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Abstract

Background: Modeling plays a critical role in mitigating impacts of seasonal influenza epidemics. Complex simulation
models are currently at the forefront of evaluating optimal mitigation strategies at multiple scales and levels of organization.
Given their evaluative role, these models remain limited in their ability to predict and forecast future epidemics leading
some researchers and public-health practitioners to question their usefulness. The objective of this study is to evaluate the
predictive ability of an existing complex simulation model of influenza spread.

Methods and Findings: We used extensive data on past epidemics to demonstrate the process of predictive validation. This
involved generalizing an individual-based model for influenza spread and fitting it to laboratory-confirmed influenza
infection data from a single observed epidemic (1998–1999). Next, we used the fitted model and modified two of its
parameters based on data on real-world perturbations (vaccination coverage by age group and strain type). Simulating
epidemics under these changes allowed us to estimate the deviation/error between the expected epidemic curve under
perturbation and observed epidemics taking place from 1999 to 2006. Our model was able to forecast absolute intensity
and epidemic peak week several weeks earlier with reasonable reliability and depended on the method of forecasting-static
or dynamic.

Conclusions: Good predictive ability of influenza epidemics is critical for implementing mitigation strategies in an effective
and timely manner. Through the process of predictive validation applied to a current complex simulation model of influenza
spread, we provided users of the model (e.g. public-health officials and policy-makers) with quantitative metrics and
practical recommendations on mitigating impacts of seasonal influenza epidemics. This methodology may be applied to
other models of communicable infectious diseases to test and potentially improve their predictive ability.
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Introduction

The influenza virus presents several challenges for society.

These challenges are preventable mortality and morbidity in

vulnerable populations (e.g. infants, seniors, those with chronic

conditions), and social, economic and health care costs during

pandemics and seasonal epidemics. Effective interventions against

influenza include vaccination and social distancing. Another tool

which policy-makers have at their disposal, for mitigating these

impacts, is mathematical and computational models [1–3]. Models

help policy-makers to design, implement and evaluate effective

and practical mitigation strategies. In this process, model

predictions are directly linked to the decisions of policy-makers.

In turn, these decisions benefit society when they work but may

also have significant costs associated with their failure to mitigate

impacts. Given the potential for severe epidemics, the seasonal

nature of influenza epidemics and the intimate links between

modeling and policy, we must critically and continually evaluate

predictions of influenza spread models in the context of their use

by policy-makers.

As an example of how policy makers use model predictions,

consider how they plan for the influenza season. At the start of the

season, policy-makers need to decide on matters such as the

number of vaccines to order from pharmaceutical companies and

optimal allocation of vaccines among health-care workers

(HCWs), community and other vulnerable populations. Apart

from vaccination, policy-makers may also use strategies of social

distancing, quarantine, school closures or a combination of several

strategies [4]. Model predictions regarding how epidemics will

spread under each mitigation strategy are captured by epidemic

metrics such as absolute intensity, peak week and epidemic

duration [5–9]. Predictions of epidemic intensity guide policy

decisions on vaccine production, distribution, and stockpiling.

Predictions of epidemic timing, such as when the epidemic will

start, peak and end, aid public-health officials in deciding when to

start and complete vaccination, education and awareness cam-

paigns in high-transmission setting such as schools, hospitals and

long-term care facilities. Predictions about epidemic duration are

useful for designing mitigation strategies that are sustainable and

remain effective throughout the epidemic period. Policy-makers
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estimate these and other metrics based on predictions from

forecast models under different mitigation strategies. Optimal

strategies are then used to develop policy in the hope that the

predicted reduction in impacts will be realized in the real-world

setting.

Although models can inform policy-makers in several ways, we

argue that their predictive accuracy should be validated.

Unreliable predictions of epidemic metrics such as peak week,

intensity and duration have far-reaching consequences for society

including higher than expected economic and health-care costs if

models underestimate epidemic intensity and insufficient mobili-

zation of resources if the epidemic lasts longer than expected [10].

Also, planning for an epidemic which actually peaks later or lasts

longer than expected may also lead to logistical challenges. For

example, resources and effort budgeted for a specific time-frame

may not be easily extended if the epidemic last longer than

expected by forecast models of the ongoing epidemic. Model-

based forecast of future epidemics is a critical piece of information

in planning for influenza and other infectious diseases [11,12].

Given these uncertainties in epidemic metrics and their practical

use in making critical policy decisions, it is imperative to validate

the predictions of current models of influenza spread.

Model validation is included in current models of influenza

spread but may require a different approach when model

predictions are used as inputs for policy-making. The main benefit

of validating a model is greater confidence in its capabilities and

output, but also the revision of its assumptions when predictions do

not match observed data. Current approaches towards model

validation and assessment of predictability include i) graphical

evidence of a good match between the simulated and observed

epidemic trajectory [13–16] or number of cases [17], ii) analysis of

parameter uncertainty and sensitivity [11,18–20] and iii) analysis

of model associated uncertainty [4,21]. Others have also

attempted to relate connections in the airline traffic network

[22], vitamin D exposure [23] and absolute humidity [24] as

predictors of influenza. These validation techniques primarily

address conceptual and operational validity, but we argue that

validation needs to go beyond the current view that fitting the

model to a single epidemic is sufficient to show the predictive

validity of the model.

For our purposes, we define predictive validation as a process

that explores the deviation between observed and predicted

patterns under the assumption that the processes underlying the

model are generalizable. Practically, this assumption means we

should be able to perturb the system (e.g. different vaccination

strategies), measure and include the perturbation in the model,

and still reliably forecast new, different patterns (e.g. predict the

consequences of alternative vaccination regimes). We believe that

the ability of models to predict future epidemics not used to build

the model serves as a more robust test of predictive validation than

model-fitting. There may be consequences for basing decisions on

non-predictive models. Arguably, it is optimal to identify such

deviations now, when time exists to explore and improve current

models, rather than during a crisis when there may not be the

luxury of rigorous analysis. Well-developed techniques for the

validation of simulation models exist [25–27], yet little work has

been done to specifically address the predictive validity of current

simulation models for disease spread. One study that we are

familiar with looked at the predictive ability of the 2009 H1N1

Pandemic after matching only the first wave of the pandemic [28].

This is very different from the definition of predictive validation

we are proposing because it does not address the idea of

perturbations. Furthermore, our study is specifically looking at

several seasonal epidemics whereas the Merler et al. study looked

specifically at pandemics.

We focus on individual-based models (IBMs), which are a class

of simulation models that policy-makers are turning to for

guidance on epidemic and pandemic planning [21]. In an IBM,

the attributes, behaviors and interactions of individuals are

modeled through complex, non-linear, feedback and adaptive

processes. These are attractive features, which policy-makers may

want a spread model of influenza to consider, because the greater

degree of model realism leads to better understanding of

transmission dynamics and the application/testing of novel

mitigation strategies. The efforts of the Models of Infection

Disease Agent Study (MIDAS) are a prime example of the efforts

underway to use simulation models of varying complexity to

design better mitigation and control strategies, guide policy

decisions and reduce the burden of influenza, among other

disease, on society. Although simpler models suffice for real-time

forecasting of epidemics, they are limited in several ways. First,

their ability to evaluate the effectiveness of novel mitigation

strategies is limited by their compartmental-model like formula-

tion. Second, they are not as useful for understanding the complex

interactions between host, disease and environment. Lastly, policy

makers continue to take interest in more complex models, as

evidenced by the MIDAS effort. Therefore, we argue that as long

as policy makers are going to make use of IBMs we should

evaluate their predictive ability. In addition to these reasons,

disease transmission models for influenza and other communicable

diseases continue to be integrated with climate models to make

predictions about the burden of illness under a changing climate

[29]. This further shows that it is timely to investigate the

predictive ability of complex simulation models. Also, recently

several authors have use the IBM approach to model the spread of

influenza at the city-scale [4,14,15,30,31] and country-scale

[11,13,19,32]. The rapid development and application of IBMs,

over the last few years, for setting policy and making decisions

makes them an ideal candidate for model validation with an

emphasis on predictive ability.

In brief, the purpose of our study is to examine the process of

predictive validation using a current and well-known IBM for the

spread of influenza rather than to formulate a model that makes

good predictions. These are two very different purposes and we

only focus on the first one. Briefly, we will generalize the IBM to

our study area and modify it to include perturbations of interest,

estimate these perturbations from the real world and include them

in the model, and measure the deviations between observed and

simulated epidemics. The novelty of our study lies in two features.

First, we will validate the model based on data from several

observed epidemics on which we have detailed laboratory-

confirmed data. Previous studies using this IBM had limited

access to empirical data (e.g. one or a few seasons only). Therefore,

these studies simply showed that the model was able to do a good

job of predicting a single epidemic [13,14,19]. Our approach is a

better test of predictive validation because models may more easily

be calibrated to coincide with a single epidemic than capture new,

different epidemic patterns. Second, our process of predictive

validation utilizes perturbation factors (influenza strain and

vaccination coverage in the system) which have immediate and

practical implications for epidemic planning. Our study provides

useful guidance, since model predictions, for influenza but also

other communicable diseases, serve as important knowledge inputs

into policy- and decision-making during times of public-health

crises.

Predictive Validation of an Influenza Spread Model
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Methods

The process of predictive validation requires the integration of

model and data in novel ways. As an outline of our methods, we

first described the IBM of Ferguson et al. [11] and how we

generalized their model to the urban setting of Montreal, Quebec,

Canada. Then, we provided a description of our data on past

epidemics and the derivation of different epidemic metrics. The

process of predictive validation, which we will describe in detail,

brought together our generalized model, real-world data and

epidemic metrics to provide a qualitative assessment of model’s

predictive ability to forecast future epidemics.

Montreal IBM Model
For our study, we chose to generalize a well-known IBM for the

spread of influenza. The IBM was originally developed by

Ferguson and colleagues in two papers [11,19]. Both of these

studies have been cited over 900 times since publication. The basic

modeling approach of Ferguson et al. [11] has been generalized to

various geographic settings such as cities (Buffalo, NY [14] and

Chicago, IL [4] in the United States) and countries (Italy [32] and

Switzerland [13]). Their model, which we will refer to as the

Ferguson IBM, integrated some of the most relevant demographic,

institutional (e.g. schools and workplaces), and disease natural

history variables into a spatially-explicit stochastic simulation

model. More concretely, the Ferguson IBM included data on age,

household size and place size (workplace and schools), a time-

dependent infectiousness profile, and random community contact.

We generalized the Ferguson IBM to the Census Metropolitan

Area of Montreal (CMA Montreal). We referred to our

generalized model as the Montreal IBM. We chose this spatial

scale for two reasons. First, we had extensive data on several past

seasonal influenza epidemics at this scale. Second, municipal

public-health departments not only form a critical part of the

influenza surveillance network, but also have direct responsibility

for implementing mitigation strategies. Therefore, modeling at the

city-scale was relevant and practical for forecasting epidemics.

Given our study’s focus on determining the predictive ability of

the Montreal IBM, we provided limited details on specific model

parameters that were previously estimated by Ferguson et al. from

the literature. Examples of such parameters included, but not

limited to, the infectiousness profile function, latent period, and

specific components of force of infection. We had two reasons for

not discussing these modeling details as well as their sensitivity

analyses. First, these parameters were not likely to change for our

study area (a modern North American city) since they were

previously estimated and applied by Ferguson et al. [11] to the

United States and Great Britain. Second, other studies, which

have been based on the model of Ferguson et al. [11], have not

challenged, for the most part, the assumptions and functional form

of the disease transmission process underlying the model.

Consequently, we provided details on only those model compo-

nents and parameters that were needed to generalize the Ferguson

IBM to CMA Montreal, in turn, producing the Montreal IBM.

Unless indicated, we left unchanged modeling assumptions in

Ferguson et al. [11]. The specific components of the Ferguson

IBM, which we modified, included re-estimating the transmission

coefficients and modifying assumptions regarding pre-existing

immunity. Details of these changes are given in the model

description below.

Disease Transmission Model
We modeled the disease transmission process following the work

of Ferguson et al. [11,19]. In their model, a force of infection (li)

was calculated for each individual i at each time t. There were

three sources of infectious contact that influenced the force of

infection. They were household, place (work/school) and random

community contact. We assumed that 30% of all transmission

occurred in the household. The transmission parameters were

chosen to match various characteristics of influenza epidemics: i) R

the effective reproduction number (from the literature) ii) age-

based clinical attack rates (from literature and hospital utilization

data for our study area), and iii) fit of the simulated epidemic curve

to an observed epidemics trajectory (from laboratory confirmed

data for the 1998–1999 season). R was calculated by the equation

1+rT, where r is the growth rate of the simulated epidemic and T is

the generation time estimated from the infectiousness profile

function. We estimated r from the stable region of the epidemic

growth curves and T was set to 2.6 and 3.2 days in epidemics

under the general and specific strain infectiousness profile

function. For these values of T, we estimated r between

generations 6 and 9, inclusive, for the general strain and between

generations 5 and 7, inclusive, for the specific strain. We discuss

differences between these infectiousness functions later as it was

one of the perturbation variables we considered in our study. Data

on age-based clinical attack rates were from the literature and

estimated from hospital utilization data for influenza-like-illness

(ILI) diagnosis. The ILI data were from in-patient, out-patient and

emergency hospital settings for CMA Montreal from 1996–2006.

Although different studies have reported clinical attack rates using

different categorization of age years, we primarily used the

categories 0–17 and 18+ (i.e. 18 and above) to qualitatively

determine the match between the simulated and observed clinical

attack rates. In the supporting information material (Text S1), we

also provided clinical attack rates by different age categories.

Lastly, we used the fit of the simulated epidemics to the observed

data on laboratory-confirmed counts of cases testing positive for

influenza virus. Details on these data are given in the next section.

Using these three different methodologies, we estimated the

transmission factors for the general and specific strain scenarios

(Table 1). We scaled the school transmission coefficients to match

the observed patterns in clinical attack rates. These transmission

coefficients were used to multiply the different infectiousness

profiles, which were scaled to a maximum value of 1 (Fig. S3). Due

to differences in the shape of these profile functions, different

transmission coefficients were needed to match the simulated

epidemics to expected patterns. Our primary aim here was to

generate reasonable approximations to real-world epidemics so

that we could use the fitted epidemic in the predictive validation

exercise. Although the Montreal IBM is probably able to also

match season-to-season dynamics, this was beyond the scope of

our study because this study’s aim is to evaluate predictive ability

of the model after the start of each future season rather than

season-to-season dynamics. Using these transmission coefficients,

we calculated the force of infection as, 1{ exp {liDtð Þ, for each

individual. We assumed Dt= 0.25 days in line with Ferguson et al.

[19]. Further details on the formulation of the Montreal IBM are

provided in the Text S1.

Modeling Pre-existing Immunity
To model pre-existing immunity, we assumed that a proportion

of the population was naturally immune due to vaccination in

previous years with a certain level of vaccine effectiveness. We also

assumed that individuals were vaccinated at the start of each

season. Given the considerable variation that exists in estimates of

natural immunity, we presented all efforts at predictive validation

under two levels of natural immunity. Methodologically, we did

this by scaling the force of infection by 0.25 or 0.5. The practical

Predictive Validation of an Influenza Spread Model
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implication of this assumption is that individuals are somewhat

protected against infection but not completely. To model the idea

of vaccine effectiveness, we further assumed that the probability of

infection for each individual was reduced by a certain percentage

based on their age. The reductions were varied to reflect that the

older population was more protected than the younger population

(i.e. 0% for 0–2 yrs. old, 50% for 3–64 yrs. old and 20% for 65

years and above. To model vaccination efforts at the start of the

influenza season, we assumed similar levels of vaccine effectiveness

each season and assumed a proportion of the population was

vaccinated but never fully protected against infection. These

proportions were estimated from published data from government

reports on vaccination efforts and are further described later as

vaccination coverage was a perturbation variable in this study.

Data on Past Epidemics and Perturbations
Our choice of data, epidemic metrics and the two perturbation

variables, was motivated by the following considerations, i) model

predictions should be validated in the context of their intended use

and application in the real-world, and ii) policy-makers consider

them important in epidemic planning. We used laboratory-

confirmed data to estimate various epidemic metrics (peak week,

absolute intensity, epidemic duration).

Laboratory-confirmed data on influenza. We used labo-

ratory-confirmed viral testing data to fit the baseline model. We

used the baseline model to retrospectively simulate ‘‘future’’

epidemics and ate epidemic metrics. The laboratory data were

obtained from the Laboratoire de Sante Publique du Quebec

(Quebec Public Health Laboratory) for the years 1998 to 2006,

inclusive (Table 2). These data contained the number of samples

tested and percentage of positive samples for each week of

laboratory disease surveillance. Using these data, we calculated the

number of positive samples to characterize the trajectory of the

observed epidemic in each season. Given that reporting bias is

common among these types of data, we reported both the number

and % of laboratory positive viral samples but used only the

former to fit the baseline model and forecast future epidemics.

Although these data were aggregated at the provincial level, we

assumed that they provided a good approximation of the expected

epidemic patterns in our study area. This was a reasonable

assumption since our study area comprised of approximately 53%

of the population of Quebec. As well, Quebec City was the only

other major urban center in the province of Quebec and its close

geographic proximity to CMA Montreal (250 km) meant that its

population, more or less, experienced seasonal influenza epidemics

with similar temporal characteristics.

Epidemic metrics. We used our laboratory data to derive

various epidemic metrics such as peak week, absolute intensity and

epidemic duration. These metrics described different characteris-

tics of the epidemic such as timing and intensity. Peak week was

calculated as the week with the highest number of positive culture

samples and absolute intensity was the number of samples in the

peak week. Epidemic duration was slightly more difficult to define.

Different authors have used different definitions of epidemic

duration for seasonal influenza [8,33,34]. Chan et al. [33] defined

the start of the epidemic as approximately 4 weeks before the first

two consecutive weeks in which the number of positive samples

was equal to or greater than 5 in both weeks. Their approximation

of 4 weeks was a conservative estimate since the epidemic was

definitely underway after this time, but there were also time lags to

consider, depending on the source of surveillance data. The end

week of the epidemic was defined as one week before observing

less than 5 positive cases. Rather than constructing our own

definition of epidemic duration, we opted for the definition of
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Chan et al. [33]. We calculated these three epidemic metrics for

each influenza season (Table 2).

Perturbation Variable I: Vaccination Coverage
Annual variation in vaccination coverage was a natural choice

for a perturbation. Vaccination has long been an important

mitigation strategy for seasonal influenza. We used annual reports

on vaccination in Quebec, in Canada, and other published data to

determine the percentage vaccination coverage in each of the

following age categories: infants (0–2 yrs. old), kids (3–18 years

old), adults (19–64 years old) and seniors (65 years and older)

(Table 3). The most useful data on vaccination coverage was

available for infants and seniors, since they are highly susceptible

to influenza infection. For a few seasons, data were not available in

some groups such as adults and infants. For age groups in these

seasons, we interpolated values from other seasons for which data

were available (Table 3). We did not find any other data for the

kids’ category, since most of the literature reported vaccination

coverage rates only for those in this age group who had one or

more chronic condition. Since kids and adults were normally not

considered as high-risk groups for infection, we interpolated their

vaccination coverage values. We assumed that kids had an average

level of coverage between infants and adults.

Perturbation Variable II: Influenza Strain Data
It is well-known that antigenic shifts in the influenza virus’s

RNA may lead to differences in virulence and transmission

between each season. Also, policy-makers may have knowledge

about the most likely influenza strain which may show up in their

administrative region. Such knowledge may be assembled from

global influenza surveillance programs (e.g. WHO) or other

nearby regions where the epidemic may already be underway. It

may come to pass that policy-makers may be uncertain about the

information they have received on the influenza strain for a given

season. Therefore, when faced with decisions, which must be

made in real-time, policy-makers may want to know how

uncertainty in strain information translates through to various

epidemic metrics and the overall epidemic trajectory.

One way to do this may be through forecasting under functions

that capture the general or strain-specific infectiousness of the

influenza virus. Data on the influenza strain was available from

several sources for our specific study area and time period. Our

laboratory-confirmed data provided a breakdown of positive

samples by influenza type (A or B) but not subtype. Also, Chan et

al. [33] reported the predominant circulating strain by type and

subtype from 1998 to 2003, inclusive, in the province of Quebec.

This latter data source was used to confirm the predominant

circulating strain of influenza for each season according to the

laboratory-confirmed data (Table 2). In order to incorporate

strain-specific data in the Montreal IBM, we used the infectious-

ness profile functions reported by Liao et al. [35] (scaled to a

maximum value of 1, Fig. S1). These functions were estimated

based on experimental data on infections for each of the following

strains, type A (H1N1), type A (H3N2) and type B influenza. We

used the infectiousness profile function for type A (H1N1) because

the same strain was the predominant circulating strain in a

majority of the seasons for which Chan et al. [33] had reported

subtype-level data. The 2000–2001 season was dominated by the

influenza B type strain. We excluded this season from our analysis

because we required two seasons with type B as the predominant

strain where one season was used to fit the model and another

season to forecast from the fitted model. In effect, the perturbation

we were concerned with was not which specific strain will circulate

during a season, but instead which infectiousness profile function

to use, general or strain-specific, in a forecast model when there

was uncertainty about which strain was likely to emerge for a

future season. The general strain infectiousness profile function we

used referred to the original function in Ferguson et al. [19]. In

practice, if policy-makers had good information on the strain, then

it was possible to use the strain-specific profile to forecast the

upcoming epidemic.

Predictive Validation
The process of predictive validation involved three steps i)

establishing a baseline model, ii) perturbing the baseline model to

forecast epidemics and iii) quantifying the differences in epidemic

patterns between simulated (forecast) and observed epidemics. We

want to reiterate here that we are not trying to capture season-to-

season dynamics but rather how well the Montreal IBM would

have predicted each future influenza season using the baseline

model fitted to the reference season.

Baseline model. The purpose of the baseline model was to

describe an observed epidemic known to have taken place under a

set of real-world perturbations. Our rationale was that if a model

had good predictive ability, then policy-makers, when provided

with this baseline model, should be able to forecast future

epidemics by only changing the perturbation variables and

Table 2. Epidemic metrics based on laboratory-confirmed samples positive for influenza virus from the Laboratoire de Sante
Publique du Quebec (Quebec Public Health Laboratory).

Flu season
Start week of
epidemic*

End week of
epidemic*

Peak
week

Absolute intensity
(number of
positive samples)

Epidemic
duration (weeks)

Predominant-circulating
type of influenza virus

1998–1999 51 14 9 61 16 A

1999–2000 43 13 13 40 23 A

2000–2001 51 14 11 66 16 B

2001–2002 48 14 10 73 19 A

2002–2003 50 18 11 28 21 A

2003–2004 47 13 12 53 19 A

2004–2005 45 15 9 94 23 A

2005–2006 4 20 12 46 17 A

*Calendar weeks.
doi:10.1371/journal.pone.0065459.t002
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nothing else. By using the baseline model in this manner, we

assumed that the model sufficiently captured the processes

underlying the spatial spread of influenza. There was good reason

to make this assumption, since the basic model of Ferguson et al.

[11] has not been modified dramatically in any of the other studies

which have used it in different geographic locations and spatial

scales. This implied trust and confidence in the underlying

processes of the model.

We evaluated the predictive validity of the Montreal IBM by

establishing a baseline model that was fitted to laboratory-

confirmed data on seasonal influenza in 1998–1999. We chose

this reference season based on a previous analysis by Chan et al.

[33]. They reported the highest correlation in time series data

from various sources for this season over others in the same study

area as ours. We took this to mean that the timing, peak and

duration of the 1998–1999 influenza epidemic was most likely to

have been represented well by the various types of data, including

laboratory confirmed data. In other words, reporting bias was

probably lower in the laboratory data for this season than other

seasons for which we had available data.

IBMs are very complex models for which fitting each parameter

takes considerable computational resources. We estimated the

transmission coefficients, as mentioned above, and vaccinated

individuals in the baseline model according to the observed data

on coverage levels by age group for the reference season (Table 1).

In these simulations, we also modeled all previously stated

assumptions regarding pre-existing immunity and vaccine effec-

tiveness. Due to the differences in the estimation of the

infectiousness profiles and our assumptions about pre-existing

immunity, we fitted baseline models under four scenarios, which

are described by the first two columns in Table 1. For the general

strain, we used the infectiousness profile based on Ferguson et al.

[11]. For the specific strain, we used the infectiousness profile

function based on Liao et al. [35] and discussed above.

To estimate the fit of the model, we used a modified version of

the percent error function (denoted by D) which minimized the

difference between the observed and simulated epidemic.

D~100|
XkT

k~ki

Ok{hMk

Ok

ð1Þ

Ok, was the number of positive laboratory-confirmed viral

samples in week k since the start of the epidemic.The epidemic

ended by week kT. Mk(c) was the number of infected individuals in

week k of simulated epidemics. Since the simulated epidemic curve

indicated the total number of new infections at each time step, we

applied a scalar, h, to make the simulation results comparable to

the actual number of laboratory-confirmed positive viral isolates.

Since there was no way to know this scaling factor, we had to

estimate it simultaneously with each different value of the

transmission coefficients.

We simulated all epidemics by randomly infecting 100

individuals. This was done to ensure that epidemics actually took

place. Also, to ensure that we were not picking from very rural

areas, we only individuals to be initially infected were only chosen

if they lived in grid cells with $100 individuals. This ensured that

a large number of epidemics did not die out. To calculate D, for

any given value of h, we first simulated epidemics (N = 50) under

various values of the transmission coefficients. We limited the

number of simulations to 50 due to the considerable computa-

tional resources required in IBMs. Next, for each simulated

epidemic curve we estimated a value of h which minimized D

(Eqn. 1). We explored a wide range of values for h [1e-2, 1e-6]

with a step size of 1e-6 using the grid search method. Prior to

calculating D, we shifted each epidemic curve (scaled by h) in time

to match the start week of the epidemic in the reference season.

We matched the starting weeks in the observed and simulated

epidemic curve primarily because, i) we do not know the exact

date when the epidemic started in the study area, and ii) there may

be uncertainty in our assumptions about the start week of the

epidemic. The only piece of information we were sure of was that

the epidemic was underway after observing two consecutive weeks

of 5 or more positive viral cultures in the laboratory data.

Predicting epidemic metrics. We predicted epidemics for

each season in our study through forecast models. A forecast

model was essentially the same as the fitted baseline model

Table 3. Vaccination coverage levels by age categories [minimum age, maximum age].

Flu season Infants [0.5–2] Kids [3–17]* Adults [18–64] Seniors [65–100]
Coverage in overall
population (simulated)

1996–1997 12%{ 9% 7%1 42% 14%

1997–1998 13%{ 10% 7%1 46% 15%

1998–1999 15%{ 12% 8%1 44% 16%

1999–2000 17%{ 13% 9%1 52% 19%

2000–2001 20%{ 15% 10% 59% 22%

2001–2002 22%{ 17% 11%1 57% 23%

2002–2003 26%{ 18% 11% 59% 24%

2003–2004 29% 21% 13%1 61% 27%

2004–2005 34% 24% 14%1 65%" 30%

2005–2006 38% 27% 16% 68%" 34%

*Coverage values are assumed to be the average of values for Infants and Adults.
{fitted value based on y~0:1020|1:4017 xð Þ, where x= integer index of the season, same definition in equations for fitted values of coverage below.
1fitted value based on y~0:0595|1:10124 xð Þ.
"fitted value based on y~0:028xz0:394.
doi:10.1371/journal.pone.0065459.t003
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except that we perturbed vaccination coverage levels for the

season of interest (Table 3). Since we fitted the baseline models

for each type of infectiousness profile, general and strain-

specific, we could make forecasts for a season under each

infectiousness profile function. By defining forecast models in

this way, we simultaneously accounted for annual perturbations

in vaccination coverage and uncertainty about the influenza

strain. Assuming that the Montreal IBM properly captured

important mechanisms underlying the epidemic process, we

believe this was a reasonable approach. Although policy-makers

may be interested in other drivers of annual variation in

epidemic patterns, these two perturbations sufficed for the

purpose of our study.

To determine which parameters, others than these perturba-

tion variables, to update in the forecast model, we turned to

past studies on real-time forecasting for guidance even though

they were based on influenza pandemics. These studies have

primarily used simpler disease spread models. Hall et al. [6]

updated the parameters of a SIR model through regression

techniques to make step-ahead forecasts during an ongoing

epidemic. Of the parameters they repeatedly estimated as the

epidemic went on was the proportion of cases in the simulated

epidemic curve represented in the observed data. This was

analogous to our usage of the scalar h, and, therefore, a good

candidate for updating in our study as well. In another study,

Nishiura [7] used a chain-binomial transmission model with

maximum likelihood methods to forecast the 2009 H1N1

pandemic. A common assumption in both these forecasting

studies was to hold constant natural history parameters of the

influenza virus, such as infectiousness, transmission rate, and

generation time. There were likely good reasons for this which

may be equally if not more relevant for our more complex

individual-based model of influenza spread. Therefore, we

forecast epidemics through simpler methods using existing

parameters in the model and without re-fitting parameters or

modifying assumptions about the disease transmission process in

the forecast model for each season.

Based on the forecast model, for any given season, we

simulated epidemics (N = 50) with initial conditions similar to

those we had assumed when fitting the baseline model. Each

simulated epidemic curve was used to calculate several epidemic

metrics such as peak week, absolute intensity and epidemic

duration. This further allowed us to place error bounds on the

deviation in these metrics from the data on observed epidemics.

Before calculating these metrics, we scaled the simulated

epidemic curve to make it comparable to the observed data.

Furthermore, we matched the scaled, simulated epidemic curve

to the starting week the actual epidemic, as defined previously,

for that given season. In reality though, the scalar (h), which we

applied to the simulated epidemic curve, may or may not vary

between each influenza season due to uncertainty in its true

value. In the absence of data, which would allow for an

accurate estimate this value, we assumed that policy-makers

would implement a method of forecasting we called static

forecasting. In static forecasting, we assumed that the estimate

of h, which was obtained from fitting the baseline model

(Table 3), was the best-available estimate to policy makers.

Practically, this assumption would be analogous to predicting

the epidemic pattern for a future season based on some

projected vaccination strategy (i.e. via a forecast model), using

only current information from a past epidemic. Therefore,

epidemic metrics under static forecasting were calculated by

scaling each season’s forecast (i.e. the simulated epidemic curve)

by the same estimate of h as obtained for the reference season.

Alternatively, policy-makers may want to re-estimate h for each

new season and possibly update its estimate as new data was

gathered through laboratory surveillance by public health

departments. A policy-maker’s rationale for doing so may be

that since the estimate of h would likely vary between each

season then as more data became available the updated

estimate of h would likely be more accurate for the current

season. We called this method of forecasting, where updating of

h took place, dynamic forecasting. In other words, for a given

season, the forecast (i.e. the simulated epidemic curve) was re-

scaled with each additional week of data on an ongoing

epidemic. This resulted in new weekly estimates of epidemic

metrics for each season. By quantifying deviations between these

weekly estimates (dynamic forecasting) or fixed estimates (static

forecasting) and the observed epidemic metric value for each

season we were able to evaluate the timeliness and reliability of

the forecast model. The ability to perform such an evaluation,

under two methods of forecasting, provided a novel way to

evaluate a model’s predictive ability which has not been

considered, to our knowledge, in previous studies.

Quantifying deviations. We formulated several deviation

metrics to assess the predictive ability of the Montreal IBM.

Keeping in mind the relevance of model predictions for policy-

makers, we evaluated each metric under assumptions for dynamic

and static forecasting. One advantage of static forecasting, from a

policy-makers perspective, was the availability of estimates for

epidemic metrics at the very early phase of the influenza season.

On the other hand, estimates under dynamic forecasting were not

likely to stabilize until after observing a few more weeks of the

current season given the highly stochastic early phase of influenza

epidemics. To visualize the fit between the observed and simulated

epidemics, under static forecasting, we plotted epidemic curves for

each season. For dynamic forecasts, similar plots would have been

too cumbersome to present since each week in each season

produced a new epidemic curve. Instead, we plotted deviation

metrics for each week of additional data, which we labeled as week

of prediction in our graphs. For comparison, we also plotted the

deviation metric value under static forecasting in these plots for

deviation metrics.

The first metric we calculated was the error in overall fit. The

purpose of this metric was to demonstrate how well the forecast

model fit the overall observed epidemic. For this metric, we

calculated the percent error between the observed and simulated

epidemic curve. Under static forecasting, this resulted in a single

value. Under dynamic forecasting, the percent error was re-

calculated for each week of prediction. We expected a better

match between the observed and simulated epidemic (i.e. lower %

error) as additional weeks of the observed data were used in

estimating h.

The next three metrics provided a more detailed evaluation

of the forecast models’ ability to predict several temporal

characteristics of seasonal influenza. For peak week and

epidemic duration, the deviation metric was the difference of

the metric value between the forecast and observed epidemic

curve. For interpretation purposes, negative and positive values

in this metric meant the forecast model underestimated or

overestimate, respectively, the observed epidemic metric value.

For absolute intensity, the deviation metric was the percent

error between the estimated value from the forecast and

observed data. Absolute intensity and peak week were calculated

at the actual peak week and, therefore, forecasts of these metrics

only made sense until the actual peak week in each season.

Conversely, epidemic duration was not dependent on the actual
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peak week and, therefore, we calculated its deviation metric

until the end of each season.

Results

Statistical Properties in Observed Data
The analysis of the observed data on past epidemics revealed

that there was little variation in the peak week (range of 9 to 13

weeks) and slightly more variation in epidemic duration (range of

16 to 23 weeks) (Table 2). The highest amount of variation was

observed in the absolute intensity of past epidemics which ranged

from 28 to 90 laboratory positive cases. Laboratory-confirmed

data on past epidemics indicated that all except one influenza

season were characterized by the influenza A type strain (Table 2).

For about half the seasons, the timing of the epidemic (i.e. peak

week) matched when we plotted the number and % of positive

samples. When this was not case we observed a 1 or 2 week lag in

the two laboratory-based time series data. Data on vaccination

coverage levels showed different patterns across age groups

(Table 3). These graphs matched the expected patterns that

Figure 1. Model fitting to observed data for reference influenza season (1998–1999) under different infectiousness profile
functions and scalar for pre-existing immunity set to 0.5. Observed data are presented as the number (black solid lines) and % positive
(dashed black line) of laboratory-confirmed positive samples. X-axis is the number of weeks since start of season and not calendar weeks. The start of
the influenza season was defined by 5 or more positive viral cultures in two consecutive weeks. Number of laboratory-confirmed samples was used to
fit the simulated epidemic curve after scaling the average number of new infections (solid blue line) to compare with observed data. We matched this
scaled version of the simulated epidemic curve to the first week of the actual epidemic. 95% confidence intervals were based on 50 simulated
epidemics (dotted blue lines).
doi:10.1371/journal.pone.0065459.g001
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influenza infections are usually higher among the under 18 age

group, fairly stable among adults and lowest overall among

seniors. Data on vaccination coverage levels showed different

patterns across age groups. We found that vaccination coverage

was highest among seniors, followed by infants and then children/

adults (Table 3). We also observed an overall increasing trend in

vaccine coverage over the study period for all age groups and

subsequently in the overall simulated population for each season.

Predictive Validation Results
The results of the predictive validation process allowed us to

evaluate the overall predictive ability of the Montreal IBM. Later,

we discuss the consequences of these results on planning for

influenza epidemics and provide guidance on how to improve

predictions from complex simulation models of disease spread. We

evaluated the predictive ability of the model through various

deviation metrics and methods of forecasting. In the next section

of our results, we compared the overall fit of the forecasts to the

observed data under static and dynamic forecasting. In the

remaining sections, we highlighted deviations between observed

and forecast metric value for three different epidemic metrics by

method of forecasting. In these latter sections, we focused

primarily on the reliability and timing of the forecast for each

epidemic metric. We preceded these sections with a few

observations from fitting the baseline models.

Model Fitting of Baseline Epidemic
Model fitting revealed reasonable fit of the baseline model

under the general and specific strain infectiousness profile to the

1998–1999 influenza season under both assumptions regarding

pre-existing immunity (Fig. 1 and Fig. S2). The only noticeable

exception to this finding was the fit of the simulated epidemic to

observed data under the specific strain infectiousness profile when

the scalar for pre-existing immunity was 0.25 (Fig. S2). Here the

simulated epidemic curve underestimated the intensity of the

epidemic and the confidence intervals did not encompass the

observed data very well. Comparing the fit of the baseline model

under the two assumed values for pre-existing immunity, we

observed a better fit under value of 0.5 (Fig. 1, Table 1). A

noticeable difference in the simulated epidemics under each

infectiousness profile was wider 95% CI in the model for the

general infectiousness profile. Using these baseline models,

simulated epidemics did a good job of estimating the epidemic

curve in future years for some seasons but not so well for others

(for the pre-existing immunity scalar value of 0.5 see Figs. 2 and 3

and for 0.25 see Figs. S4 and S5).

A comparison of the observed age-based clinical attack rates

based on ILI data and the simulated rates showed better

qualitative match under the specific strain infectiousness profile

(Fig. S3). These rates did not vary very much and, therefore, were

presented as the average values from the data. Note that our

purpose in presenting the observed data was to show that

qualitatively they were appropriate for the selected transmission

coefficients in the simulated epidemics under each infectiousness

profile and assumptions about pre-existing immunity. Also, our use

of ILI data may not be as reliable as seroprevalence surveys for

which we did not have any data available for our study setting. We

also provided age-based clinical attack rates under different age

categorizations (Fig. S14 and S15). These plots provided further

evidence that the clinical attack rates were higher for younger

individuals, lower for adults and even lower for seniors. These

patterns are qualitatively comparable to what would be expected

during a seasonal epidemic [13].

For the pre-existing scalar value of 0.5, the season-by-season

fitted curves were presented by using static and dynamic

forecasting. From these curves, the fit of the simulated epidemics

was somewhat reliable for the 2001–2002 (up until half way to the

peak week), 2004–2005 and 2005–2006. This was not the case for

epidemics in the 1999–2000, 2002–2003 and 2003–2004 season.

Due to similar results under each scalar for pre-existing immunity

and for ease of discussion, we presented all results below for the

scalar value of 0.5. Graphs for the value of 0.25 are provided in the

supporting figures (Fig. S4–S13).

Overall Fit
The overall fit between the observed data and static forecast

showed mixed results (Figs. 2 and 3). Looking only at the observed

data, we noticed remarkable differences in the shape of the

seasonal epidemics. Some seasons were characterized by a bell-

shaped curve while others were noticeably skewed towards the

right (end week of the epidemic). Other seasons displayed sharp

rise periods (2001–2002 and 2004–2005 season). These differences

between seasons also translated into annual variation in epidemic

metrics (Table 2).

In order to visualize the overall fit between the observed data

and dynamic forecasts, we turned to plots of the error in overall fit

for each week of prediction for each season (Figs. 4, 5, S6, S7). The

purpose of these plots was to show how much better the overall fit

would have been under dynamic forecasts. Under each infec-

tiousness profile, for all seasons, the error in overall fit was at least

lower by the last week of prediction in dynamic forecasts (Figs. 4–

5). A main difference between the profile-based results was that 5

out of 6 seasons the fit under dynamic forecasts was always lower

than static forecasts from the start of the epidemic or shortly

thereafter when using the general strain profile (Fig. 4) On the

other hand, this was the case in only the 2002–2003 and 2003–

2004 season under the strain specific profiles (Fig. 5). In the

remaining seasons, expect for the 1999–2000 season, the deviation

under dynamic forecasting was below that of static forecasts more

than halfway into the epidemic. In terms of the magnitude of the

overall fit, we observed on average differences of about 10%

between each method of forecasting except for the 1999–2000

season. In this season, we observed a special case where the

simulated epidemics did a very poor job of matching the observed

epidemic. This meant that the near zero error in overall fit is

misleading for this seasons because the fit was just as bad using

some or all of the observed data when scaling the simulated

epidemic.

From these graphs, as expected, we observed more unstable

estimates of the error in the overall fit at the start of the epidemic.

As more weeks of prediction were used to update the forecast,

these estimates stabilized and showed noticeable reductions in

overall fit towards the end of the epidemic. Such stabilization

occurred faster for some seasons than others and also depended on

the choice of infectiousness profile function (general or strain).

Epidemic Metrics
Epidemic metrics quantitatively characterized the spread of

influenza but also provided policy-makers with meaningful

measures of potential impacts. While other potential metrics were

contextually relevant, such as the age-based clinical attack rate for

health practitioners and vaccine coverage for public-health

officials, the metrics we have used in predictive validation were

more general descriptors of epidemic dynamics.

Regardless of season, infectiousness profile and scaling factor for

pre-existing immunity, deviations from the actual peak week were

lower (i.e. closer to 0 meaning no lag from observed peak week)
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under static forecasting than dynamic forecasting (Fig. 6, 7, S8,

S9). In terms of the magnitude, static forecasts lagged at most 3

weeks and predicted ahead at most 1 week of the observed peak

week. Under dynamic forecasting, the lag may be as high as 6

week and as ahead by 2 weeks. We presented the deviations in

peak week past the observed peak week to show that the reliability

of dynamic forecasts did eventually improve. This likely has

significant implications for which method of forecasting to use

when estimating the peak week. Taking these deviations across all

seasons, it was clear that static forecasts were not only much more

predictive of actual peak week, but also could be made much

earlier before the actual peak week of the epidemic.

For epidemic duration, static forecasting did a better or just as

good a job at forecasting the observed value across all

infectiousness profiles, scalar factors for pre-existing immunity

and season (Fig. 8, 9, S10, S11). Different though from peak week,

both methods of forecasting showed considerable underestimation

of the observed epidemic duration. In some seasons, this was as

much as by 14 weeks and as little as 2 weeks. Under static

forecasts, the magnitude of lag was at most 8 weeks indicating that

once again this method of forecasting to be better than dynamic

forecasting.

Absolute intensity was perhaps the most important epidemic

metric for policy-makers as it represented the severity of the

epidemic at its peak week. Better estimates of this metric as early

on in the epidemic were more useful than those closer to the peak

week. Our results showed that in half the seasons, we could

estimate the actual absolute intensity with about 20% error or

lower under static forecasting and regardless of infectiousness

profile (Figs. 10 and 11). Under the same scenarios, the error in the

remaining seasons was above 40% and as high as 95% for the

2002–2003 season. Under dynamic forecasting, the results were

similar but tended to do a better job (i.e. lower % error) as more

data was used to forecast the epidemic. The results, under the

scalar factor of 0.25 for pre-existing immunity showed similar

patterns (Figs. S12 and S13).

The overall message from these results indicated that it was

possible to obtain reliable and timely forecasts of the observed

epidemics, as measured by various epidemic metrics, under static

forecasting. Another main result was that reliability and timeliness

of the forecast was dependent on the epidemic metric of choice

because forecasts were better for peak week and somewhat all right

for absolute intensity as compared to peak week.

Discussion

Presently national and global health agencies (e.g. CDC, WHO)

invest large amounts of money and resources in influenza

surveillance, forecasting and planning. The 2009 H1N1 pandemic

brought to the forefront the fruits of this labor [16,36–39] and

demonstrates the continuing interest in using mathematical and

computation models to forecast and understand the dynamics of

influenza epidemics. Challenging current models of influenza

spread with more rigorous definitions of prediction should provide

new knowledge with practical applications for both modelers (of

influenza spread) and policy-makers.

We attempt to start a conversation among policy-makers and

modelers about prediction in complex models of influenza spread.

Past attempts to forecast influenza epidemics have included

simpler models such as temporal regression models [6,40,41],

search engine query data models [42] and prediction market

models [43]. Although these studies address real-time forecasting

of influenza epidemics, they remain limited in their ability to

consider some key features of interest to policy-makers. These

features include spatial heterogeneity, individual heterogeneity in

contact and infectiousness, and demographic, environmental and

social mechanisms which affect disease transmission. As a result,

more complex models were developed to explicitly consider these

features through global spread models [16,44] and individual-

based models [11,13,14,19]. In these complex models, simulated

epidemics were fitted to a single season’s data but presented as

evidence of model validation [13,14,32], rather than predictive

model validation. Taken together, these developments show that

current models for influenza epidemics with real-time forecasting

ability are too simple; more complex models are useful for scenario

analysis but have not been evaluated for their predictive ability. To

our knowledge, this is the first study on the predictive ability of a

complex model for influenza spread.

Our contribution to this discourse comes at a critical time when

diverging opinions are emerging about whether prediction is even

possible through mathematical models of influenza spread

[40,45,46]. Amusingly, no study has even evaluated the predic-

tions of complex simulation models, yet debate on the predictive

ability of such models is already underway. Given the breadth of

seasons and epidemic metrics in our study we go above and

beyond any previous forecasting study including those with

simpler models [6,7,47]. We specifically address two aspects of

real-time forecasting of interest to policy-makers, reliability and

timing. By reliability we mean the magnitude of the deviation or

error in the forecast as compared to the observed data. Timing of

the forecast refers to the week of prediction in which forecast

becomes reliable enough to base a decision upon. In our study, we

applied the process of predictive validation on a generalized

version of a well-known IBM in the influenza modeling literature.

We estimated epidemic metrics using forecast models which

included known real-world perturbations. We showed not only

how this type of validation process could be used to evaluate the

reliability and timing of the forecast, but also the effect of updating

the forecast on these metrics.

Ideally, policy-makers want reliable forecasts in a timely manner

for each epidemic metric. Our results showed that this was

certainly possible to some extent in the generalized version of the

Ferguson et al. [11,19] model. For the epidemic metric peak week

and absolute intensity, reliable forecasts were possible earlier on in

the epidemic under static forecasting. For the majority of the

seasons, could the forecast model reliably forecasted the actual

peak week with a lag of 1 to 3 weeks and, for half of all the seasons

in our study, the absolute intensity with 20% error or less. No

other studies using complex simulation models have been

conducted to evaluate the predictive ability of the model for

seasonal epidemics. Therefore, although not directly comparable,

our results were better than errors of 60% or higher in forecasts of

absolute intensity 1 week before actual peak week in Nishiura [7]

for the 2009 H1N1 pandemic and between 20–50% error in the

forecast 1 to 2 weeks before the actual peak week in Hall et al. [6]

Figure 2. Forecasts of several past influenza seasons and the observed data on past epidemics (black bars, number of laboratory
positive samples), assuming a general infectiousness profile function and scalar for pre-existing immunity of 0.50. Forecasts were
based on best-fit baseline model in which only the level of vaccination coverage was changed for each season. Scaling of the simulated epidemics
was done under static (based on scalar for 1998–1999 season, red lines) or dynamic (based on having observed entire epidemic for respective season,
blue lines). Green lines indicated %positive laboratory samples. X-axis is the number of weeks since start of season.
doi:10.1371/journal.pone.0065459.g002
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for several past pandemics. Earlier forecasts of peak week and

absolute intensity provide policy-makers with several advantages

with two caveats: i) forecasts were not always consistent between

seasons and ii) epidemic duration was not as well predicted under

static forecasting. A reason for the first caveat may be the

stochastic nature of seasonal epidemics and reporting bias in our

underlying observed data. For the second caveat, our methodology

for forecasting, where we optimized the fit of the overall forecast

rather than any one epidemic metric, may have been the reason.

Instead, if our objective function was formulated to minimize the

deviation between the forecast and actual peak week then under

dynamic forecasting we would have expected a better fit in this

metric but most likely also at the expense of higher deviations in

other metrics. Therefore, an overall better fit will sometimes

optimize fit for some metrics at the expense of others and this is

what happened in our study.

These nuances in the method of forecasting provide important

lessons for policy-makers to consider when making decisions. A

lesson for policy-makers from our study was determining when to

switch between static and dynamic forecasts, if at all. Static

forecasts may be more reliable earlier on in an epidemic because

they were actually based on data from a past epidemic and there

may be uncertainty in the early phase of a present epidemic we

may be trying to forecast. Later on, as more data becomes

available, policy-makers could switch to dynamic forecasting since

their estimates were likely to be more reliable using more data on

the ongoing epidemic. Our results on the overall fit of the forecast

to the observed epidemic trajectory (Figs. 4 and 5) may shed some

light on this matter. In forecasts for most seasons (4 out of 6), the

dynamic approach led to similar or slightly lower error in the

overall fit well before the actual peak week in each season. Based

on these results, we suggest the following recommendations for

policy-makers. First, both static and dynamic forecasting should be

used to estimate epidemic patterns in future epidemics. Second,

earlier in the epidemic greater preference should be given to

estimates of absolute intensity and epidemic duration under

dynamic forecasts. Lastly, the reliability and timing of forecasts

should be reflected in current epidemic preparedness plans

through building in flexibilities for vaccine supply and stockpiling,

logistical capacity for vaccine distribution and other mitigation

strategies, and the efficient scheduling of resources for longer than

expected epidemics. These recommendations are based solely on

our results and further studies should verify these results in other

geographic settings with potentially better data on past epidemics.

Our study and methodology contributes three useful insights for

researchers (modelers) as well. First, clear and precise definitions of

predictive validation avoid confusion between model fitting or

cross validation with predictive validation [40,45,48]. Our

demonstration of predictive validation hopefully relayed how it

differs from current notions of prediction and the immediate

benefits, in terms of reliability and timing of forecasts, it provides

to policy-makers. Timely discussions of validation benefit model-

Figure 3. Forecasts of several past influenza seasons and the observed data on past epidemics (black bars, number of laboratory
positive samples), assuming a specific infectiousness profile function and scalar for pre-existing immunity of 0.50. Forecasts were
based on best-fit baseline model in which only the level of vaccination coverage was changed for each season. Scaling of the simulated epidemics
was done under static (based on scalar for 1998–1999 season, red lines) or dynamic (based on having observed entire epidemic for respective season,
blue lines). Green lines indicated %positive laboratory samples. X-axis is the number of weeks since start of season.
doi:10.1371/journal.pone.0065459.g003

Figure 4. Deviation metric for overall fit in forecasts of several past influenza seasons. Overall fit was calculated under dynamic (blue) and
static (red) forecasts assuming a general infectiousness profile function and scalar of 0.50 for pre-existing immunity. The metric was calculated as the
% error between observed and simulated epidemics with 95% confidence intervals. For observed data we used the actual number of laboratory-
confirmed samples (y-axis). In both types of forecasting, the simulated epidemic curve (scaled) was matched to the first of two consecutive weeks, in
the observed epidemic, when laboratory surveillance reported 5 or more positive viral culture samples. Given our definition of the epidemic start
week, this corresponded to index week 6 since the start week of the epidemic.
doi:10.1371/journal.pone.0065459.g004
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ers, by providing information on how to revise their models, and

policy-makers, by giving them more confidence in using such

models to make decisions [49]. For infectious disease modeling

such discussions have only just begun [40,45,46]. Second, our

Figure 5. Deviation metric for overall fit in forecasts of several past influenza seasons. Overall fit was calculated under dynamic (blue) and
static (red) forecasts assuming a specific infectiousness profile function and scalar of 0.50 for pre-existing immunity. The metric was calculated as the
% error between observed and simulated epidemics with 95% confidence intervals. For observed data we used the actual number of laboratory-
confirmed samples (y-axis). In both types of forecasting, the simulated epidemic curve (scaled) was matched to the first of two consecutive weeks, in
the observed epidemic, when laboratory surveillance reported 5 or more positive viral culture samples. Given our definition of the epidemic start
week, this corresponded to index week 6 since the start week of the epidemic.
doi:10.1371/journal.pone.0065459.g005

Figure 6. Deviation metric for peak week in forecasts of several past influenza seasons. Dynamic (blue) and static (red) forecasts were
considered here assuming the general infectiousness profile function and scalar of 0.50 for pre-existing immunity. See legend of Fig. 4 for further
details about x-axis. Deviation in peak week was calculated as difference in peak week of simulated and observed epidemic with 95% confidence
intervals. Positive values should be interpreted as overestimation, by the forecast model, of the observed peak week. Negative values, similarly,
indicated underestimation of the observed peak week. Metric values closer to zero indicated better predictive ability of the forecasting methodology.
Peak week for each season (green line) was plotted to allow comparisons under each method of forecasting with regards to the timeliness of the
forecast.
doi:10.1371/journal.pone.0065459.g006
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approach greatly improves the generalizability of the model to

other seasons and illustrates the flexibility of the Ferguson et al.

[11,19] model. Third, we strongly urge future modeling and

predictive validation studies to consider the inclusion of pertur-

Figure 7. Deviation metric for peak week in forecasts of several past influenza seasons. Dynamic (blue) and static (red) forecasts were
considered here assuming the specific infectiousness profile function and scalar of 0.50 for pre-existing immunity. See legend of Fig. 4 for further
details about x-axis. Deviation in peak week was calculated as difference in peak week of simulated and observed epidemic with 95% confidence
intervals. Positive values should be interpreted as overestimation, by the forecast model, of the observed peak week. Negative values, similarly,
indicated underestimation of the observed peak week. Metric values closer to zero indicated better predictive ability of the forecasting methodology.
Peak week for each season (green line) was plotted to allow comparisons under each method of forecasting with regards to the timeliness of the
forecast.
doi:10.1371/journal.pone.0065459.g007

Figure 8. Deviation metric for epidemic duration in forecasts of several past influenza seasons. Dynamic (blue) and static (red) forecasts
were considered here assuming the general infectiousness profile function and scalar of 0.50 for pre-existing immunity. See legend of Fig. 4 for
further details about x-axis. Deviation in epidemic duration was calculated as difference in peak week of simulated and observed epidemic. Positive
values should be interpreted as overestimation, by the forecast model, of the observed epidemic duration. Negative values, similarly, indicated
underestimation of the observed epidemic duration. Metric values closer to zero indicated better predictive ability of the forecasting methodology.
doi:10.1371/journal.pone.0065459.g008
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bations in the real world. Models which ignore real-world

perturbations may be limited in their ability to predict because

forecasts of the future are assuming no effect of changes in the

underlying mechanisms driving the epidemic process which is

certainly not reflective of the real-world processes generating

epidemics. There is clear evidence of this in seasonal influenza due

Figure 9. Deviation metric for epidemic duration in forecasts of several past influenza seasons. Dynamic (blue) and static (red) forecasts
were considered here assuming the specific infectiousness profile function and scalar of 0.50 for pre-existing immunity. See legend of Fig. 4 for
further details about x-axis. Deviation in epidemic duration was calculated as difference in peak week of simulated and observed epidemic. Positive
values should be interpreted as overestimation, by the forecast model, of the observed epidemic duration. Negative values, similarly, indicated
underestimation of the observed epidemic duration. Metric values closer to zero indicated better predictive ability of the forecasting methodology.
doi:10.1371/journal.pone.0065459.g009

Figure 10. Deviation metric for absolute intensity in forecasts of several past influenza seasons. Dynamic (blue) and static (red) forecasts
were considered here assuming the general infectiousness profile function and scalar of 0.50 for pre-existing immunity. See legend of Fig. 4 for details
about x-axis. Absolute intensity was calculated at peak week therefore, it was redundant to estimate it after the actual peak week in the observed
data. Deviation in absolute intensity was calculated as % error in absolute intensity between simulated and observed epidemic. Metric values closer
to zero indicated better predictive ability of the forecasting methodology. Peak week for each season (green line) was plotted to allow comparisons
under each method of forecasting with regards to the timeliness of the forecast.
doi:10.1371/journal.pone.0065459.g010
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to annual variation in vaccination coverage and the influenza

strain. Furthermore, including perturbations also tests the

conceptual validity of the model because the underlying processes

in the model are assumed to reflect the real world. When changes

in the model are not reflected in the real world then model

assumptions may need to be revised accordingly.

There were several limitations of our study. In our model we did

not consider delays in vaccine production and distribution, vaccine

mismatch and uptake rates. We did not consider seasonal forcing

variables which could potentially improve the predictive ability of

the model. Potential variables included ambient temperature,

crowding, co-morbidity and indoor heating [50]. It is also possible

that adaptive and behavioral feedback mechanisms may affect the

predictive validity of the model. These mechanisms have clear

ramifications for how the epidemic trajectory will develop during

the epidemic as mitigation strategies are implemented, vaccine

delays are encountered and other responses to the epidemic from

collective behaviors such as social distancing and school closures.

Our IBM model was certainly well suited for integration of such

mechanisms but it may be prudent to first assess its predictive

ability in its current formulation before including additional

complexity.

In conclusion, our study used a well-known complex simulation

model for the spread of influenza to study its ability to forecast

future epidemics. We demonstrated the process of predictive

validation in the context of how model predictions are used in the

real world to make forecasts about epidemic patterns before and

during an epidemic event. Based on our results we provided clear

and useful recommendations for policy-makers and modelers.

Model validation, in general, is not an all-or-nothing affair but

rather a series of statements based on applying a suite of validation

techniques to a model. Since society will always desire to predict

the future it would be naı̈ve to leave out or downplay the role of

predictive validation techniques in models of disease spread.

Supporting Information

Figure S1 Infectiousness profiles based on the Ferguson
model (general strain) and Liao et al. [35])(specific).
Curves are normalized such that area under the curve equals 1.

(TIFF)

Figure S2 Model fitting to observed data for reference
influenza season (1998–1999) under different infectious-
ness profile functions and scalar for pre-existing
immunity set to 0.25. Observed data are presented as the

number (black solid lines) and % positive (dashed black line) of

laboratory-confirmed positive samples. X-axis is the number of

weeks since start of season and not calendar weeks. The start of the

influenza season was defined by 5 or more positive viral cultures in

two consecutive weeks. Number of laboratory-confirmed samples

was used to fit the simulated epidemic curve after scaling the

average number of new infections (solid blue line) to compare with

observed data. We matched this scaled version of the simulated

epidemic curve to the first week of the actual epidemic. 95%

confidence intervals were based on 50 simulated epidemics (dotted

blue lines).

(TIFF)

Figure S3 Observed (points) and simulated (bars) age-
based clinical attack rates (age categories of 0–17 and
18+) under different infectiousness profiles and scalar
for pre-existing immunity. Values were based on all available

data from observed epidemics and 50 simulated epidemics with

initial conditions as mentioned in the main text.

(TIFF)

Figure 11. Deviation metric for absolute intensity in forecasts of several past influenza seasons. Dynamic (blue) and static (red) forecasts
were considered here assuming the specific infectiousness profile function and scalar of 0.50 for pre-existing immunity. See legend of Fig. 4 for details
about x-axis. Absolute intensity was calculated at peak week therefore, it was redundant to estimate it after the actual peak week in the observed
data. Deviation in absolute intensity was calculated as % error in absolute intensity between simulated and observed epidemic. Metric values closer
to zero indicated better predictive ability of the forecasting methodology. Peak week for each season (green line) was plotted to allow comparisons
under each method of forecasting with regards to the timeliness of the forecast.
doi:10.1371/journal.pone.0065459.g011
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Figure S4 Forecasts of several past influenza seasons
and the observed data on past epidemics (black bars,
number of laboratory positive samples), assuming a
general infectiousness profile function and scalar for
pre-existing immunity of 0.25. Forecasts were based on best-

fit baseline model in which only the level of vaccination coverage

was changed for each season. Scaling of the simulated epidemics

was done under static (based on scalar for 1998–1999 season, red

lines) or dynamic (based on having observed entire epidemic for

respective season, blue lines). Green lines indicated %positive

laboratory samples. X-axis is the number of weeks since start of

season.

(TIFF)

Figure S5 Forecasts of several past influenza seasons
and the observed data on past epidemics (black bars,
number of laboratory positive samples), assuming a
specific infectiousness profile function and scalar for
pre-existing immunity of 0.25. Forecasts were based on best-

fit baseline model in which only the level of vaccination coverage

was changed for each season. Scaling of the simulated epidemics

was done under static (based on scalar for 1998–1999 season, red

lines) or dynamic (based on having observed entire epidemic for

respective season, blue lines). Green lines indicated %positive

laboratory samples. X-axis is the number of weeks since start of

season.

(TIFF)

Figure S6 Deviation metric for overall fit in forecasts of
several past influenza seasons. Overall fit was calculated

under dynamic (blue) and static (red) forecasts assuming a general

infectiousness profile function and scalar of 0.25 for pre-existing

immunity. The metric was calculated as the % error between

observed and simulated epidemics with 95% confidence intervals.

For observed data we used the actual number of laboratory-

confirmed samples (y-axis). In both types of forecasting, the

simulated epidemic curve (scaled) was matched to the first of two

consecutive weeks, in the observed epidemic, when laboratory

surveillance reported 5 or more positive viral culture samples.

Given our definition of the epidemic start week, this corresponded

to index week 6 since the start week of the epidemic.

(TIFF)

Figure S7 Deviation metric for overall fit in forecasts of
several past influenza seasons. Overall fit was calculated

under dynamic (blue) and static (red) forecasts assuming a specific

infectiousness profile function and scalar of 0.25 for pre-existing

immunity. The metric was calculated as the % error between

observed and simulated epidemics with 95% confidence intervals.

For observed data we used the actual number of laboratory-

confirmed samples (y-axis). In both types of forecasting, the

simulated epidemic curve (scaled) was matched to the first of two

consecutive weeks, in the observed epidemic, when laboratory

surveillance reported 5 or more positive viral culture samples.

Given our definition of the epidemic start week, this corresponded

to index week 6 since the start week of the epidemic.

(TIFF)

Figure S8 Deviation metric for peak week in forecasts
of several past influenza seasons. Dynamic (blue) and static

(red) forecasts were considered here assuming the general

infectiousness profile function and scalar of 0.25 for pre-existing

immunity. See legend of Fig. 4 for further details about x-axis.

Deviation in peak week was calculated as difference in peak week

of simulated and observed epidemic with 95% confidence

intervals. Positive values should be interpreted as overestimation,

by the forecast model, of the observed peak week. Negative values,

similarly, indicated underestimation of the observed peak week.

Metric values closer to zero indicated better predictive ability of

the forecasting methodology. Peak week for each season (green

line) was plotted to allow comparisons under each method of

forecasting with regards to the timeliness of the forecast.

(TIFF)

Figure S9 Deviation metric for peak week in forecasts
of several past influenza seasons. Dynamic (blue) and static

(red) forecasts were considered here assuming the specific

infectiousness profile function and scalar of 0.25 for pre-existing

immunity. See legend of Fig. 4 for further details about x-axis.

Deviation in peak week was calculated as difference in peak week

of simulated and observed epidemic with 95% confidence

intervals. Positive values should be interpreted as overestimation,

by the forecast model, of the observed peak week. Negative values,

similarly, indicated underestimation of the observed peak week.

Metric values closer to zero indicated better predictive ability of

the forecasting methodology. Peak week for each season (green

line) was plotted to allow comparisons under each method of

forecasting with regards to the timeliness of the forecast.

(TIFF)

Figure S10 Deviation metric for epidemic duration in
forecasts of several past influenza seasons. Dynamic (blue)

and static (red) forecasts were considered here assuming the

general infectiousness profile function and scalar of 0.25 for pre-

existing immunity. See legend of Fig. 4 for further details about x-

axis. Deviation in epidemic duration was calculated as difference

in peak week of simulated and observed epidemic. Positive values

should be interpreted as overestimation, by the forecast model, of

the observed epidemic duration. Negative values, similarly,

indicated underestimation of the observed epidemic duration.

Metric values closer to zero indicated better predictive ability of

the forecasting methodology.

(TIFF)

Figure S11 Deviation metric for epidemic duration in
forecasts of several past influenza seasons. Dynamic (blue)

and static (red) forecasts were considered here assuming the

specific infectiousness profile function and scalar of 0.25 for pre-

existing immunity. See legend of Fig. 4 for further details about x-

axis. Deviation in epidemic duration was calculated as difference

in peak week of simulated and observed epidemic. Positive values

should be interpreted as overestimation, by the forecast model, of

the observed epidemic duration. Negative values, similarly,

indicated underestimation of the observed epidemic duration.

Metric values closer to zero indicated better predictive ability of

the forecasting methodology.

(TIFF)

Figure S12 Deviation metric for absolute intensity in
forecasts of several past influenza seasons. Dynamic (blue)

and static (red) forecasts were considered here assuming the

general infectiousness profile function and scalar of 0.25 for pre-

existing immunity. See legend of Fig. 4 for details about x-axis.

Absolute intensity was calculated at peak week therefore, it was

redundant to estimate it after the actual peak week in the observed

data. Deviation in absolute intensity was calculated as % error in

absolute intensity between simulated and observed epidemic.

Metric values closer to zero indicated better predictive ability of

the forecasting methodology. Peak week for each season (green

line) was plotted to allow comparisons under each method of

forecasting with regards to the timeliness of the forecast.

(TIFF)
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Figure S13 Deviation metric for absolute intensity in
forecasts of several past influenza seasons. Dynamic (blue)

and static (red) forecasts were considered here assuming the

specific infectiousness profile function and scalar of 0.25 for pre-

existing immunity. See legend of Fig. 4 for details about x-axis.

Absolute intensity was calculated at peak week therefore, it was

redundant to estimate it after the actual peak week in the observed

data. Deviation in absolute intensity was calculated as % error in

absolute intensity between simulated and observed epidemic.

Metric values closer to zero indicated better predictive ability of

the forecasting methodology. Peak week for each season (green

line) was plotted to allow comparisons under each method of

forecasting with regards to the timeliness of the forecast.

(TIFF)

Figure S14 Simulated age-based clinical attack rates
(age categories of 0–100 in 5-year intervals) under
different infectiousness profiles (panels) and scalar for
pre-existing immunity (colored bars). Values were based on

all available data from observed epidemics and 50 simulated

epidemics with initial conditions as mentioned in the main text.

(TIFF)

Figure S15 Simulated age-based clinical attack rates
(age categories of 0–4, 5–10, 11–20 and 20+) under
different infectiousness profiles (panels) and scalar for
pre-existing immunity (colored bars). Values were based on

all available data from observed epidemics and 50 simulated

epidemics with initial conditions as mentioned in the main text.

(TIFF)

Text S1 Supplementary material.
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