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Abstract: Bone morphogenetic proteins (BMPs) are probably the most important growth factors in
bone formation and healing. However, the utilization of BMPs in clinical applications is mainly limited
due to the protein poor solubility at physiological pH, rapid clearance and relatively short biological
half-life. Herein, we develop degradable porous silicon (PSi)-based carriers for sustained delivery of
BMP-2. Two different loading approaches are examined, physical adsorption and covalent conjugation,
and their effect on the protein loading and release rate is thoroughly studied. The entrapment of the
protein within the PSi nanostructures preserved its bioactivity for inducing osteogenic differentiation
of rabbit bone marrow mesenchymal stems cells (BM-MSCs). BM-MSCs cultured with the BMP-2
loaded PSi carriers exhibit a relatively high alkaline phosphatase (ALP) activity. We also demonstrate
that exposure of MSCs to empty PSi (no protein) carriers generates some extent of differentiation
due to the ability of the carrier’s degradation products to induce osteoblast differentiation. Finally,
we demonstrate the integration of these promising BMP-2 carriers within a 3D-printed patient-specific
implant, constructed of poly(caprolactone) (PCL), as a potential bone graft for critical size bone defects.

Keywords: bone morphogenic protein 2; porous silicon; bone marrow mesenchymal stem cells;
differentiation; osteoinduction; implants

1. Introduction

Bone morphogenetic proteins (BMPs) are a well-studied family of osteoinductive growth factors
which are responsible for bone formation during embryogenesis, bone remodeling, and bone
regeneration [1–3]. BMP-2 and BMP-7 have been approved by the US Food and Drug Administration
(FDA) for treatment of acute and open fractures of the tibial shaft and for oral maxillofacial surgeries [1–3].
For the latter, FDA-approved INFUSE® bone grafts, which consists of recombinant human BMP-2
placed on an absorbable collagen sponge, are clinically-used to induce new bone tissue at the site of
implantation [2]. Yet, the wide-spread use of BMPs for medical and dental applications is still limited
due to its poor solubility at physiological pH [2,4–6], rapid clearance and relatively short biological
half-life [2,7]. In addition, BMP-2 was found to induce ectopic bone formation, haematomas in soft
tissues, and bone resorption around implants, and thus it is important to localize the protein to the
required compartment in order to minimize these complications [8–10]. Therefore, a substantial research
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effort is focused on developing delivery systems for BMP-2 that will allow for controlled spatiotemporal
release which would lower the administered dose, localize the protein delivery strictly to the defect
region, prolong its retention time at the site of action, and maintain its stability. The majority of BMP-2
delivery systems are based on synthetic or natural polymers [8,11]. For the latter (e.g., collagen),
their biodegradation is difficult to control, resulting in undefined release kinetics of the entrapped
protein [12]. As for synthetic polymers, their acidic degradation products may locally reduce the pH and
induce inflammation at the implant site. In addition to this acidification, tendency to hydrophobicity
which is typical for many polymers, such as poly(lactic-co-glycolic acid), may compromise the protein
stability [13]. Other drawbacks encountered with the use of some synthetic polymers include retarded
clearance rate, lack of biological function and chronic inflammation associated with high molecular
weight polymers [14–16]. Metal scaffolds made of titanium are commonly used as support scaffolds
for bone repair applications [17,18]. However, BMP molecules incorporated into titanium support
scaffolds are either adsorbed to the surfaces or are superficially entrapped and therefore can be rapidly
released in vivo [15].

Porous silicon (PSi) has been extensively studied in recent years for drug delivery
applications [19–21] owing to its high surface area and porous volume, combined with its
biocompatibility, as well as its ability to degrade into non-toxic products under physiological
conditions [22,23]. In addition, PSi has been shown to exhibit beneficial features in the field of
bone regeneration [24–29], including its ability to induce hydroxyapatite growth [30,31]. PSi has
been shown to promote osteoblast adherence and initiate maturation process [32]. Furthermore,
its degradation product, orthosilicic acid, has been shown to induce osteodifferntiation of mesenchymal
stem cells (MSCs) into osteoblasts in vitro [33].

Many studies have demonstrated the potential of PSi-based delivery systems for protein
therapeutics [34–39]. Loading of proteins into PSi carriers can be carried out at low temperatures
without the use of strong organic solvents, which is advantageous when dealing with these sensitive
macromolecules [23,40,41]. Moreover, proteins can be loaded via simple electrostatic adsorption which is
optimal for persevering their delicate tertiary structure. The process of protein loading into PSi depends
on the properties of the porous matrix (e.g., pore size and surface chemistry), as well as those of the
protein (e.g., molecular size and structure, charge and hydrophilicity/hydrophobicity). Of importance
are also properties of the loading solvent in terms of pH, ionic strength and composition [36,42–45].
The surface chemistry of the PSi exerts a major effect on the loading efficacy and can be easily tuned
in order to better control the interactions between the protein molecules and the porous scaffold.
These interactions subsequently dictate the structure of the adsorbed protein molecules and their
bioactivity [36,37,46].

The present work aims to employ PSi nanostructures as carriers for BMP-2, allowing for the
protein’s sustained release while retaining its biological activity. Two different loading approaches are
examined, physical adsorption and covalent conjugation, and their effect on the loading and release
kinetics is thoroughly studied. The fabricated carriers exhibit sustained release of the growth factor
over a period of 35 days. The biological activity of the released BMP-2 was studied by characterizing
its ability to stimulate osteogenic differentiation of bone marrow mesenchymal stem cells (BM-MSC).
The degree of differentiation was examined by measuring the alkaline phosphatase (ALP) activity of
MSCs after two weeks of exposure to the BMP-2 loaded PSi carriers. BM-MSCs cultured with BMP-2
loaded PSi carriers (via both physical adsorption and covalent attachment) exhibit relatively high ALP
activity. Remarkably, empty PSi (no BMP-2) carriers have also demonstrated some degree of osteogenic
differentiation, exhibiting an ALP activity which was significantly higher than that of the control
untreated MSCs. After proving the therapeutic efficacy of this delivery system in vitro, we provide
a glimpse to our current work, which focuses on the integration of these promising BMP-2 carriers
within a 3D-printed patient-specific implant, constructed of poly(caprolactone) (PCL), as a bone graft
for critical size bone defects. The latter affect more than 1.5 million people in the U.S. each year [47].
The loss or dysfunction of skeletal tissue due to trauma, ablative surgery, aging or diseases, can result
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in significant morbidity, as well as reduced quality of life. Current treatment strategies usually involve
the use of autogenous bone grafts such as fibula, iliac crest and rib grafts as non-vascularized or
as vascularized grafts. These grafts suffer from severe limitations including substantial challenging
surgery, limited success, resorption of bone, donor-site morbidity, severe infections and residual
pain [48–50]. Thus, there is an urgent need for developing new reliable bone regeneration strategies.

2. Materials and Methods

2.1. Fabrication, Chemical Modification and Chracterization of PSiO2 Carriers

PSi was fabricated by anodization of heavily p-doped Si wafers (0.95 mΩ × cm resistivity,
<100>-oriented, B-doped, purchased from Sil′tronix Corp., Archamps, France). First, the Si wafers were
thermally oxidized at 400 ◦C for 2 h in ambient air in a tube furnace (Thermo Scientific, Lindberg/Blue
M™ 1200 ◦C Split-Hinge, Waltham, MA, USA), followed by incubation in a solution of aqueous
hydrofluoric acid (HF) (48%, Merck, Darmstadt, Germany), double-distilled water (ddH2O) and
ethanol (99.9%, Merck, Darmstadt, Germany) (1:1:3 v/v) for 5 min. Subsequently, the samples were
anodized in a two-step process (the anodization setup details were previously reported [51]). The first
stage included anodization at a constant current density of 250 mA cm™2 for 30 s in a solution of aqueous
HF and ethanol at a ratio of 3:1 (v/v). The resulting PSi layer was dissolved in an aqueous NaOH
solution (0.1 M, Sigma-Aldrich Chemicals, Rehovot, Israel). The second stage included anodization at
250 mA cm™2 for 20 s. After each anodization step, the silicon surface was thoroughly washed with
ethanol and dried under a nitrogen stream. Following anodization, the resulting PSi film was thermally
oxidized at 800 ◦C for 1 h in ambient air, producing a porous SiO2 (PSiO2) scaffold. Next, a dicing saw
(DAD3500; Disco, Tokyo, Japan) was used to cut the samples into 7 mm × 3 mm rectangles. Before
dicing, the samples were spin coated with AZ4533 photoresist (MetalChem, Lod, Israel) at 4000 rpm for
1 min, followed by baking at 90 ◦C for 2 min. The diced samples were then soaked in acetone (Gadot,
Haifa, Israel) for 3 h to remove the photoresist coating, thoroughly washed with ethanol and dried
under a nitrogen stream. The physical properties of the neat PSiO2 samples (i.e., pore size and porous
layer thickness) were studied by a Carl Zeiss Ultra Plus high-resolution scanning electron microscope
(HR-SEM) at an accelerating voltage of 1 kV. The porosity of the PSiO2 was measured by gravimetry
and spectroscopic liquid infiltration method (SLIM), as previously reported [51].

The chemically-modified PSiO2 carriers were prepared as follows: First, PSiO2 samples
were amino-silanized by incubation in a solution of 1% v/v (3-Aminopropyl)triethoxysilane
(APTES) in ddH2O and 1% v/v N-N-Diisopropylethylamine (DIEA) for 30 min, followed by
baking at 100 ◦C for 15 min. Second, the amine-modified PSiO2 was incubated in a solution
of succinic anhydride (10 mg mL−1) in acetonitrile and 2% v/v DIEA for 3 h. After which,
the surface was thoroughly rinsed for several times with acetonitrile and ddH2O. Next, the samples
were reacted with (ethyl-3-(3-(dimethylamino)propyl)carbodiimide) (EDC) (10 mg mL−1) and
(N-hydroxysulfosuccinimide sodium salt) (NHS) (5 mg mL−1) in phosphate buffer saline (PBS)
at pH 7.2. Finally, the resulting modified PSiO2 carriers were rinsed with PBS (pH 7.2) and dried under
a nitrogen gas. Note that all reagents used for PSiO2 modification were obtained from Sigma-Aldrich
Chemicals, Rehovot, Israel. Surface modification was verified using attenuated total reflectance
Fourier transform infrared (ATR-FTIR) spectroscopy. Spectra were recorded using a Thermo 6700 FTIR
instrument equipped with a Smart iTR diamond ATR device.

2.2. BMP-2 Loading and Release from PSiO2 Carriers

Bone morphogenetic protein-2 (BMP-2, Peprotech, Rehovot, Israel) was loaded into the PSiO2

carriers by physical adsorption and covalent attachment. In the physical adsorption approach,
the protein loading was performed using the impregnation method [35,52]. The loading solution was
prepared by dissolving 10 µg of BMP-2 in a 1:1 (v/v) solution of PBS and ddH2O to a final protein
concentration of 20 µg mL−1. 20 µL of the latter solution were introduced onto the PSiO2 carrier (size
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of 7 mm × 3 mm) and allowed to infiltrate into the nanostructure for 2 h; after which, the solution was
collected (for subsequent quantification of BMP-2 content). For covalent conjugation of the protein,
the BMP-2 loading solution was introduced onto the amine-reactive NHS-activated PSiO2 carriers and
allowed to infiltrate and react with the activated NHS ester groups for 2 h. Quantification of BMP-2
loading within the PSiO2 carriers was determined using BMP-2 ELISA kit (Peprotech, Rehovot, Israel)
according to the manufacturer’s protocol. BMP-2 loading within PSiO2 carriers was determined by
subtracting the measured protein content within the collected post-loading solution from that of the
initial loading solution. BMP-2 loading efficacy was calculated by the following equation:

BMP2 loading e f f icacy [%] =
Weight o f BMP2 in PSiO2 carrier

Weight o f BMP2 in loading solution
× 100 (1)

In vitro BMP-2 release studies were performed by incubating the BMP-2-loaded PSiO2 carriers in
2 mL of PBS containing 1% bovine serum albumin fraction v (BSA) (MP Biomedicals, Irvine, CA, USA)
and 0.02% sodium azide (Sigma-Aldrich Chemicals, Rehovot, Israel) at 37 ◦C. Every two days, aliquots
were sampled and replaced with fresh PBS. The aliquots were then frozen in liquid nitrogen and stored
at −20 ◦C until further analysis using the BMP-2 ELISA kit.

2.3. Isolation and Culture of Mesenchymal Stem Cells (MSCs) from Rabbit Bone Marrow (BM)

The femur was isolated from a New Zealand rabbit, cleaned from soft tissues in Roselle Park
Medical Institute (RPMI) medium (Biological Industries, Beit HaEmek, Israel), and sterilized by
immersion in 70% ethanol for 1 min. Subsequently, the femur was rinsed with sterile PBS and the bone
ends were separated using sterile scissors. Next, bone marrow (BM) cells were eluted from the bone by
flushing them with a sterile syringe filled with RPMI medium. The cell suspension was centrifuged at
1400 rpm for 7 min and the supernatant was discarded. The cell pellet was resuspended in 21 mL of
RPMI medium, followed by a subsequent centrifugation at 1400 rpm for 7 min. The supernatant was
then discarded and the cell pellet was resuspended in 10 mL of RPMI medium supplemented with
10% fetal bovine serum (FBS), 1% L-glutamine, 1% penicillin (100 U mL-1) streptomycin (100 µg mL−1)
solution, 50 µg mL−1 gentamicin (all reagent were supplied by Biological Industries, Beit HaEmek,
Israel) and 0.01% β-mercaptoethanol (Sigma-Aldrich Chemicals, Rehovot, Israel). Next, the cell
suspension was filtered through a 70-µm filter mesh (Corning, Corning, NY, USA) and counted by
an automated cell counter (Countess II, Life Technologies, Waltham, MA, USA). The cells were then
seeded into a T-75 culture flasks in a density of 6000 cells cm-2, cultured for 2 weeks and maintained in
a humidified incubator at 37 ◦C containing 5% CO2. The medium was replaced every 3 days.

2.4. Cell Viability Assay

Alamar Blue™ assay (Thermo Fisher Scientific, Waltham, MA, USA) was used to study the
cytotoxicity of the PSiO2 carriers on BM MSCs. Briefly, 5 × 105 cells in 0.5 mL of RPMI medium were
seeded in each well (24-well plates) and allowed to attach for 12 h, followed by several rinsing with
0.5 mL of PBS. Then, empty neat PSiO2 and amine-reactive NHS-activated PSiO2 carriers (termed
in this work as empty chemically-modified PSiO2 carriers), BMP-2-loaded PSiO2 (via both physical
adsorption and covalent conjugation) or a solution of free BMP-2 (50 ng mL−1) with 0.5 mL of fresh
growth medium. After 1, 3 and 6 days, the wells were washed twice with 0.5 mL of PBS and cells
were incubated in 10% (v/v) Alamar blue solution for 4 h at 37 ◦C with 5% CO2 and protected from
light. Aliquots of 150 µL were sampled from each well and the fluorescence intensity was quantified
using a microplate reader (Varioskan Flash, Thermo Scientific, Waltham, MA, USA), λex = 535 nm and
λem = 590 nm. Cell viability is expressed as the fluorescence intensity of experimental wells normalized
to respective values of control wells (cells only).
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2.5. In Vitro BMP-2 Bioactivity Assay

In vitro BMP-2 bioactivity assay was performed as follows: Second passage MSCs (5 × 105 cells)
were seeded in 0.5 mL of RPMI medium in each well (24-well plates) and allowed to attach
for 12 h, followed by rinsing the wells twice with 0.5 mL of PBS. Subsequently, we introduced
0.5 mL of fresh growth medium containing the following different treatments: (i) empty neat PSiO2,
(ii) empty chemically-modified PSiO2 carriers, (iii) BMP-2-loaded PSiO2 (via physical adsorption),
(iv) BMP-2-loaded PSiO2 (via covalent conjugation), (v) free BMP-2 solution (10 ng mL−1), (vi) free
BMP-2 solution (50 ng mL−1), (vii) free BMP-2 solution (100 ng mL−1) and (viii) control untreated cells.
One PSiO2 sample was introduced in each well, and all experiments were done in triplicates. After
7 days, the PSiO2 samples and the growth medium were replaced with fresh medium containing new
PSiO2 samples (either empty or BMP-2 loaded) or free BMP-2 solutions, as described above, and the
cells were maintained for additional 7 days in a humidified incubator at 37 ◦C containing 5% CO2. After
14 days, ALP activity was evaluated by performing ALP staining using the ab242286 ALP staining kit
(Abcam, Tel Aviv, Israel) according to the manufacturer’s protocol. Briefly, 14 days after induction of
differentiation, the cells were washed with PBS containing 0.05% Tween-20 (Sigma-Aldrich Chemicals,
Rehovot, Israel). Next, cells were fixed by incubation with the kit’s fixing solution for 2 min, followed
by two washes with PBS containing 0.05% Tween-20. The cells were then incubated with the kit’s
staining solution for 30 min and protected from light. Subsequently, the cells were washed twice with
PBS and observed using an inverted light microscope (Nikon TE2000-S; Nikon Corporation, Japan and
Leica DM18; Leica Microsystems, Wetzlar, Germany). Quantitative analysis of the positively-stained
area in every image (n = 5 frames were taken for each well, all experiments were done in triplicates) was
performed using the image processing program Fiji, a distribution of ImageJ (US National Institutes of
Health, Bethesda, MD, USA).

2.6. Integration of the PSiO2 Carriers into a 3D-Printed Scaffold for Critical Size Bone Defects

A defect was created in a mandible of a New Zealand rabbit in accordance with the animal care
and protection. Ethics approval was obtained from the RAMBAM Ethics Committee (approval number:
IL0230218, 20 June 2018). The defect included the whole thickness of the bone and had a diameter of
10 mm to obtain a critical size defect. The implant was designed based on a computerized tomography
(CT) scan of the defect in the animal using a Planmeca ProMax® 3D Max (Planmeca, Helsinki, Finland).
The dicom files were converted into stereolithography (STL) 3D files using Philips IntelliSpace Portal
(Philips, Amsterdam, Netherlands). The scaffold was designed using the Freeform Computer-aided
design (CAD) program (Rock Hill, SC, USA) and included a slot for the PSiO2 carriers in the center of
the scaffold, where two PSiO2 samples were fixed facing different directions. The scaffold was then
printed from polycaprolactone (PCL) using an Ultimaker 2+ printer (Ultimaker, Utrecht, Netherlands).

3. Results

3.1. Fabrication and Chemical Modifications of PSiO2 Carriers

The PSi carriers were prepared by Si anodization at a constant current density of 250 mA
cm−2 for 20 s, followed by thermal oxidation and dicing, as schematically illustrated in Figure 1.
The anodization conditions were adjusted to efficiently accommodate the protein payload within the
porous nanostructure, where BMP-2 has a molecular weight of 25.8 kDa and a diameter of ~4 nm [53,54].
The structure of the resulting oxidized PSi (PSiO2) films was characterized by HRSEM and their
thickness was ~3 µm (Figure 2B) with a typical morphology of interconnecting cylindrical pores of
approximately 40 nm in diameter (Figure 2A). The porosity of the films was determined by gravimetric
studies [51], confirming their high porosity of ~77%. In this work, we studied two routes of protein
loading; namely, physical adsorption and covalent attachment, as schematically illustrated in Figure 1.
For the latter approach, the PSiO2 was first functionalized by amino-silanization (Figure 1Bi), which
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was followed by reaction with succinic anhydride. Subsequently, the BMP-2 protein was conjugated to
the modified PSiO2 carriers via NHS and EDC coupling chemistry, see Figure 1B(iii,iv).
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Figure 1. Schematic illustration of the fabrication of porous silicon (Psi) O2 carriers and subsequent
bone morphogenetic protein (BMP)-2 loading via (A) Physical adsorption, or (B) Covalent attachment.
A thin Si wafer is subjected to anodization at 250 mA cm−2 for 20 s, followed by thermal oxidation at
800 ◦C for 1 h to produce a PSiO2 scaffold. For conjugation of the protein to the carrier, the PSiO2 is
modified using the following steps: (i) Reaction with (3-aminopropyl)triethoxysilane (APTES) to form
an amine-terminated PSiO2; (ii) Introduction of succinic anhydride to yield a carboxylated surface;
(iii) Carboxyl groups are activated into a reactive N-hydroxysulfosuccinimide sodium salt (NHS) ester
intermediates by ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC) and NHS; (iv) Conjugation
of BMP-2 is carried out through reaction of its primary amines with the amine-reactive NHS esters
(note that the schematics are not drawn to scale).

The chemical functionalization on the PSiO2 surface was investigated using ATR-FTIR spectroscopy
and the results are presented in Figure 2C. The neat PSiO2 exhibits a characteristic Si−H vibrating mode
at 769 cm−1 and a peak at 1078 cm−1 that is attributed to the Si−O−Si stretching mode (data not shown).
After the silanization step, a peak at 1626 cm−1 is observed, ascribed to the bending of the primary
amines (Figure 2C(ii)) [51,55]. Following the modification with succinic anhydride, the spectrum
shows two strong bands at 1551 and 1628 cm−1, see Figure 2C(iii), which are attributed to amide II
and amide I bonds, respectively [51,55]. In addition, a peak at 1403 cm−1 is detected, assigned to
the C−O stretching and O−H deformation vibrations of the carboxylic acid groups [56]. EDC/NHS
coupling results in typical peaks at 1733 and 1778 cm−1, ascribed to the asymmetric and symmetric
stretching bands of succinimidyl ester, respectively (Figure 2C(iv)) [51,55]. Following introduction of
BMP-2, see Figure 2C(v), characteristic amide bands of proteins are observed at 1633 cm−1 (amide I)
and 1553 cm−1 (amide II) [57].
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Figure 2. Characterization of the PSiO2 carriers by electron microscopy and ATR-FTIR spectroscopy.
(A,B) Top-view and cross-section micrographs of a typical PSiO2 film etched at a current density of
250 mA cm−2 for 20 s. (C) ATR-FTIR spectra of PSiO2 following the different chemical modification
steps performed for covalent conjugation of BMP-2: (i) Neat PSiO2; (ii) Amine-terminated surface
after silanization with APTES; (iii) Carboxylated surface after modification with succinic anhydride;
(iv) EDC/NHS activated surface; (v) BMP-2-conjugated PSiO2.

3.2. BMP-2 Loading and Release from PSiO2 Carriers

In this work, BMP-2 was loaded into the PSiO2 carriers by either physical adsorption or covalent
attachment to the porous matrix. In the first method, the protein solution was allowed to infiltrate
into the porous nanostructure and adsorption of the positively-charged BMP-2 molecules [3] to the
negatively-charged PSiO2 surface is induced by favorable electrostatic interactions [36,38]. In the
second approach, the BMP-2 protein was conjugated to the PSiO2 surface via EDC/NHS coupling
chemistry, as illustrated in Figure 1B. Next, protein loading was quantified using a BMP-2 ELISA kit.
Averaged protein content of 321 ± 18 ng and 167 ± 15 ng were achieved via physical adsorption and
conjugation, respectively, corresponding to loading efficacy values of 82% and 43% (w/w). Release
studies were performed in PBS (pH 7.4) at 37 ◦C under sink conditions, where every two days aliquots
were sampled and replaced with fresh PBS and the amount of BMP-2 released from the carriers was
quantified using a BMP-2 ELISA kit. Figure 3A presents the BMP-2 release profile throughout a period
of 35 days from the loaded PSiO2 carriers in terms of accumulative percentage (see Figure S1 for the
corresponding mass of released BMP-2). Both PSiO2 carriers exhibit a sustained release of BMP-2,
without a burst effect, over a period of ~1 month, regardless of the loading method. Figure 3B presents
the attained accumulative BMP-2 release values in comparison to the respective loading value for both
loading methods. The release kinetics observed for both loading methods is similar throughout the
studied period. Yet, when BMP-2 was loaded via physical adsorption, only 46% of the protein was
found to be released over a one-month period; whereas, in the case of the conjugated protein, 63% of
the loaded BMP-2 was released, see Figure 3B. This behavior is clearly observed from day 4 of the
study (Figure 3A) and is consistent throughout the consecutive weeks.
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3.3. Cell Viability Studies for Proving the Biocompatibility of the PSiO2 Carriers.

The in vitro cytotoxic effect of the PSiO2 carriers was studied by their incubation with rabbit bone
marrow mesenchymal stem cells (BM-MSCs). The cells were incubated with empty and BMP-2-loaded
PSiO2 carriers, or supplemented with free BMP-2 (50 ng mL−1). Viability was quantified on days 1,
3 and 6 (post incubation) using the Alamar Blue™ assay and the results are summarized in Figure 4
and are normalized to cell viability values of the control untreated BM-MSCs. For all tested groups,
the average relative cell viability was above 90% and no cytotoxic effect was observed. No significant
differences were found between BM-MSCs cultured with neat and BMP-2-loaded PSiO2 carriers, as well
as cells supplemented with free BMP-2 solution (as control). Thus, demonstrating the biocompatibility
of the different carriers with the studied cells. It should be noted that previous studies suggested that
resazurin-based viability assays (e.g., Presto Blue™ and Alamar Blue™) may be incompatible with PSi
due to possible non-specific reduction of the dye by the Si and its degradation products [58]. Therefore,
to assure the assay reliability, the PSiO2 carriers were removed and the cells were thoroughly washed
with PBS prior to introduction of the Alamar Blue™ solution [59].
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Figure 4. Cell viability of BM-MSCs grown with different PSiO2 carriers. The cells were cultured
under one of the following conditions: (i) BMP-2-loaded PSiO2 carriers which were loaded via physical
adsorption or covalent conjugation; (ii) Empty PSiO2 carriers (both neat PSiO2 and chemically-modified
PSiO2 carriers); (iii) Supplementation of free BMP-2 solution at a concentration of 50 ng mL−1. Viability
was tested on days 1, 3 and 6. The results are normalized to control untreated BM-MSCs and are
presented as relative viability. Cell viability was determined by the Alamar Blue™ assay (n = 3).
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3.4. Evaluation of the Bioactivity of the Released BMP-2

To evaluate if the BMP-2 released from the PSiO2 carriers has retained its bioactivity, we examined
its ability to induce osteogenic differentiation of BM-MSCs into osteoblasts in vitro compared to that
of free BMP-2 supplementation. Two weeks after the exposure of BM-MSCs to BMP-2-loaded PSiO2

carriers or to different concentrations of free BMP-2 (10, 50, 100 ng mL−1), the bioactivity of BMP-2, using
osteogenic differentiation assessment, was evaluated by monitoring the enzyme alkaline phosphatase
(ALP) activity, which is considered as one of the most commonly used markers of osteogenesis [60,61].
Fourteen days after induction of differentiation, cells were ALP-stained and observed under a light
microscope. Figure 5A shows representative micrographs of the stained cells grown in the presence of
BMP-2 loaded PSiO2 carriers in comparison to BM-MSCs cultured with empty carriers or supplemented
with free BMP-2 solution (control untreated cells are also presented for reference). A strong red staining
is observed for both cells grown with the BMP-2 loaded carriers (Figure 5A-i,iii) and supplemented
with free BMP-2 (Figure 5A-v). A negligible number of stained BM-MSCs are observed in the control
untreated cells. Notably, stained BM-MSCs are also observed when grown with empty PSiO2 carriers
(Figure 5A-ii,iv), suggesting some degree of osteogenic differentiation. Representative micrographs of
the stained cells at a higher magnification are presented in Figure S2.

Using image analysis software, the positively-stained areas were quantified and the results are
summarized in Figure 5B. BM-MSCs cultured with BMP-2 loaded PSiO2 carriers (via both physical
adsorption and covalent attachment) exhibit relatively high ALP activity, which is significantly higher
than that achieved for treatment with free BMP-2 at concentration of 10 ng mL−1 (Figure 5B). The extent
of ALP activity obtained with the loaded PSiO2 carriers was equipotent to that obtained with free
BMP-2 treatment at concentrations of 50–100 ng mL−1. Namely, the BMP-2 released from the PSiO2

carriers was found to exhibit at least the same biological activity compared to that of free BMP-2
(or higher, depending on the applied free BMP-2 concentration), indicating that it has retained its
bioactivity upon entrapment and release from the PSiO2 carriers. Importantly, MSCs cultured with
empty PSiO2 carriers also demonstrated some extent of ALP activity, which was significantly higher
than that of the control untreated cells (Figure 5B).
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Figure 5. ALP staining of differentiated BM-MSCs after 14 days. (A) Representative light micrographs
of cells exposed to (i) BMP-2-loaded PSiO2 carriers via physical adsorption, (ii) Empty PSiO2 carriers,
(iii) BMP-2-loaded PSiO2 carriers via covalent conjugation, (iv) Empty chemically-modified PSiO2

carriers, (v) Free BMP-2 solution (100 ng mL−1) and (vi) no treatment (control, cells only). Scale
bar = 100 µm. (B) Quantitative analysis of ALP activity, expressed as the average positively stained
areas for each condition tested, *** indicates p ≤ 0.005.

3.5. Integration of the PSiO2 Carriers into a 3D-Printed Scaffold for Critical Size Bone Defects

A nonhealing 10 mm full-thickness cylindrical defect was performed in a rabbit mandible.
This defect removes both cortical plates and the intervening trabecular bone and tooth roots. Based
on a CT scan of the mandible and using CAD software, a 3D model of the rabbit defected mandible
was created. A customized graft, composed of a 10 mm round mesh, was designed, as shown in
Figure 6A. The mesh is secured to the remaining bone using a solid bar (Figure 6A). Figure 6B presents
the customized mesh graft, which is 10 mm in diameter and is comprised of square 500 µm pores and
300 µm-thick walls. An insert for the PSiO2 carriers (7 mm × 3 mm) is designed in the center of the
mesh to accommodate two PSiO2 carriers facing opposite directions (Figure 6B). The customized graft
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was manufactured form poly(caprolactone) (PCL) by a 3D printer with a precision extruder deposition
head (nozzle size 200 µm) system. Next, the PSiO2 carriers were incorporated within the PCL mesh
and the integrated graft is shown in Figure 6C.
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Figure 6. Design of the 3D printed scaffold for critical size bone defects. (A) 3D scanned rabbit mandible
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desired mesh (diameter of 10 mm) with an insert in its center to accommodate the PSiO2 carriers.
(C) The 3D-printed PCL mesh containing the 7 mm × 3 mm PSiO2 carrier.

4. Discussion

4.1. BMP-2 Loading and Release from PSiO2 Carriers

The two most common approaches for loading molecular payloads into PSi carriers are physical
adsorption or covalent attachment of the drug molecules to the Si scaffold using a variety of different
convenient surface chemistries available [62–64]. In the latter method, the drug cargo is only released
when the covalent bonds are broken or when the supporting PSi is degraded [65]. In this work,
the loading of BMP-2 to the PSiO2 carriers was studied by both physical adsorption and covalent
attachment to the porous matrix using silanization and carbodiimide coupling chemistry, as shown in
Figure 1. For physical adsorption, as the BMP is positively-charged in aqueous media [3], electrostatic
interactions between the protein and the negatively-charged PSiO2 surface are highly favorable for
efficient loading [34–39]. When comparing the loading of BMP-2 using these two methods, we find
that physical adsorption of the protein results in a significantly higher loading capacity compared
to the covalent conjugation method (Figure 3B). In fact, the amount of BMP-2 entrapped within the
carriers that were loaded via physical adsorption was almost double than the values achieved by
covalent attachment. This behavior is attributed to the fundamental differences between these two
methods. In covalent attachment, the cargo load is controlled by the density of the grafted linkers and
the subsequent conjugation reaction yield within the nanostructured pores, which is also affected by
hindered diffusion of the protein macromolecules. Moreover, the payload conjugation requires surface
functionalization of the porous scaffold which in turn results in a reduced available pore volume [66].
Thus, the loading capacity (for a given loading solution) in this loading method is inevitably lower than
that achieved by non-covalent loading techniques, such as the physical adsorption method [67–69].
In addition, possible denaturation of the sensitive protein molecules during conjugation can also
account for the lower measured (quantified by ELISA) amount of BMP-2 loaded for the covalent
attachment. Specifically, it is suggested that the abundance of primary amines in the side chain of
lysine residues and the N-terminus of BMP-2, serving as targets for the NHS/EDC reagents, can lead to
increased heterogeneity and restricted conformational flexibility due to multipoint attachment on the
modified PSiO2 surface, favoring protein denaturation [70]. Importantly, the amount of loaded BMP-2
for both loading methods investigated in the present study correlates to clinically-relevant dose for
in vitro induction of osteogenic differentiation [71–73].

The BMP-2-loaded PSiO2 carriers exhibit a sustained release of BMP-2 over a period of
35 days (Figure 3A). The prolonged release span reported here is longer than that achieved in
other BMP-2 delivery systems that are based on silica nanotube meshes [74], carbon nanoparticles [75],
composite poly(L-lactic-co-glycolic acid) and mesoporous silica membranes [76], as well as
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poly(L-lysine)/hyaluronan films [77]. As already pointed out, one of the main challenges in the
delivery of BMP-2 is its rapid clearance rate [2,7]. Thus, the capability of the PSiO2 carriers to sustain
the release of the protein for several weeks, while localizing its administration to the injured site,
is highly advantageous.

When comparing the release behavior from the loaded PSiO2 carriers, we found that carriers
loaded via the covalent conjugation method exhibit higher percentage of released BMP-2, out of the
total amount loaded, than that achieved via the physical adsorption method, see Figure 3B. This result
may suggest that in the present case, the conjugation process actually stabilize the protein [78], while
other effects such as the solubility of the protein conjugates (to Si moieties) cannot be excluded.

4.2. Cell Viability and Bioactivity of the Released BMP-2

The in vitro cytotoxicity of the PSiO2 carriers, BMP-2-loaded and empty, was studied by their
incubation with BM-MSCs cultures. These multipotent cells are the progenitor cells for osteoblasts,
adipocytes, and chondrocytes and are widely used in the field of bone regeneration to study osteogenic
differentiation [79–81]. The results presented in Figure 4 show no cytotoxic effect for both empty and
BMP-2-loaded PSiO2 carriers. The viability of the BM-MSCs was comparable to that of the untreated
cells, as well as to that of cells supplemented with free BMP-2 solution. Thus, confirming that the
PSiO2 carriers are biocompatible with rabbit MSCs, in agreement with previous studies with these
cells [29,82,83].

To confirm that the entrapment of BMP-2 within the PSiO2 carriers via either physical adsorption
or covalent conjugation did not impede the bioactivity of the protein, we examined the ability of
the released growth factor to induce osteogenic differentiation of rabbit BM-MSCs into osteoblasts
compared to that of free BMP-2. It is well-established that when cultured in osteogenic media, MSCs
tend to express markers which are characteristic of bone forming osteoblasts. BMPs are the most potent
inducers of osteoblastic differentiation [84] and they are known to stimulate the primary signal for
the differentiation of non-committed pluripotent cells into mineral-depositing osteoblasts [85]. Local
administration of BMPs induces bone regeneration process. In vitro, osteogenic differentiation occurs
throughout a period of 1 month. During the first two weeks, downregulation of DNA replication
occurs and the cells begin to express osteoblast markers, mainly the enzyme ALP [86]. ALP plays an
important role in the degradation of inorganic pyrophosphate, providing sufficient local concentration
of phosphate or inorganic pyrophosphate required for mineralization. Therefore, ALP is commonly
used as osteogenic differentiation marker, representing the degree of osteogenic differentiation [60,61].
Thus, we have exposed the BM-MSCs to the BMP-2 loaded PSiO2 carriers or to different free BMP-2
concentrations and ALP activity was measured 14 days later. We found that BMP-2 released from the
PSiO2 carriers (regardless of the loading method) has retained its bioactivity and induced significant
osteogenic differentiation, equivalent to that achieved by free BMP-2 solutions at concentrations
of 50–100 ng mL−1, see Figure 5B. Remarkably, the empty PSiO2 carriers have also demonstrated
some degree of differentiation, with an ALP activity which was significantly higher than the control
untreated MSCs. We ascribe this behavior to the release of silicic acid moieties, during the erosion
of the porous scaffold, into the culture media. Orthosilicic acid was already reported to stimulate
osteoblast differentiation in vitro by upregulating microRNA-146a to antagonize NF-κB activation [33].
It has also been suggested that Si plays an important role in the expression of ALP [24]. In addition,
Hing et al. [26]. have shown that incorporation of Si in porous hydroxyapatite implants is beneficial
for early bone repair and new bone deposition. Thus, by enhancing osteogenic differentiation of MSCs,
the combination of PSi and BMPs offers an interesting perspective for bone reparation and regeneration.

4.3. Integration of the PSiO2 Carriers into a 3D-Printed Scaffold for Critical Size Bone Defects

A critical size defect is an ideal model for testing bone regeneration platforms. Geometry of a 10 mm
cylindrical defect was chosen for this study as it is easily accessible and reproducible [87]. A customized
graft was designed to fit this critical size defect created in the rabbit mandible, comprised of square
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500 µm pores and 300 µm-thick walls (Figure 6A). One of the most important characteristics of the
scaffold is a high interconnected porosity to enable vascularization for nutrient and gas diffusion, which
permits waste disposal [25,88,89]. Smaller pore sizes (< 200 µm) have been shown to result in a limited
bone formation due to insufficient accessible pore volume, limited oxygen diffusion, and vascular
invasion. A pore size of 500 µm is considered as an effective scaffold pore size which enables increased
oxygen diffusion, pre-osteoblast cell infiltration, proliferation, and survival throughout the entire
scaffold [90,91]. As the role of the PSiO2 is to provide a reservoir for the sustained delivery of
the BMP-2 protein, we have localized the PSiO2 carriers in the center of the defect facing opposite
directions (Figure 6C) to allow for optimal spatial distribution of the released protein in vivo. PCL
was chosen as the printing material as it is a thermoplastic biocompatible material, with mechanical
properties that resemble those of a trabecular bone, and thus would be sufficient to withstand the
physiological forces of mastication. This polymer is characterized by a relatively slow degradation
rate of 3–6 months [92–95] and thus can maintain physical integrity for primary stability in cases of
large deficiencies.

In summary, utilizing PSi-based delivery systems for local administration of osteoinductive
growth factors and their integration within biodegradable osteoinductive implants opens up great
possibilities for efficient bone-regeneration therapies. Our current work is focused on studying the
therapeutic efficacy of the integrated grafts in vivo.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4923/11/11/602/s1,
Figure S1: BMP-2 release from PSiO2 carriers that were loaded by physical adsorption vs. covalent attachment of
the protein, expressed as the accumulative BMP-2 mass released over time. Figure S2: ALP staining of differentiated
BM-MSCs after 14 days. Representative light micrographs of cells exposed to (i) BMP-2-loaded PSiO2 carriers
via physical adsorption, (ii) BMP-2-loaded PSiO2 carriers via covalent conjugation, (iii) Empty PSiO2 carriers,
(iv) empty chemically-modified PSiO2 carriers, (v) Free BMP-2 solution (100 ng mL−1) and (vi) No treatment
(control, cells only). Scale bar = 75 µm.
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