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Abstract: Fourier transform infrared imaging (FTIRI) and the attenuated 
total reflection Fourier transform infrared microimaging (ATR-FTIRM) 
were used to study the chemical and structural distributions of cellular 
components surrounding individual chondrocytes in canine humeral 
cartilage, at 6.25µm pixel resolution in FTIRI and 1.56µm pixel resolution 
in ATR-FTIRM. The chemical and structural distributions of the cellular 
components in chondrocytes and tissue can be successfully imaged in high 
resolution ATR-FTIRM. One can also study the territorial matrix of fine 
collagen fibrils surrounding the individual chondrocytes by the polarization 
experiments using the absorption ratio of amide I to amide II bands. 
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1. Introduction 

Articular cartilage, a compliant load-bearing surface covering the ends of bones, comprises an 
extracellular matrix (ECM) embedded with living cells, the chondrocytes. The ECM of 
articular cartilage principally consists of water, type II collagen and aggregated proteoglycan 
molecules. The physical properties of articular cartilage depend on the structure and 
organization of the collagen network and the concentration of proteoglycans in the tissue [1], 
which are maintained by the functional activity of chondrocytes [2]. As a result of trauma or 
degenerative joint diseases, cartilage is frequently damaged and difficult to be repaired due its 
avascular nature and no recruitment of healthy cells to the site of damage [1]. Although the 
structure, geometry and function of chondrocytes have been studied extensively by many 
techniques such as microscopies, biological and biomechanical methods [2–12], the 
molecular/chemical components and their distribution inside/around the chondrocytes are 
difficult to study. 

Fourier transform infrared Imaging (FTIRI), which uses the imaging approach to study 
spectroscopically chemical concentrations and distributions, has become a powerful tool in 
biomedical research. For example, it is possible to spatially resolve various chemical 

signatures with a fine spatial pixel size (e.g., 6.25µm) and a spectral resolution (e.g. 1-16cm
−1

) 
in cartilage [13]. FTIRI can also be very effective in the study of the orientation of the 
chemical bonds (e.g., amide I bond, which is the C = O in a molecular dipole) in cartilage 
[14,15], the changes in the collagen orientation due to external loading [16], and the molecular 
concentrations in cartilage [13,17–19]. The main limitation of FTIRI is its spatial resolution, 
on the order of 5-10 microns due to its optical properties. 
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The use of an attenuated total reflection (ATR) accessory in FTIRI could break this optical 
limitation [20]. With a germanium crystal, which has a high refractive index of 4.0 in the ATR 
accessory, the ATR FTIR microimaging (ATR-FTIRM) can improve the pixel resolution by a 
factor of four (from 6.25µm to 1.56µm in a commercial PerkinElmer FTIRI system). The 
purpose of this study is to determine if individual chondrocytes can be optically visualized 
and chemically measured by ATR-FTIRM to provide insights into the fine structure and 
molecular distribution of chondrocytes in articular cartilage. 

2. Experimental 

A number of unstained 6µm-thick sections of canine humeral articular cartilage were obtained 
in a cryostat and mounted on low-E glass slides (Kevley Technologies, Chesterland, OH) for 
ATR-FTIRM and FTIRI experiments on a PerkinElmer Spotlight 300 infrared imaging system 
(Wellesley, MA). This system is equipped with a FTIR spectrometer for spectrum collection, 
a liquid N2 cooled 16-element mercuric cadmium telluride focal plane array detector for the 
rapid acquisition of FTIR images, and a motorized stage on which the specimen slides can be 
mounted. An internal coaxial LED illumination with variable intensity is available to produce 
visible images, which enables the identification of the region of interest (ROI) for infrared 

imaging. The FTIRI data were collected at 6.25µm pixel resolution and 16cm
−1

 spectral 

resolution, with 2 scans per pixel over a spectral range of 4000-744cm
−1

. 

 

Fig. 1. Graphical Representation of ATR. 

The ATR-FTIRM experiments were performed on the same infrared imaging system with the 
addition of an ATR accessory. By removing the lower cassegrain, a germanium crystal 
mounted on a rotate-able arm [20] can be lowered to make a delicate contact with the 
specimen on the glass slide, as shown in Fig. 1. When the total reflection happens in the 
germanium crystal, an evanescent wave is orthogonally projected on to the sample. A part of 
energy of the evanescent wave is absorbed by the sample so that the IR beam energy is 
attenuated as being reflected to the detector. This accessory improves the pixel resolution in 
the imaging system by a factor of four, from 6.25µm to 1.56µm. The ATR images were 
processed using an ATR image background that contains a set of spectra from crystal without 
the specimen. The ROI of 200µm × 200µm was imaged in the spectral ranging of 4000-

744cm
−1

, with the same spectral resolution of 16cm
−1

 and 2 scans per pixel. A wire grid IR 
polarizer, inserted between the sample and detector, was used as an analyzer in the imaging 
experiments to polarize the light between 0° and 90°. Since the penetration depth of the IR 
beam in the specimen increases with the wavelength of the radiation [21], the effective path 
length of the ATR-FTIR spectra varies with the wavelength of the radiation. The ATR 
correction was therefore performed for all ATR-FTIR spectra based on the assumption that 
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the contact between the ATR crystal and the tissue section was ideal. In addition to the 
infrared imaging experiments, the ROI in the ATR-FTIRM were imaged using a Leica 
microscope with a 40 × objective (0.20µm/pixel) to obtain a high quality visible image. 

3. Results and discussion 

3.1. Chemical and structural analysis 

Figure 2a shows the visible image of one cartilage section, with its articular surface at the top 
of the image. The total absorbance images from FTIRI and ATR-FTIRM were shown in Fig. 
2b and 2c, respectively. It is clear that the ATR image could resolve much more detail of the 
tissue section. There are several features of these two infrared images. First, some cells in the 
ATR image exhibited weaker absorption, especially at the cellular centers, than the same cells 
in the FTIR image, which were highlighted as conglomerations. This feature can be attributed 
to light scattering at these cell areas in transflection FTIR imaging [20,22], which is different 
from the application of total reflection principle in ATR imaging. At the same time, the 
penetration depth in ATR imaging would reduce to no more than a few microns [21,23]. At an 
angle of incidence approximately 30° at the sample and when the radiation wavelength is 

10µm (1000cm
−1

), the penetration depth to the tissue would be about 1.18µm, from a critical 
angle of 21.6° due to the refractive index of the dry cartilage section reported at 1.475 [24]. 
Consequently, the penetration of the infrared irradiation in ATR experiments would be less 
than the section thickness (6µm) and effectively avoid the transflection and the effect of tissue 
thickness on cell imaging [22]. Another feature of the ATR image is the high-intensity regions 
(the red region in Fig. 2c) at the superficial zone (SZ) of the tissue, which is mostly caused by 
the higher refractive index at SZ than that at the transitional zone (TZ) [25], resulting in the 
increases in penetration depth and subsequent absorbance [21,23]. An identical ATR imaging 
experiment was carried out using a section of bovine nasal cartilage, which did not show this 
high intensity feature at the tissue boundary (data not shown). 

Figure 2d shows two spectra, obtained at the same location around a cell in the tissue 
section, one from the FTIR image and the other from the ATR-FTIR microimage. Unlike the 
ATR spectrum, a monotonically sloping baseline is visible in the FTIR spectrum, denoting 
that the spectral artifact in FTIRI can be attributed to the infrared scattering phenomenon [20]. 
Another difference between the FTIR spectrum and the ATR-FTIR spectrum is the red shift of 

the amide I, amide II and 3296 cm
−1

 bands of the ATR spectrum relative to those of FTIR 

spectrum (e.g., 1656 to 1640 cm
−1

, 1552 to 1544 cm
−1

, 3328 to 3296 cm
−1

), which is due to 
the changes in the refractive index of tissue with irradiation wavelength [26]. At the edge of 
high contrasts (e.g., tissue surface and air), the use of ATR can reduce some spectral artifacts 
(spectra not shown), which show as spectral distortion and highlighted region, resulting from 
the specular reflection and the anomalous dispersion [20]. 

Figure 3 shows the FTIR images and the ATR-FTIR images at the same area of interest in 
the tissue section in details, including the chemi-maps of amide II (representing the protein in 

the cellular imaging [27]) and sugar bands (1100-1000cm
−1

, representing nucleic acid, 
carbohydrates and glycogen etc.). Both amide II and sugar images in Fig. 3c show that the 
distribution of solid components is mainly on the circumference of the cell, as well as at the 
center of the cell. In comparison, the chemi-maps of amide II and sugar from the FTIR image 
(Fig. 3a) contain essentially no structural features inside any individual cell, again reflecting 
the averaging nature in low-resolution imaging. The stronger total absorbance for the cells is 
due to the artifact caused by the cell scattering effect in transflection FTIRI [20,22]. 

#140139 - $15.00 USD Received 22 Dec 2010; revised 16 Mar 2011; accepted 17 Mar 2011; published 18 Mar 2011
(C) 2011 OSA 1 April 2011 / Vol. 2,  No. 4 / BIOMEDICAL OPTICS EXPRESS  940



 

Fig. 2. (a) The visible image, (b) the FTIR image, (c) the ATR-FTIR image of the same region 
on a cartilage section. The articular surface is near the top of the images. (d) The IR spectra 
extracted from the FTIR image and ATR-FTIR image at same location with red cross in the 
tissue section, expressing as solid curve and dashed curve, respectively. The rectangle regions 
of interest in the transitional zone and superficial zone in (a) would be closely examined in Fig. 
3 and Fig. 4. 

At several locations in one cell, the spectra were extracted and shown in Fig. 3b and 3d. 
These marks were selected from the interterritorial regions (6, 7, 14, 15), near/on the cell 
walls (1, 11), at the center of the cells (4, 12), and in-between the cell wall and cell center (2, 
3, 5). The spectra from the FTIR image have more consistent features among all pixels of 
11~15, as drawn in Fig. 3b. This consistency is likely caused by the averaging effect of a large 
pixel (6.25µm) and the scattering effect in transflection imaging [20,22]. The ATR-FTIR 
spectra in Fig. 3d, by comparison, show many differences in the spectral features at different 
cellular locations. The spectra at the locations of 2, 3, and 5 were very similar; the same were 
for the spectra from the locations of 6 and 7. The similarity and differences illustrate that the 
ATR imaging has not only the spatial but also the spectral resolution to differentiate the 
molecular and chemical structures among the cell wall, pericellular matrix, and interterritorial 
regions. It is interesting to note that the spectral absorption was the weakest at the #2 location, 
which is in between the cell wall and the cell center, probably indicating the less solid 
component inside the cell on the dried section. Also shown in Fig. 3d, amide I band (indicated 
by the left dash line) tends to blue-shift followed with shoulder peaks, which denotes that the 
principal component of protein reduces rapidly and the other component contents (e.g., 
nucleic acid, glycogen, etc) increase relatively. The spectral analyses for several cells show 
the similar result. 
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Fig. 3. The detailed region in the transitional zone of the tissue from both the FTIRI (a) and 
ATR-FTIRM (c) experiments. Four images are shown from each experiment: the visible image, 

the total absorption image (4000-744cm−1), the amide II image (1580-1500cm−1), and the sugar 

image (1100-1000cm−1). The infrared spectra from the marked spatial locations are shown in 
(b) and (d). Two dash lines in (d) indicate the approximate locations of amide I and amide II 
bands. 
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3.2. Anisotropy analysis 

Infrared dichroism is often used in spectroscopy and imaging to determine the structural 
orientation and anisotropy of the specimen, since the absorbance of the irradiation beam is 
unique for parallel polarization and perpendicular polarization. Two orientational 
relationships are important in the polarization study of articular cartilage. First, when the 
tissue section is placed in the x-y plane and irradiated by an incident light at an angle to the x-
axis in the x-z plane, the reflected light would also be in the x-z plane. At the 0° and 90° 
polarizations, the infrared vibration would be in the x-z plane and the x-y plane, respectively, 
both perpendicular to the light path. Second, the amide I and amide II vibrations are 
approximately perpendicular and parallel to the long axis of collagen fibril in cartilage 
[14,16]. In this project, the same tissue section was imaged by the ATR-FTIRM twice with 
the insertion of an infrared polarizer, which sets the irradiation polarization to be parallel (0°) 
and perpendicular (90°), respectively. Since the absorbance of irradiation at parallel 
polarization is obviously more than the absorbance of irradiation at perpendicular polarization 
in this report, which makes it challenging to compare the absorbance of vibrational bands 
directly. This difficulty is resolved by comparing, instead, the ratios of amide I to amide II 
when the irradiation polarization is parallel and perpendicular. Figure 4 shows the absorption 
ratio images of amide I to amide II bands, under the parallel irradiation and the perpendicular 
irradiation. 

It’s clear that the absorption ratios of SZ at the parallel polarization (Fig. 4a) are stronger 
than those at the perpendicular polarization (Fig. 4b). This is because that when a fibril is in 
parallel with the articular surface (such as in SZ), an irradiation beam polarized parallelly (i.e., 
at 0°) will induce more amide I absorption than amide II, which results in a stronger ratio of 
amide I to amide II, as illustrated by the bigger ratio values in SZ in Fig. 4a. In contrast, a 
perpendicularly polarized irradiation (90°) will reduce the absorption of amide I but increase 
the absorption of amide II, hence reducing the absorption ratio in SZ in Fig. 4b. This result 
confirms that the collagen fiber alignment in SZ is indeed in parallel with the cartilage 
surface. Furthermore, the deeper portion of TZ starts to contain more perpendicular fibers, 
which causes the lower portion of the image in Fig. 4b to have the increasingly bigger ratios 
of amide I to amide II with the perpendicular polarization. 

Two regions (the horizontal box for the tissue in SZ, and the vertical box for the tissue in 
TZ) in each absorption ratio image are enlarged in Fig. 4 to show the details of the anisotropy 
around and at the cells. The elliptical shapes were the locations of the cells as determined on 
the visible image (Fig. 2a). By comparing the same region of tissue under two mutually 
orthogonal polarizations, one can notice in TZ at 90° polarization (Fig. 4d) that the absorption 
ratios at the vertical edges of the three cells are always higher than those at the same locations 
at the horizontal edges of the cells. The same regions at 0° polarization show a reversed trend 
- the ratio at the vertical edges weakens while the horizontal edges of the cells become 
superior. Similar opposing features can also be identified around the cells in SZ (Fig. 4c). 

The absorption ratios around the cells were analyzed quantitatively and statistically by 
grouping the values pixel by pixel around the cells in those images. For each cell analyzed, 
the absorption ratios in a rectangular region of three pixels by two pixels were extracted and 
averaged at the horizontal edges of the cells (both the top and bottom edges). At the vertical 
edges of each cell (both the left and right edges), the absorption ratios in a rectangular region 
of two pixels by three pixels were extracted and averaged. The regions were chosen on and 
just outside the lines of the elliptical shapes in Fig. 4c and 4d. The two plots in Fig. 4 show the 
statistical results from one cell in SZ (the top left cell) and one cell in TZ (the bottom left 
cell). 
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Fig. 4. The anisotropic images of amide I to amide II absorption ratios obtained by using 
analyzer at (a) parallel polarization (0°) and (b) perpendicular polarization (90°), respectively. 
The same rectangular regions as shown in Fig. 2a were also shown. (c) and (d) show the 
detailed regions of the anisotropic images of absorption ratios at the superficial zone and the 
transitional zone. The elliptical shapes mark the locations and orientations of the individual 
cells, identified from the high-resolution visible image (Fig. 2a). The two plots under Fig. 4c 
and 4d show the statistical analysis around the cell walls at the vertical and horizontal edges at 
0° and 90° polarizations, respectively. 

For the absorption ratios in TZ (the plot under Fig. 4d), both sets of comparisons have 
statistical significance and also show the opposite trends, i.e., the vertical edge absorption 
ratio at 0° is lower than that at 90°, while the horizontal edge absorption ratio at 0° is higher 
than that at 90°. These features confirm the ‘cocoon’ shaped territorial matrix surrounding 
each chondrocyte, which is known in literature by a number of high resolution studies [28,29]. 
For the absorption ratios in SZ (the plot under Fig. 4c), with the horizontal comparison is 
statistically significant and also consistent with the TZ results, i.e., the visualization of the 
territorial matrix around each cell. The vertical comparison in SZ, although also significant, 
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does not fit the matrix structure. One possible cause of errors in the vertical edge could be due 
to the fact that the chondrocytes are usually smaller and flatter in SZ than in TZ, hence it is 
difficult to identify the vertical edges of the horizontally oriented elliptical shape in cells at 
SZ. 

4. Conclusion 

This preliminary project is the first cellular study to image the individual chondrocytes in 
articular cartilage by a high-resolution ATR-FTIRM, which effectively overcomes some 
limitations in FTIRI. Based on the principle of the total reflection, the ATR-FTIRM can 
examine the individual chondrocytes, not just spatially but also chemically. This ability to 
study the cells at 1-2µm resolution can provide much enhanced information about the fine 
structure and chemical component distributions in chondrocytes. The protein mostly 
distributes around the cells. The polarization comparison of amide I to amide II ratios 
confirms the collagen fiber orientation surrounding the individual cells. In addition, this high 
resolution approach can significantly improve the principal component identification and 
visualization of the individual chondrocytes in ECM. Additional investigations are ongoing in 
our lab. 
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