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Abstract: Lung ultrasound (LUS) is an accurate thoracic imaging technique distinguished by its
handheld size, low-cost, and lack of radiation. User dependence and poor access to training have
limited the impact and dissemination of LUS outside of acute care hospital environments. Automated
interpretation of LUS using deep learning can overcome these barriers by increasing accuracy while
allowing point-of-care use by non-experts. In this multicenter study, we seek to automate the clinically
vital distinction between A line (normal parenchyma) and B line (abnormal parenchyma) on LUS by
training a customized neural network using 272,891 labelled LUS images. After external validation
on 23,393 frames, pragmatic clinical application at the clip level was performed on 1162 videos. The
trained classifier demonstrated an area under the receiver operating curve (AUC) of 0.96 (±0.02)
through 10-fold cross-validation on local frames and an AUC of 0.93 on the external validation
dataset. Clip-level inference yielded sensitivities and specificities of 90% and 92% (local) and 83% and
82% (external), respectively, for detecting the B line pattern. This study demonstrates accurate deep-
learning-enabled LUS interpretation between normal and abnormal lung parenchyma on ultrasound
frames while rendering diagnostically important sensitivity and specificity at the video clip level.

Keywords: deep learning; ultrasound; lung ultrasound; artificial intelligence; automation; imaging

1. Introduction

Lung ultrasound (LUS) is a versatile thoracic imaging method that offers the diag-
nostic accuracy of a CT scan for many common clinical findings, with all the advantages
of portable, handheld technology [1–4]. Since recent reports have highlighted that the
potential for LUS dissemination is near-limitless, for example, primary care, community
settings, developing countries, and outer space [5–7], accordingly, it has been praised as a
worthy upgrade to auscultation [8]. With experts in its use in persistent short supply [9–12],
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solutions for automating the interpretation of LUS form the most probable method to
ensure maximal access to the unique offerings of this technique.

One of the most popular automation techniques for imaging is deep learning (DL),
which has been applied to a wide variety of imaging including retinal fundal photographs,
echocardiography, computed tomography (CT), and chest radiographs for identification
of diabetic retinopathy, cardiac structure and function, COVID-19, and pulmonary nod-
ules [13–16]. The diagnostic accuracy of DL for diagnosis of respiratory disease using chest
radiograph or CT has been extensively studied [17] and proven to be highly effective. As
in other imaging techniques, the use of DL to construct computer vision classifiers for
automated interpretation can be relied on to accelerate access to the benefits of LUS.

However, DL work with LUS is immature due to small, poorly labelled datasets arising
from the point-of-care, rather than diagnostic, workflow of LUS that is less amenable to
archiving and formal reporting. The current LUS literature has been limited to COVID-19
applications [18–20] and small datasets [21,22]; the largest study, to date, utilized 400 unique
clips further split into subclips to augment data, and lacked generalizability as data was
sourced from a single institution. In addition, these studies did not capture the metadata of
ultrasound clips, such as machine and probe characteristics, which can serve as information
for feature and error analysis. These would provide insight to inform targeted data
collection and model re-training to further improve the generalizability of a DL model.

With the goal of increasing accessibility, aiding widespread deployment, and enhanc-
ing the efficiency of LUS application in clinical settings, our work applies DL techniques to
LUS interpretation, beginning with clinically identifiable features. The distinction between
A lines (normal aeration [23]) and B lines (alveolar-interstitial syndrome [24]) on LUS is
clinically important, forming the backbone of multiple clinical decision trees for real-time
respiratory diagnoses and treatment choices [4,25–29]. As such, a DL solution for this task
would be highly appropriate for an automated LUS interpretation strategy. Employing
a large archive of well-labelled, local LUS images for DL training as well as an external
dataset for validation, we sought to develop a robust, generalizable deep learning solution
to address the binary distinction between A lines and B lines with LUS.

In the proposed two-part DL solution presented in this paper, first, we develop a
frame-based, A line vs. B line classifier with multicenter LUS still frames. Following this,
approximating the continuous nature of how clinicians perceive and interpret LUS, the
diagnostic performance of this classifier against multicenter LUS clips is studied. With a
focus on sensitivity and specificity, we characterize how these diagnostic parameters may
be maximized as well as selectively prioritized to suit varying clinical environments where
automated LUS might be considered.

2. Methods
2.1. Dataset Curation and Labelling
2.1.1. Local Data

Using our institutional point-of-care ultrasound database (Qpath E, Port Coquitlam,
BC, Canada), all LUS exams archived from all clinical environments since 2012 were down-
loaded to a local drive in mp4 format. Due to the large volume of data (over 120,000 LUS
clips), our dataset for this project was a subset of LUS studies whose size was determined
by the labelling workflow (see below) and the timeline of this project. Figure 1 outlines the
study workflow.
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Figure 1. Flowchart of dataset creation, labelling, data allocation, and model training used in
the study.

2.1.2. External Data

Exams labelled as LUS studies within the University of Ottawa ultrasound archiv-
ing system (Qpath, Port Coquitlam, BC, Canada) were exported from 50 patients to a
shared drive.

2.1.3. Data Labelling

LUS clips were uploaded to an online platform (Labelbox, San Francisco, CA, USA)
for vetting and labelling. Clips that had text over the image, cardiac structures in view, or
included abdominal organs and/or the diaphragm (pleural views) were excluded from
this analysis. All other clips were labelled with either an A line or a B line identity. The B
line label contained the following 3 sublabels: (1) mild, fewer than 3 B lines; (2) moderate,
occupying less than 50% of the pleural line; and (3) severe, occupying >50% of the pleural
line. The clip-level B line label was additionally stratified as either homogeneous (all frames
of the clip contained B lines) or heterogeneous (B lines seen in some frames but not others,
coming in and out of view with tidal respiration). This distinction would allow homoge-
neous clips to be the source of the frame-based data for our classifier training, because the
overall clip label (“B lines”) was valid across all individual frames. Heterogeneous B line
clips would be used in clip-level inference and validation, as outlined below. See Figure 2
and Videos S1–S5 in Supplementary Materials for examples of each label.

Local data labels were generated by clinical members of our team (labelling training
methods in Table S1 in the Supplementary Materials) and reviewed by an expert in LUS
(R.A.), while external data were subjected to dual expert (R.A. and S.M.), independent,
blinded labelling. This latter approach was taken given the importance of external data
serving as a validation set.

2.2. Experimental Setup
2.2.1. Frame-Based Data

All local homogeneous A or B line clips labelled prior to 15 May 2021 were used for
frame-based classifier training and validation. Locally, 723 homogenous A line clips and
353 homogenous B line clips met criteria. The external data yielded 92 homogenous A
line clips and 108 homogenous B line clips. Table 1 provides further dataset details while
Figure 3 offers a schematic representation of our data volumes and how they were used.
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Figure 2. Still image representations of the various lung ultrasound artifacts, severity and heterogeneity applied as labels to
our data: (A) A-line pattern (normal lung) class; (B) fewer than 3 B lines class; (C) moderate B line class; (D) severe B line
class; (E) 2 frames showing heterogeneity within the same clip with A lines (E-1) followed by moderate B lines (E-2) sliding
in to view.
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Figure 3. Schematic breakdown of the data sources, data volume, hetero/homogeneity, and how data were allocated
in our frame-based classifier development and clip-based clinical metric. For the frame-based classifier, the number
of clips used for the training, validation, and test sets are presented as the mean ± standard deviation of the ten-fold
cross-validation partitions.
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Table 1. Homogeneous ultrasound data characteristics used for frame-based classifier training and validation. ED,
emergency department; ICU, intensive care unit.

Local Data External Data

Clip Label A lines (normal class) B lines (abnormal class) A lines (normal class) B lines (abnormal class)

Patients 253 155 40 32

Frames 186,772 86,119 10,806 12,587

# of clips 723 353 92 108

Average clips per patient 2.86 2.28 2.3 3.375

Female sex/total 84/253 66/155 12/40 8/32

Unknown gender 19 7 6 8

Mean age (STD) 63.23 (17.17) 66.76 (16.11) 62.26 (16.72) 66.5 (11.51)

Machine Vendors Sonosite: 721
Mindray: 2 Sonosite: 353 Philips: 62

SonoSite: 30
Philips: 37

SonoSite: 71

Transducers
Phased array: 596
Curved linear: 119

Linear: 8

Phased array: 319
Curved linear: 30

Linear: 4

Phased array: 46
Curved linear: 22

Linear: 24

Phased array: 66
Curved linear: 23

Linear: 19

Imaging Preset

Abdominal: 671
Lung: 33

Vascular: 4
Cardiac: 15

Abdominal: 309
Lung: 20

Cardiac: 14
Obstetrical: 7

Other: 3

Abdominal: 10
Lung: 35

Cardiac: 26
Nerve: 8
FAST: 7

Vascular: 6

Abdominal: 11
Lung: 20

Cardiac: 55
Nerve:1
FAST: 4

Superficial: 3
Vascular: 14

Location (by patient)
ICU: 166
ED: 82

Ward: 5

ICU: 124
ED: 26

Ward: 5

ICU: 21
ED: 14

Ward: 5

ICU: 19
ED: 6

Ward: 7

Depth (STD, cm) 11.56 (3.48) 12.50 (3.43) 11.28 (4.64) 11.13 (3.88)

2.2.2. Clip-Based Inference Data

The local clip inference data were generated from a combination of all heterogeneous
A or B line data clips and all homogeneous clips generated from our labelling team after the
frame-based classifier was already trained, thus, avoiding data leakage between the frame-
based training data and clip-inference data (as this may inflate performance). Locally, there
were 523 A line clips and 350 B line clips. Among the B line clips, 153 were heterogeneous.
The external clip inference dataset was screened similarly yielding 92 A line clips and 197 B
line clips. Among the B line clips, 89 were heterogeneous. Details regarding these datasets
are in Table 2.

2.2.3. Dataset Split

Prior to a training experiment, the dataset was randomly split into training, validation,
and test sets by patient ID. Therefore, all the clips obtained from each unique patient were
confined to a single set (i.e., training, validation, or test) without overlap. A summary of
the split used in K-fold cross-validation are outlined in Table 3.
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Table 2. Data characteristics for clip-based inference ultrasound clips. ED, emergency department; ICU, intensive care unit.

Local Data External Data

Clip Label A lines (normal class) B lines (abnormal class) A lines (normal class) B lines (abnormal class)

Patients 156 120 40 49

Clips 523 350 92 197

Average clips per patient 2.35 1.92 2.30 4.02

Heterogeneous 153/873 89/289

Female sex/total 96/151 55/118 13/40 16/49

Unknown gender 5 2 5 8

Mean age (STD) 59.92 (17.19) 64.19 (16.84) 62.51 (16.54) 65.29 (13.65)

Machine Vendors
SonoSite: 516
Mindray: 4
Philips: 3

SonoSite: 349
Philips: 1

Philips: 62
Sonosite: 30

Philips: 90
Sonosite: 107

Transducers
Phased array: 448
Curved linear: 67

Linear: 8

Phased array: 308
Curved linear: 33

Linear: 9

Phased array: 46
Curved linear: 22

Linear: 24

Phased array:127
Curved linear:43

Linear: 27

Imaging preset

Abdominal: 463
Cardiac: 21

Lung: 33
MSK: 1

Vascular: 6

Abdominal: 312
Cardiac: 11

Lung: 25
Vascular: 2

Abdominal: 10
Cardiac: 26

FAST: 7
Lung: 35
Nerve: 8

Vascular: 6

Abdominal: 25
Cardiac: 96

FAST: 7
Lung: 46
Nerve: 5

Superficial: 4
Vascular: 14

Location (by patient)
ICU: 100
ED: 46

Ward: 10

ICU: 88
ED: 24

Ward: 8

ICU: 21
ED: 14

Ward: 5

ICU: 28
ED: 13

Ward: 8

Depth (STD, cm) 11.77 (3.48) 12.66 (3.47) 11.28 (4.64) 11.83 (4.02)

Table 3. K-fold cross-validation experiment data distribution averages and standard deviations across all folds (full results
are provided in the Supplementary Materials and Table S4).

Class
Train Validation Test

Patients Clips Frames Patients Clips Frames Patients Clips Frames

A-Lines 202.1
(2.85)

575.4
(11.37)

147,880.8
(2814.89) 25.6 (2.07) 75.3 (9.29) 20,214

(2531.16) 25.3 (2.98) 72.3
(10.54)

18,677.22
(3345.67)

B-Lines 127.2
(3.48)

294.4
(12.48)

71,675.3
(3253.45) 12.3 (1.57) 24.2 (5.73) 5831.8

(1579.64) 15.5 (3.06) 35.4 (9.85) 8611.9
(2511.11)

2.2.4. Data Preprocessing

All ultrasound clips were deconstructed into their constituent frames. Following
this, the frames were scrubbed of all on-screen information (e.g., vendor logos, battery
indicators, index mark, and depth markers) extraneous to the ultrasound beam itself (see
Figure 4). This was done using a dedicated deep learning masking software for ultrasound
(AutoMask, WaveBase Inc., Waterloo, ON, Canada).
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Figure 4. Masking of native ultrasound image (A) resulting in a frame consisting of only the ultrasound image without
extraneous screen markings (B).

Transformations were stochastically applied to training batches as a means of data
augmentation. Possible transformations included rotation up to 45◦ clockwise or counter-
clockwise, vertical or horizontal width shifting up to 10%, magnification up to 10% inwards
or outwards, shear up to 10◦ counterclockwise, horizontal reflection and brightness in-
crease/decrease up to 30%. These methods were applied to increase the heterogeneity of
the training dataset because, despite a large quantity of frames, the number of distinct clips
and individual patients was comparatively lower.

2.3. Frame-Based Deep Learning Classifier
Model Architecture

After iterative experiments with a subset of our data on feedforward convolutional
neural networks (CNNs), residual CNNs, and benchmark CNN architectures pretrained on
ImageNet [30], we chose a model comprised of the first 3 blocks of VGG16 as our network
architecture (Figure 5, Table S2 in the Supplementary Materials) [31]. This architecture
exploits the pretrained, earlier layers of VGG16 for low-level features (e.g., edges and lines),
while avoiding more sophisticated feature detection is likely unhelpful to interpreting
lower complexity LUS images. Additionally, this approach afforded a lighter computa-
tional demand and may be less prone to overfitting the training data than the full VGG16
architecture.
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The model’s prediction is a probability distribution indicating its confidence that an
input lung ultrasound frame exhibits A lines or B lines. We elected to focus on frame-based
predictions, as single LUS frames are able to convey A vs. B line patterns and represent the
building block unit of clips. Therefore, a classifier at the frame level has the greatest agility
to be applied to clips of varying compositions as is typical of point-of-care imaging.

The prediction for a single frame is the probability distribution p = [pA, pB] obtained
from the output of the softmax final layer, and the predicted class is the one with the
greatest probability (i.e., argmax(p)) (full details of the classifier training and evaluation
are provided in the Methods section, Table S3 of the Supplementary Materials).

2.4. Clip-Based Clinical Metric

As LUS is not experienced and interpreted by clinicians in a static, frame-based fashion,
but rather in a dynamic (series of frames/video clip) fashion, mapping the classifier
performance against clips offers the most realistic appraisal of eventual clinical utility.
Regarding this inference as a kind of diagnostic test, sensitivity and specificity formed the
basis of our performance evaluation [32].

We considered and applied multiple approaches to evaluate and maximize perfor-
mance of a frame-based classifier at the clip level. For clips where the ground truth is
homogeneously represented across all frames (e.g., a series of all A line frames or a series
of all B line frames), a clip averaging method would be most appropriate. However, with
many LUS clips having heterogeneous findings (where the pathological B lines come in
and out of view and the majority of the frames show A lines), clip averaging would lead to
a falsely negative prediction of a normal/A line lung (see the Supplementary Materials for
the methods and results—Figures S1–S4 and Table S6 of clip averaging on our dataset).

To address this heterogeneity problem, we devised a novel clip classification algorithm
which received the model’s frame-based predictions as input. Under this classification
strategy, a clip is considered to contain B lines if there is at least one instance of τ contiguous
frames for which the model predicted B lines. The two hyperparameters defining this
approach are defined as follows:

Classification threshold (t) The minimum prediction probability for B lines required
to identify the frame’s predicted class as B lines.

Contiguity threshold (τ) The minimum number of consecutive frames for which the
predicted class is B lines.

Equation (1) formally expresses how the clip’s predicted class ŷ ∈ {0, 1} is obtained
under this strategy, given the set of frame-wise prediction probabilities for the B line
class, PB =

{
pB1 , pB2 , . . . , pBn

}
, for an n-frame clip. Further details regarding the advan-

tages of this algorithm are in the Methods section of the Supplementary Materials.
Equation (1):

ŷ= 1∨n−τ+1
i=1 [∧j+τ−1

j=i [pBj
≥t]]

(PB) (1)

We carried out a series of validation experiments on unseen internal and external
datasets, varying both of these thresholds. The resultant metrics guided the subsequent
exploration of the clinical utility of this algorithm.

2.5. Explainability

We applied the Grad-CAM method [33] to visualize which components of the input
image were most contributory to the model’s predictions. The results are conveyed by
color on a heatmap, overlaid on the original input images. Blue and red regions correspond
to the highest and lowest prediction importance, respectively.

3. Results
3.1. Frame-Based Performance and K-Fold Cross-Validation

Our K-fold cross-validation yielded a mean area under (AUC) the receiver operating
curve of 0.964 for the frame-based classifier on our local data (Figure 6, Panel A). The
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confusion matrix of frame-wise predictions exhibits a strong diagonal pattern (Figure 6,
Panel B). A summary of the results is shown in Table 4 (full results in Table S5 in the
Supplementary Materials).
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Figure 6. Receiver-operator characteristic curves and confusion matrices for the local (A,B) and external (C,D) data. (A)
AUC of the k-fold validation internally gave an average of 0.96 (±0.02) with the corresponding confusion matrix results in
(B); (C) AUC of the frame-based inference on the external data with our trained classifier yielded an AUC of 0.926 with the
corresponding confusion matrix in (D).

Table 4. Summary metrics for a 10-fold cross-validation experiment on our local data and the external data inference.

Data
Source Metric Accuracy AUC Precision Recall/

Sensitivity F1 Score Specificity

Local Mean 0.921
(SD 0.034)

0.964 (SD
0.964)

0.891
(SD 0.047)

0.858
(SD 0.05)

0.874
(SD 0.044)

0.947
(SD 0.036)

External Value 0.843 0.926 0.886 0.812 0.847 0.878

3.2. Frame-Based Performance on External Data

The AUC obtained from the external data at the frame level was 0.926 (Figure 6,
Panel C). The confusion matrix (Figure 6, Panel D) of frame-wise predictions exhibit a
strong diagonal pattern, supporting the results of the individual class performance.

A summary of the results is shown in Table 4.

3.3. Explainability

The Grad-CAM explainability algorithm was applied to the output from the model
on our local test set data and the external data. Example heatmaps with associated predic-
tions are seen for our internal data and external data in Figures 7 and 8, respectively. The



Diagnostics 2021, 11, 2049 10 of 17

correctly predicted A line frames demonstrate strong activations on the horizontal mark-
ings, indicating the correct areas where a clinician would assess for this specific pattern.
Similarly, there are strong activations along the vertically oriented B lines on the correctly
identified clips for this pattern. The incorrectly predicted frames show activations taking
on a similar morphology for the predicted class (i.e., horizontal shapes for predicted A
lines, vertical shapes for predicted B lines).
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Figure 7. Grad-CAM heatmaps overlying example frames from our local data: (I) Correctly predicted A line frame with
a prediction probability of 0.96; (II) A line frame incorrectly predicted as a B line frame with a prediction probability of
0.69 for B line; (III) B line frame incorrectly predicted as an A line frame with a prediction probability of 0.86 for A line;
(IV) Correctly predicted B line frame with a prediction probability of 1.00.
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Figure 8. Grad-CAM heatmaps overlying example frames from the Ottawa data: (I) Correctly predicted A line frame with
a prediction probability of 0.95; (II) A line frame incorrectly predicted as a B line frame with a prediction probability of
0.99 for B line; (III) B line frame incorrectly predicted as an A line frame with a prediction probability of 0.75 for A line;
(IV) Correctly predicted B line frame with a prediction probability of 1.00.

3.4. Clip-Based Clinical Metric

The relationship of a contiguity threshold (T) from 1 to 40 and/or a frame classification
threshold (t) from 0.5 to 0.9 to diagnostic sensitivity and specificity was fully explored
on both internal and external clip-based inference datasets (Figure 9). In both datasets,
increasing t led to incremental upward translation of the specificity curve with modest
negative translation of the sensitivity curve. With a T > 1 for any given t, specificity was able
to be further augmented with modest reductions in sensitivity. Across all thresholds, peak
diagnostic performance, as determined by optimum combined sensitivity and specificity,
was a t of 0.7 and a T of 3 (sensitivity of 90.0% and specificity of 92.0%) for the internal data,
and a t of 0.8 and a T of 3 (sensitivity of 83.2% and specificity of 81.5%) for the external data.
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Figure 9. Influence of varying the contiguity threshold (T) and the classification threshold (t) across the internal and external
clip-based data. While absolute diagnostic performance (intersection of sensitivity and specificity, dashed line) differed
between the internal and external set, common trends in increasing both T and t were seen. Increases in T at lower levels of
t are useful to increase performance at all levels for external data while this effect plateaus at a t of 0.8 for local data.
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4. Discussion

In this study, we developed a deep learning solution for accurate distinction between
the A line and B line pattern on lung ultrasound. Since this classification, between nor-
mal and abnormal parenchymal patterns, is among the most impactful and well-studied
applications of LUS, our results form an important step toward the automation of LUS
interpretation.

With reliable frame level classification (local AUC of 0.96, external AUC of 0.93)
and explainability figures that show appropriate pixel activation regions, results support
generalized learning of the A line and B line pattern. Clip-level application of this model
was carried out to mimic the more difficult, clinical task of interpreting LUS in a real-time,
continuous fashion at a given location on the chest.

A challenge of classifying B lines at the clip level is to ensure sufficient responsiveness
that low burden B line clips (either because of flickering, heterogeneous frames, or a low
number of B lines) are accurately identified, while still preserving specificity to the classifier.
The thresholding techniques we devised around frame prediction strength and contiguity
of such predictions were successful in addressing this challenge, while also providing
insight into how an A vs. B line classifier may be customized for a variety of clinical
environments. Through adjustment of these thresholds (Figure 9), varying clinical use
cases may be matched with appropriate emphasis on either greater sensitivity or specificity.
Further considerations such as disease prevalence, presence of disease specific risk factors,
and the results and/or availability of ancillary tests and expert oversight would also
influence how automated interpretation should be deployed [34].

Among the many DL approaches to be considered for medical imaging, our frame-
based foundation was chosen deliberately for the advantages it may offer for eventual
real-time automation of LUS interpretation. Larger, three-dimensional or temporal DL
models that might be applied to perform clip-level inference would be too bulky for
eventual front-line deployment on the edge and also lack any semantic clinical knowledge
that our clip-based inference approach is intended to mimic.

The automation of LUS delivery implied by this study may seem futuristic amid
some public trepidation about deploying artificial intelligence (AI) in medicine [35]. Deep
learning solutions for dermatology [36] and for ocular health [37], however, have shown
tolerance exists for non-expert and/or patient-directed assessments of common medical
concerns [38]. As acceptance for AI in medicine grows, automated LUS may be anticipated
to satisfy the consistently exceptional demand for lung imaging [39], especially where
access to standard imaging may not be convenient or possible. The recently announced
reimbursement for DL-enhanced imaging in the United States will, by offsetting the costs
of developing such solutions, accelerate interest in the DL-imaging interface [40]. Beyond
A and B lines, LUS automation priorities can be expected to include lung sliding, pleural ef-
fusion, and consolidation. Additionally, multicenter validation of automated diagnosis [19]
or prognosis [18] with LUS offers promising research avenues.

Real world deployment of a classifier as we have developed will require further
progress before it can be realized. Firstly, since LUS is user dependent, a method of stan-
dardizing acquisition, as has recently been proposed, can only enhance the opportunities
for both DL development and implementation in LUS [41]. Anticipating that technical
standards take significant time to be adopted, however, a more realistic approach may
be to pair automated interpretation with image guidance systems that assure standards
that meet the needs of the image classifier. Such an approach has recently been described
with some success in the domain of AI-assisted echocardiography [42]. The other barrier
to deployment is how to run the DL technology “on the edge” at the patient’s bedside
with a portable machine capable of LUS. Eventual integration of high-performance GPUs
with ultrasound devices will address this; however, in the interim, portable “middleware”
devices capable of interacting directly with ultrasound machines and running AI models
in real time have been developed and are commercially available [43].
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Despite the rarity of DL work with LUS, there have been some recent studies that have
addressed LUS [20–22,44]. These studies, with a wide array of different DL approaches, all
share a non-clinical emphasis and small datasets. Our work differs significantly through
a comparatively much larger LUS data volume from multiple centers, rigorous curation
and labelling methods that resemble reference standards [45], and a pragmatic, clinical
emphasis on diagnostic performance. In addition, while medical DL classifiers have
struggled notoriously with generalization [46,47], our model performed well on an external
dataset with reasonably distinct acquisition features as compared with our data.

There are important limitations to our work. The implicit heterogeneity of point-of-
care data can contribute to unseen learning points for our model that could unduly increase
performance. We have sought to mitigate these effects through rigorous preprocessing
as well as through our K-fold validation methods, external validation, and explainability.
Despite generalizable results against the external data set, a performance gap at the frame
and clip level was seen. False positive B line predictions (B line prediction for ground
truth A line clips, Figure 9, and in Supplementary Materials, Figure S2) provided the
greatest challenge to our model and was driven largely by dataset imbalances relative to
the training data: images generated with either curved linear probe, cardiac preset, or the
Philips machine. This understanding will inform future iterations of this classifier. While
we have designed our classifier as a “normal vs. abnormal” model, there is an opportunity
for greater granularity within the B line class. Features such as subpleural consolidations
and pleural line irregularity [48] were not addressed by this classifier. Combining the
present model with other published models devoted to disease-specific diagnoses within
the B line class seems desirable [19].

5. Conclusions

The information presented here supports an eventual goal of automated LUS through
deep learning. We describe the development of an accurate A vs. B line, frame-based
classifier validated at the clip level. Novel techniques to both maximize and adjust diag-
nostic performance to suit the priorities of differing clinical environments have further
been established. Future work will rely on broader data representation and evaluating the
feasibility and accuracy of real-time clinical deployment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/diagnostics11112049/s1, Figure S1: Effect of A vs. B line class and B line heterogeneity
on B line prediction certainty, Figure S2: Effect of probe type, exam preset, and ultrasound vendor
on A and B line prediction certainties for dataset 3 (external data, including homogenous and
heterogenous clips) at the clip level, Figure S3: Effect of B line severity and heterogeneity on B line
prediction false negative rate (FNR) using a clip level, average prediction of >0.5 for B lines, Figure S4:
Influence of varying average clip prediction threshold on sensitivity and specificity for internal (A)
and external data (B), Table S1: Graded qualification system for independent data labelling used
to label local lung ultrasound data, Table S2: Visual summary of the model’s architecture, Table S3:
Details of the runs comprising the Bayesian hyperparameter optimization, Table S4: K-fold cross
validation experiment data distribution by patients, clips, and frames, Table S5: Full internal k fold
validation results, Table S6: Clip-wise performance for B line detection across local and external data,
Video S1: Video example of a homogeneous A line label on our lung ultrasound dataset. Horizontal
reverberation artifacts from the pleural line (A lines) connote normal lung parenchyma and can be
seen throughout the clip, uninterrupted, Video S2: Video example of a homogeneous fewer than 3 B
lines label on our lung ultrasound dataset. A solitary, bright, ring-down artifact from the pleural line
(B line) can be seen throughout the clip, Video S3: Video example of homogeneous moderate B line
label on our lung ultrasound dataset. Multiple ring-down artifacts (B lines) can be seen throughout,
occupying less than 50% of the total pleural line surface, Video S4: Video example of homogeneous
severe B line label on our lung ultrasound dataset. Multiple ring-down artifacts (B lines) can be seen
throughout, occupying more than 50% of the total pleural line surface, Video S5: Video example of a
heterogeneous moderate B line label on our lung ultrasound dataset. Multiple ring-down artifacts (B
lines) can be seen moving in and out of the field of view of the ultrasound image.

https://www.mdpi.com/article/10.3390/diagnostics11112049/s1
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