RAS

does not significantly alter RAS structure and dynamics

Regulation of non-histone proteins by lysine methylation is currently an underdeveloped field,

and there is no systemic approach to deduce the consequences of the lysine methylation at

Fig 2. Lysine methylation sites identified in endogenous RAS. (A) Detection of Lys-5 and Lys-147 methylation in endogenous RAS proteins. HEK293T cells lysate

was immunoprecipitated with anti-RAS antibody (Y13-238) and subjected to SDS-PAGE and Coomasie Brilliant Blue (CBB) staining. The corresponding band for

RAS was purified from the gel and digested with chymotrypsin for LC-MS/MS analysis. (B) For microcapillary/tandem mass spectrometry (LC-MS/MS) experiments,

purified ubiquitylated RAS bands were excised from analogous Coomassie blue-stained gels, digested with trypsin, and analyzed by LC-MS/MS. The MS/MS spectrum

for the RAS peptides containing methylated lysine at the indicated position acquired through CID using a hybrid linear ion trap-Orbitrap mass spectrometer. The right

sections show the detected regions by the mass spectrometry (green highlight) and the coverage (%). The identified methylated lysine and the number of detected

peptides are shonw in lower right. (C) Sequence alignment highlighting the conserved motif in G-box for a subset of RAS superfamily GTPases (lower). The lysine

methylation sites are marked with a red star. Color shaded boxes indicate conserved amino acids within in the G-box. The red line box shows sequence conservation of

RAS residues. Lys-5 is adjacent to the G1 box.

https://doi.org/10.1371/journal.pone.0219436.g002
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specific site(s). Methylation does not change the overall charge of the lysine or arginine side

chain, and amino acid substitutions are unable to function as mimetics. Thus, to investigate

the possible role of Lys-5 methylation in RAS function, we pursued structure-based analyses.

Lys-5 is a highly conserved residue that lies within beta strand 1 (β1) of RAS and is adjacent

to the G1 box (Fig 3A). While this residue does not appear to form direct interactions with the

bound nucleotide in either the GDP or GTP-bound states, the aliphatic sidechain of Lys-5

does interacts with the aromatic sidechain of Tyr-71 and the sidechain of Thr-74 in switch II

(PDB: 1CRQ) in the GDP bound state. In the GTP-bound state, the Lys-5 aliphatic sidechain

packs against the sidechain of Thr-74 at the end of switch II (Fig 3B). In the crystal of the

RAS-SOS complex, Tyr-71 of RAS forms a hydrogen bond with Tyr-712 of the RASGEF, SOS

(PDB: 1NVW). Tyrosine 74 is also located at the RAS interface with PI3 Kinase-γ (PDB:

1HE8). Hence, modulation of these interactions by lysine methylation might potentially alter

GEF and effector interactions.

In an effort to predict the effects of dimethylation on RAS structure and dynamics, we

employed MD simulations. Specifically, we evaluated whether dimethylation of RAS at Lys-5

alters the overall conformation, key interactions between RAS and its bound nucleotide, as

well as structural and dynamic properties of the RAS switch regions. We conducted 200 ns

MD simulations in triplicate for each of the four configurations (GDP- and GTP-bound with

and without dimethylated Lys-5). To assess whether RAS-nucleotide interactions (GDP or

GTP) are altered by Lys-5 dimethylation, key distances between KRAS residues and the bound

nucleotide (GDP and GTP) (Fig 3E) were examined, as partial disruption of guanine nucleo-

tide binding interactions could enhance nucleotide cycling and lead to GTP loading and acti-

vation in cells. We evaluated two key distances critical for guanine nucleotide binding,

including the distance between Phe-28 Cγ and the guanine indole C4 atom as well as the dis-

tance between Ser-17 and Mg2+. As shown in Fig 3E, these RAS-nucleotide distances are simi-

lar for both non-modified and dimethylated Lys-5 KRAS in both the GDP and GTP-bound

states. This analysis suggests that Lys-5 dimethylation does not significantly alter nucleotide

binding.

We next assessed whether Lys-5 dimethylation alters the overall structure of KRAS. We

first generated a structural superposition from three 200 ns MD trajectories (Fig 3) for both

the GDP- and GTP-bound states of dimethylated Lys-5 KRAS and compared to unmodified

KRAS. As observed in Fig 3A and 3B, the structures of wild type KRAS in both the GDP and

GTP bound states overlay well with the corresponding structures of Lys-5 dimethylated KRAS.

The average distances between the two switch regions were also evaluated. The conformation

of the switch regions is dependent on the nucleotide bound state, with the GTP-bound confor-

mational ensemble representing the active state. Adopting this active state confers higher affin-

ity binding to downstream effectors. Key distances between the switch regions, specifically, O

of Thr-35 in Switch I and N of Gly-60 in Switch II and between Cz of Tyr-32 (Switch I) and

CD of Gln-61 (Switch II) were measured. Overall, these distances between WT and dimethy-

lated Lys-5 were found to be within experimental error for both GDP- and GTP-bound struc-

tures (Fig 3E). Results from these analyses indicate that Lys-5 dimethylation does not

significantly affect the average structure of the RAS switch regions in both the GTP and GDP-

bound states. As the switch regions are dynamic, we also calculated the average residue root

mean square fluctuation (RMSF) values and their standard errors from the MD trajectories of

the triplicates. As expected, we observe significant fluctuations in the switch regions, however

(Fig 3C and 3D), the RMSF differences indicate that Lys-5 dimethylation does not significantly

alter RAS dynamics in both GDP- and GTP-bound states of RAS. Taken together, our simula-

tions predict that KRAS Lys-5 dimethylation maintains intrinsic nucleotide binding, confor-

mation and dynamics. Hence, rather than altering RAS structure and nucleotide cycling, Lys-5
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Fig 3. Ribbon depiction comparing dimethylated Lys-5 KRAS to that of WT KRAS obtained from three 200 ns MD simulations. (A) Structural overlay of GDP-

bound WT KRAS (blue, population ~83%) with GDP-bound dimethylated Lys-5 KRAS (black, population ~76%) and (B) GTP-bound WT (purple, population 86%)

and GTP-bound dimethylated Lys-5 KRAS (green, population ~84%). Dimethylation of Lys-5 does not significantly affect packing interactions of Lys-5 with Y71 and

T74 sidechains in the GDP-bound state or with T74 in the GTP-bound state. Average residue RMSF values and their standard errors obtained from three 200 ns MD

trajectories comparing dimethylated Lys-5 (black) and WT (blue) KRAS for both (C) GDP- and (D) GTP-bound states. (E) Distances for key RAS/nucleotide

interactions for unmodified and dimethylated RAS in both GDP- and GTP-bound states. Comparison shows similar distances, indicating proper nucleotide and

magnesium association. These distances include the Cγ of Phe-28 to C4 of the guanine indole ring and Oγ of Ser-17 to Mg2+. All distances are calculated from three

200 ns MD trajectories for each system. Two distinct, key average distances between the two switch (Switch I and Switch II) regions are also compared, for wild type

and Lys-5 dimethylated KRAS. Dimethylated Lys-5 KRAS does not significantly alter switch distances in either the GDP or GTP-bound states. Distances between O of

Thr-35 and N of Gly-60 and between Cz of Tyr-32 and Cδ of Gln-61 are shown. (F) Mutation of Lys-5 to Ala, Leu or Asn affects RAS activity. Flag-His tagged KRAS

mutants were expressed in HEK293T cells, and their activation level analyzed by GST-RBD pull-down of RAS (see Materials and methods). Western blots with anti-

Flag and anti-pan RAS antibodies reveal the relative activation levels of the KRAS mutants relative to endogenous RAS, respectively.

https://doi.org/10.1371/journal.pone.0219436.g003
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dimethylation may alter/promote new protein interactions or possibly alter interactions with

the membrane [89].

While our MD simulations predict that the intrinsic nucleotide cycling properties of iso-

lated KRAS are retained, we wanted to assess whether perturbation at Lys-5 alters RAS activity

in cells. We expressed three KRAS mutants, K5A, K5L and K5N in HEK293T cells and

employed a pull-down assay to probe for activated GTP-bound RAS, using the RAS binding

domain (RBD) of human cRAF1 kinase fused to GST [90–92]. Consistent with previous find-

ings, endogenous RAS is populated in the GDP state [44,90–92]. Strikingly, all 3 mutants at

Lys-5 showed elevated binding to the GST-RAF RBD, suggesting that mutations at this posi-

tion enhance cellular RAS activity (Fig 3F). These findings are consistent with previous obser-

vations that the activating RAS K5N mutant retains similar nucleotide cycling and RAF-RBD

affinity in vitro, yet intriguingly shows enhanced RAS-RAF association and MAPK signaling

[29,89]. Notably, both activating RAS K5N and K5E mutations are found in cancers [31–33]

and in RASopathies [34–37]. However, it is unclear how these three mutations at Lys-5 pro-

mote RAS activation in cells. Similar to previous findings that the activating RAS K5N mutant

does not disrupt nucleotide cycling, we predict that dimethylation at this site retains nucleotide

binding properties. As these activating Lys-5 mutations may not fully recapitulate the effects of

dimethylation, it remains unclear whether Lys-5 dimethylation will promote RAS activation at

the cellular level.

Discussion

In the present work, we have identified methylation at Lys-5 and Lys-147 as a novel post-trans-

lational modification in endogenous RAS. As our GoMADScan identified methylation at the

equivalent site in the RAS-related GTPase, RAN, methylation of Lys-5 may have a conserved

role in the regulation of these small GTPases.

Lysine methylation on non-histone proteins remains a largely unexplored area. The studies

from the lysine methylation on histones established that a lysine methylated peptide acts as a

docking site for new protein-protein interactions [61–64]. However, it is less clear whether

lysine methylation induces conformational changes in target proteins due to tools available for

lysine methylation. Approach using amino acid substitutions is powerful but fail to mimic lysine

methylation. Chemical introduction of methylated lysine into proteins in vitro [59,60] requires

expertise in chemistry and the method is still not the widely available. These are the bottleneck

factors that have limited our understanding of the biological significance of lysine methylation.

In the present study, we have employed MD analysis, a versatile and established approach, to

predict changes in RAS conformation in response to lysine methylation. Our MD analyses pre-

dict that the dimethylation of Lys-5 maintains nucleotide binding, structure and dynamics (pro-

posed model is depicted in Fig 4A), suggesting that rather than altering intrinsic RAS structure

and nucleotide cycling, dimethylation may alter interactions or create a new docking site for an

as of yet unidentified interaction(s). Though additional studies are needed, the MD simulation

implicate a new layer of regulation of RAS structure by dimethylation of Lys-5.

Methylation of Lys-147, a conserved lysine in G5 box, was also detected by our LC-MS/MS

analysis. A subset of RAS mutations in G5 box also activates RAS by promoting nucleotide

exchange [28,30,93]. However, oncogenic mutations have not been identified Lys-147 and

amino acid substitutions at Lys-147 to alanine, cysteine or leucine do not significantly alter

RAS activity [44,45]. Thus, it is possible that methylation at Lys-147 retains the key interac-

tions of the S-A-X motif with guanine nucleotides, but creates a new docking site for methyl-

lysine binding proteins, or modulates RAS ubiquitylation [44,45,94], acetylation [46,47], or

other potential lysine modifications at this site (proposed model is depicted in Fig 4B).
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It is important to note that methylation may occur at other sites in RAS as our MS-based

analysis does not fully cover the entire RAS protein sequence (Fig 2B). This is due to the limita-

tion of chymotrypsin for LC-MS/MS based detection as well as detection sensitivity for several

peptide fragments. While GoMADScan allows rapid identification of other conserved lysine

methylation sites in RAS superfamily GTPases within the large databases (Fig 1A), our MS did

not identify methylation at Lys-117. It is possible that use of other digestion enzymes, such as

trypsin, may increase the detection of the methylation at these sites, or that the sites of lysine

modification are unique for the GTPase. Clarification of the RAS isotype(s) that undergo Lys-

5 methylation will provide helpful information in future work.

Together, our data, for the first time to report that endogenous RAS undergoes lysine methyl-

ation at two conserved lysine residues within the core GTPase domain. As our MD analyses pre-

dict that methylation at Lys-5 maintains intrinsic RAS structure and nucleotide cycling, we

postulate that methylation may alter protein-protein interactions and RAS signaling. Given that

the lysine methylome is rapidly expanding, combining GoMADScan and MD simulation should

facilitate studies of lysine methylation of RAS superfamily GTPases and possibly other enzymes.
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