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Simple topological properties predict functional misannotations in

a metabolic network
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ABSTRACT

Motivation: Misannotation in sequence databases is an important

obstacle for automated tools for gene function annotation, which

rely extensively on comparison with sequences with known function.

To improve current annotations and prevent future propagation of

errors, sequence-independent tools are, therefore, needed to assist

in the identification of misannotated gene products. In the case of

enzymatic functions, each functional assignment implies the existence

of a reaction within the organism’s metabolic network; a first approxi-

mation to a genome-scale metabolic model can be obtained directly

from an automated genome annotation. Any obvious problems in the

network, such as dead end or disconnected reactions, can, therefore,

be strong indications of misannotation.

Results: We demonstrate that a machine-learning approach using

only network topological features can successfully predict the validity

of enzyme annotations. The predictions are tested at three different

levels. A random forest using topological features of the metabolic

network and trained on curated sets of correct and incorrect

enzyme assignments was found to have an accuracy of up to 86%

in 5-fold cross-validation experiments. Further cross-validation against

unseen enzyme superfamilies indicates that this classifier can suc-

cessfully extrapolate beyond the classes of enzyme present in the

training data. The random forest model was applied to several auto-

mated genome annotations, achieving an accuracy of �60% in most

cases when validated against recent genome-scale metabolic models.

We also observe that when applied to draft metabolic networks for

multiple species, a clear negative correlation is observed between

predicted annotation quality and phylogenetic distance to the major

model organism for biochemistry (Escherichia coli for prokaryotes and

Homo sapiens for eukaryotes).

Contact: j.pinney@imperial.ac.uk

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Misannotation in sequence databases has been a recognized prob-

lem for more than a decade. Early studies reported the emergence

of this issue (Brenner et al., 1999; Galperin et al., 1998) and esti-

mated that up to 30% of proteins were misannotated in public

databases (Devos and Valencia, 2001). More recent studies have

confirmed that this problem is still a reality (Jones et al., 2007) and

some even suggest that it has been getting worse over time

(Schnoes et al., 2009), identifying overprediction and error propa-

gation as the main sources of error. As experimental verification

of gene function is expected to remain a highly time-consuming
process, it is unlikely that it will be able to keep pace with the

increasing amount of genome sequence data being deposited in
public databases.More accurate computationalmethods for func-

tional annotation and assessment of confidence in gene annota-
tions are, therefore, increasingly necessary.

In the area of automated functional annotation, several
approaches moving beyond basic sequence similarity are now

available (Jones et al., 2007). Some recent annotation software
will classify proteins based on locally conserved sequence patterns

that are normally related with function (Forslund and
Sonnhammer, 2008). Other approaches take into account the evo-

lutionary relationships between proteins by integrating evidence
across phylogenetic trees (Engelhardt et al., 2009) or use add-

itional information, such as protein–protein interaction data (Ta
and Holm, 2009) or genomic correlations (Hsiao et al., 2010).

However, functional annotation is still mainly based on se-
quence similarity. Given this fact, the accuracy of existing anno-

tations has a crucial impact on that of future annotations (Jones
et al., 2007). This dependency can lead to error propagation and

a consequent increase in the number of annotation errors (Gilks
et al., 2002). Moreover, as information on the origin of annota-

tion is often scarce, this error propagation does not have an easy
solution. The problem becomes even clearer when we note that

the proportion of manually annotated proteins is55% and con-
tinues to decrease (Frishman, 2007).

Any evidence that is independent of sequence may, therefore,
be useful for discriminating between true and false functional

annotations. The concept of gene function implies interaction
with some part of the cell or the environment, and almost all

functions of interest are the result of interactions among several
components (Hartwell et al., 1999). Modelling these interactions

by means of networks and studying their topological properties
is, therefore, one way to understand the context of these molecu-

lar functions.
One easily accessible example of a well-defined molecular net-

work derived from a set of gene annotations is a draft metabolic
network, such as those available in the KEGG database

(Kanehisa and Goto, 2000; Kanehisa et al., 2006, 2008). The
topological properties of these networks have been studied pre-

viously in the contexts of network evolution (Wagner and Fell,
2001) and drug target discovery (Yeh et al., 2004). For example,

the metabolic networks of parasitic species are known to be dis-
tinguishable from non-parasitic species on the basis of their top-

ology (Borenstein and Feldman 2009; Nerima et al., 2010).
Intuitively, any problems in such a network, for example, dead

ends or disconnected components, could be an indication of
misannotation (Poolman et al., 2006). However, each individual

type of evidence can be relatively weak (e.g. dead ends may also*To whom correspondence should be addressed.
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be due to the uptake of nutrients from the environment) and
difficult to discern by manual inspection.

In this work, we propose a supervised machine-learning meth-

odology to assess the accuracy of assigned molecular functions,

based on simple topological properties of an organism’s draft

metabolic network. We show that our approach is able to sep-
arate correct annotations from incorrect ones with accuracy of

up to 86%. Being entirely independent of sequence properties, it

can be used to complement existing approaches and, hence, con-

tribute to the detection and correction of errors in functional

annotation.

2 METHODS

2.1 Metabolic networks

Bipartite (reaction and compound) graphs were used to represent meta-

bolic networks, generated using the KEGG LIGAND database

(Kanehisa et al., 2008). To reconstruct the metabolic network for each

species, all gene functions annotated for that species were collected. The

reactions mapped to each function were then retrieved. Finally, the com-

pounds attached to each reaction were added to produce a bipartite

metabolic network for each species. All reactions were considered as

being reversible. Network topological properties were calculated using

the NetworkX library in Python.

2.2 Training data

Schnoes et al. (2009) previously examined the annotation errors in four

large public protein databases (KEGG, GenBank NR, UniprotKB/

TrEMBL and UniProtKB/SwissProt). From their correct and incorrect

annotation data, only the annotations with EC number were considered.

In total, there were 834 correct and 477 incorrect annotations from six

different superfamilies. For each annotation, the dataset presents the spe-

cies, KEGG KO group, EC number and the part of the protocol that the

annotation failed to pass. Each annotated function was mapped to a

reaction according to KEGG. Where an EC function was mapped to

more than one reaction, one of these was chosen at random. To evaluate

the topological properties of each of the annotations, KEGG species

networks were used.

2.3 Machine learning

The approach used to separate correct from incorrect annotations was

the random forest. A random forest is an ensemble of decision trees.

During the training process, to achieve a variety of different decision

trees, a random subset of parameters is selected for each node.

Afterwards, as in a standard decision tree, the parameter chosen at

each node is the one that most increases the entropy. To predict the

label of an entry, the entry is assessed by every tree of the ensemble.

The distribution of label votes returned is the random forest prediction.

In our case, the probability of an annotation being correct is taken as the

proportion of trees that labelled it as correct.

The random forest used was the one implemented in the

randomForest R package (Liaw and Wiener, 2002). The algorithm

implemented is as described in Breiman (2001). The parameters used in

both the randomForest and predict functions were the default ones.

For building the receiver–operator characteristic (ROC) curves, the

type¼‘prob’ option in the predict function was used.

2.3.1 The 5-fold cross-validation The cross-validation process used

was to start with the original data (D) and divide it in five equal sets. Each

of the sets was used as an independent test set (Dtest). The random forest

algorithm considering all available features was applied to the remaining

four sets (Dtrain). The random forest predictor built was then tested on

Dtest.

2.3.2 Inter-superfamily cross-validation The training data were

grouped by enzyme superfamily. Because of the paucity of data in

most superfamilies, only the four most populated superfamilies were

taken forwards to cross-validation. Each superfamily in turn was

removed from the balanced dataset SF to form the test set SFtest. The

random forest algorithm was applied to the remainder (SFtrain). The

model built was then tested on SFtest.

2.3.3 Final classifier The random forest was trained on the whole of

the original data using all the features. The importance function from

the randomForest R package was used to assess each feature’s individual

performance after training the model with the full training set.

2.4 Comparison against curated models

To further validate the classifier, it was applied to 24 KEGG metabolic

networks, and the results were compared with curated genome-scale

metabolic models for these species (Table 4). The species used were the

set with whole-genome models listed in Feist et al. (2009) for which func-

tions were labelled with EC numbers. For each KEGGmodel considered,

each annotated function was mapped to a reaction according to KEGG.

Where an EC function was mapped to more than one reaction, one of

these was chosen at random. The classifier was applied to these KEGG

data, and the results were compared with the curated models, verifying

the presence or absence in the curated models of the functions assigned in

the KEGG models.

2.5 Tree of life analysis

Ciccarelli et al. (2006) have reconstructed a highly resolved tree of life.

Their species tree is built from a concatenation of 31 unambiguous ortho-

logues present in 191 species. This tree and the multiple alignments used

to build it were downloaded from iTOL (Letunic and Bork, 2007, 2011).

iTOL also provides other types of data related to these species, including

genome sizes, domains per genome and publication dates. The multiple

alignment was used to calculate the distances between the species using

protdist from PHYLIP (Felsenstein, 1993), a package of programs for

inferring phylogenies. The classifier was applied to the metabolic net-

works present in KEGG for each species included in the iTOL phylogeny.

3 RESULTS AND DISCUSSION

In this study, metabolic networks are represented by bipartite

digraphs (with nodes for each reaction and compound). A net-

work was built for each organism in the study, based on a tem-
plate taken from the KEGG LIGAND database (Kanehisa

et al., 2008).

As with any supervised machine-learning task, it is necessary

to choose a machine-learning method and a set of features from
which to learn. The random forest (Breiman, 2001) was found to

be a suitable machine-learning approach for our aims. The ad-

vantages of using random forests in this work are their ability to

process both numerical and categorical data and the interpret-

ability of their output (a so-called ‘white box’ model). In contrast

to other machine-learning methods, such as neural networks or

support vector machines, random forests can provide insights

into the signals that are useful for classification.
Training and testing data sets were taken from the work of

Schnoes et al. (2009), which provide gold-standard sets of correct

and incorrect EC number assignments within 331 species in
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KEGG, across six enzyme superfamilies. In addition to sequence

similarity approaches at the superfamily and family levels, the

authors used information on functionally important residues to

infer misannotations, making this one of the most reliable data

sources suitable for our purposes.

3.1 Features

In total, 22 different network topological features were

considered in training the classifier. These features can be

placed into three broad groups: local, semi-local and global fea-

tures (Table 1).
Local topological features capture the properties of the imme-

diate neighbourhood of each reaction. Several of these features

are related to the compounds involved in the reaction, each of

which can be classified according to its connectivity (degree) as

an unpaired, chokepoint or ‘normal’ metabolite (Supplementary

Fig. S1). Based on this classification, several integer attributes

were defined for each reaction. We noticed that the connectivity

of compounds involved in a reaction tends to vary depending on

enzyme class; therefore, four additional features were defined to

capture this variation. These features correspond to the ranked

connectivities of the reaction’s four least-connected compounds.
The semi-local topological features describe the position of

each reaction within the network. These features are based on

the graph theoretical concepts of betweenness centrality and

eccentricity. The betweenness of a node is the fraction of shortest

paths (geodesics) between all pairs of nodes in the network that

include that node, whereas the eccentricity of a node is the length

of the longest geodesic between the node and all other nodes in

the network. In both cases, these values were also calculated

including weights on the edges of the networks. Weighted meta-

bolic networks have previously proved useful in the automatic

identification of biologically meaningful pathways within a meta-

bolic network (Croes et al., 2006). This is a simple way to exclude

spurious links via highly connected compounds, such as water or

adenosine triphosphate. Here, we place a weight on each com-

pound equal to its connectivity. To take variations in network

size into account, we also considered a variant of eccentricity that

is normalized by dividing by the diameter of the connected com-

ponent to which the reaction belongs.
In addition to these reaction-based features, some global topo-

logical features of the network may be relevant, for example, if

the amount of human curation varies between species. We use

the proportion of reactions that have a dead-end compound on

one or both sides as a proxy for the overall reliability of the

network.

Two non-topological features were also considered: taxonomic

domain (Archaea, Bacteria or Eukaryota) and whether the or-

ganism is implicated in a disease. The reason for including these

two features was to allow for potential topological differences

between different domains and between pathogens and non-

pathogens. It has previously been shown that metabolic network

topology can be affected by variations in the selection pressures

experienced during evolution (Borenstein and Feldman, 2009;

Kreimer et al., 2008; Parter et al., 2007).

To gain intuition of which features may have a bigger influ-

ence on the results, the performance of each individual feature

was evaluated independently. Histograms of the correct and

incorrect annotation data provide a visual summary (Fig. 1

and Supplementary Fig. S2). A quantitative evaluation of each

feature’s performance was also obtained using the importance

function from the randomForest package (Liaw and Wiener,

2002). This function evaluates the accuracy decrease and the en-

tropy decrease when each feature is left out, with results shown in

Supplementary Figure S3.
All metrics show a similar ranking between the features, with

those based on the concepts of betweenness and eccentricity seen

to be the most highly predictive. It is possible that these semi-

local features are able to capture relevant differences in relative

network position (e.g. higher eccentricity indicates reactions that

lie towards the periphery of the network). The weighted network

factor seems to improve the performance of both eccentricity and

betweenness features, although it is more clearly seen in the case

of eccentricity.
The taxonomic domain is the least informative feature. This

may imply that the features already considered, such as the con-

nected component size, may already be capturing any differences

Table 1. Classification features

Group Feature Definition

1 m Number of compounds connected to42 reactions.

u Number of unpaired compounds.

t Reaction type: 1—unpaired compounds on both sides

of the reaction, 2—unpaired compounds on only

one side, 3—no unpaired compounds.

h Number of chokepoint compounds.

c Number of compounds.

c510 Number of compounds connected to42 and510

reactions.

c10�50 Number of compounds connected to 10–50 reactions

c450 Number of compounds connected to450 reactions.

R Number of other reactions sharing a compound with

this reaction.

�r Mean number of other reactions connected to each

compound.

r1 Number of connections of the least connected

compound.

r2 Number of connections of the second least connected

compound.

r3 Number of connections of the third least connected

compound.

r4 Number of connections of the fourth least connected

compound.

2 e Eccentricity using unweighted edges,

ê Normalized eccentricity using unweighted edges.

ew Eccentricity using weighted edges

êw Normalized eccentricity using weighted edges

b Betweenness using unweighted edges

bw Betweenness using weighted edges

N Number of reactions in the connected component.

3 t1, 2 Fraction of reactions of type 1 or 2 in the network.

4 G Domain: 1—Bacteria, 2—Eukaryota, 3—Archaea.

D 1—species is related to disease, 0—species is not

related to disease.

Note: The features chosen were divided into four groups as shown: 1—local,

2—semi-local, 3—global and 4—non-topological.

i156

R.Liberal and J.W.Pinney

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt236/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt236/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt236/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt236/-/DC1


between species from different domains. The same might be

happening with the disease-related feature. For example, para-

sitic species may be expected to have a larger number of unpaired

compounds and smaller connected components, making this fea-

ture less informative. However, both features still show some

predictive power.

3.2 Cross-validation

The performance of the classifier on unseen data was assessed

using two types of cross-validation. In 5-fold cross-validation

experiments (Table 2), the model obtained has an accuracy of

�86%. Supplementary Figure S4 shows the ROC curves

obtained for each of the cross-validation folds. The mean area

under the ROC curve (AUROC) was 0.92%. Another important

aspect of performance is how well the predictor would be

expected to perform on enzymes from unseen superfamilies. To

this end, a second cross-validation was performed using the four

most represented superfamilies present in the Schnoes et al. data-

set: Enolase, Vicinal Oxygen Chelate, Haloacid Dehalogenase

and Amidohydrolase. The cross-validation used the enzymes

from three out of the four superfamilies as a training set and

tested on the enzymes from the fourth (Table 3). In this experi-

ment, with the exception of the Vicinal Oxygen Chelate super-

family, the accuracy of the predictor was consistently 460%.

Supplementary Figure S5 shows the ROC curves for each super-

family. The area under the curve varied between 0.59 and 0.68.

These results suggest that the functional classes covered in the

training data do have an effect on the rules obtained. For ex-
ample, enzyme classes may occupy topologically distinct pos-
itions in the network, and/or be subject to particular types of

misannotation. However, these results indicate that the classifier
trained on the entire available data set should still be informative

when applied more generally.

3.3 Comparison to a manually curated network

To assess the performance of the model, the classifier was applied

to the 24 KEGG genome annotations. These results were com-
pared with recent manually curated genome-scale metabolic

models as gold standards (Table 4 and Supplementary Fig.
S6). The species used were the whole-genome models listed in
Feist et al. (2009) for which enzyme functions were labelled with

EC numbers. The AUC results were consistently40.5, showing a
performance better than random. In fact, in almost half of the

species tested, the classifier produced an AUC of �0.6. There
were only two cases where AUC was found to be50.5. The worst
result was found withMycoplasma genitalium, perhaps related to

the fact that this is the smallest prokaryote genome sequenced.

3.4 Case study: an atypical orthologue

An interesting example of the successful identification of an

unexpected enzyme function is given by Dittrich et al. (2008).

R êw r3
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Fig. 1. Feature histograms. Visualization of the potential value of each attribute in distinguishing the correct functional assignments from the incorrect

ones (red—incorrect annotations; blue—correct annotations). The Kolmogorov–Smirnov test shows that each of these attributes has a significantly

different distribution for the correct and incorrect annotations. The corresponding P-values are shown on each histogram. Similar histograms for the

remaining features are shown in Supplementary Figure S2

Table 3. Superfamily cross-validation results

Superfamily Accuracy Precision Recall AUC

Enolase 0.60 0.57 0.97 0.60

Vicinal oxygen chelate 0.52 0.86 0.51 0.59

Haloacid dehalogenase 0.60 0.77 0.46 0.67

Amidohydrolase 0.66 0.69 0.74 0.68

Note: To test performance on unseen enzyme classes, the classifier was assessed in a

leave-one-out cross-validation at the superfamily level. The table shows the accur-

acy, precision, recall and the AUC of each analysis, where each superfamily in turn

was used as the test dataset.

Table 2. The 5-fold cross-validation results

Mean (SD)

Accuracy 0.86 (0.005)

Precision 0.91 (0.009)

Recall 0.88 (0.011)

AUC 0.92 (0.007)

Note: The predictive model performance was assessed by a 5-fold cross-validation.

The table shows the accuracy, precision, recall and AUC of this analysis and their

standard deviations.
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This work was based on the idea that an evolving enzyme has

more chance to acquire the function of structurally similar

enzymes. A bioinformatic protocol was followed to draw up a

shortlist of candidate functional analogues of a missing enzyme

(dihydroneopterin aldolase, DHNA) in the Plasmodium falcip-

arum folate biosynthesis pathway.
During the process, the authors found two candidates for

filling the role of the missing enzyme. Both enzymes already

had an assigned function in KEGG: PFF1360w is annotated

as a putative 6-pyruvoyl tetrahydropterin synthase (PTPS) and

PFL1155w as GTP cyclohydrolase I (GTPCH-I). Although

PFF1360w was subsequently experimentally validated as per-

forming the missing DHNA function, KEGG has not yet

updated this annotation. This enables us to apply the classifier

to the KEGG P.falciparum metabolic network to study this case.
Taking a closer look at the two annotated reactions in their

network context (Supplementary Fig. S14), it can be seen that the

PTPS reaction seems to be a dead end, indicating that this an-

notation is unlikely to be correct. In contrast, the GTPCH-I

enzyme not only has its reactants produced and its products

consumed, as seen in the figure, but is also assigned to four

chokepoint reactions.

Applying our classifier to these two enzymatic functions, it

returned a probability of 0.94 for the GTPCH-I reaction, indi-

cating that this function seems to make biological sense within its

network context. On the other hand, the PTPS reaction scores

only a probability of 0.21 to be a correct annotation. This simple

case study shows that the classifier has successfully captured the

same network topological features that provided evidence for an

incorrect annotation in the published manual analysis of this

enzyme.

3.5 Comparison of predicted annotation quality across

multiple species

To investigate how annotation quality varies between species, the

classifier was applied to the KEGG metabolic networks of the

species present in the tree of life provided by iTOL (Letunic and

Bork, 2007, 2011). The proportion of enzymatic functions pre-

dicted to be correctly annotated in the network of each species

(i.e. the predicted precision of the set of enzymatic functions

reported by KEGG for that organism) was taken as a measure

of annotation quality. Figure 2 shows the prokaryote phylogen-

etic tree and quality scores for each of the species. The

Escherichia coli strains and the most closely related species pro-

duce the highest scores, indicating their higher levels of curation.

With the exception of Chlamydiae/Verrucomicrobia and the

Cyanobacteria, all phyla show a wide variety of quality scores.
The number of eukaryotic species provided by iTOL is much

smaller than the number of prokaryotes. Supplementary Figure

S7 shows the eukaryote phylogenetic tree and the quality scores

of the KEGG metabolic networks for each of the species. The

vertebrates and plants produce higher scores than the other spe-

cies. An unexpected result is the relatively low scores reported for

Saccharomyces cerevisiae and Drosophila melanogaster (both

0.73), especially when compared with those achieved by the ver-

tebrates. However, this most probably reflects the massive

amount of study that human biochemistry has received relative

to any other eukaryote, including these two important model

organisms.
It is reasonable to expect that the quality of a draft metabolic

network should be better for species that are closely related to

organisms with well characterized biochemistry. Figure 3 shows

that this is indeed the case: there is a clear negative correlation

(R2 ¼ 0:393) between the predicted annotation quality in pro-

karyotes and the phylogenetic distance to E.coli and an even

stronger negative correlation (R2 ¼ 0:779) between the predicted

annotation quality in eukaryotes and the phylogenetic distance

to Homo sapiens.

To check for any dependency between annotation quality and

genome size, a similar scatter plot was drawn (Fig. 4). Although

a positive correlation is present, this may be partially explained

by other factors. In particular, the intracellular obligate species

(highlighted in green in Fig. 4) and the well-curated species (high-

lighted in orange), constituted by the E.coli strains and closely

related species (Salmonella and Yersinia), have distinctly low-

and high-quality scores, respectively. As intracellular obligate

species will tend to have lost many genes that are necessary for

free-living organisms (Ochman and Moran, 2001), their genomes

are smaller than average: intracellular obligates are almost exclu-

sively at the bottom left of the plot. The low-quality scores for

this group of species (Fig. 4) may indicate either an increased

difficulty in reconstructing their metabolic networks by auto-

matic methods or simply the known general topological differ-

ences between their metabolic networks and those of the other

Table 4. Genome-scale model validation results

KEGG ID Species name AUC Citation

ani Aspergillus nidulans 0.56 David et al., 2008

ath Arabidopsis thaliana 0.57 de Oliveira Dal’Molin

et al., 2010

bsu Bacillus subtilis 0.61 Oh et al., 2007

buc Buchnera aphidicola 0.68 Thomas et al., 2009

det Dehalococcoides

ethenogenes

0.60 Islam et al., 2010

eco E.coli K-12 0.55 Reed et al., 2003

hsl Halobacterium salinarum 0.60 Gonzalez et al., 2008

lpl Lactobacillus plantarum 0.64 Teusink et al., 2006

mge M.genitalium 0.43 Suthers et al., 2009

nme Neisseria meningitidis 0.58 Baart et al., 2007

nph Natronomonas pharaonis 0.60 Gonzalez et al., 2010

pfa P.falciparum 0.59 Plata et al., 2010

pgi Porphyromonas gingivalis 0.60 Mazumdar et al., 2009

pic Pichia stipitis 0.48 Caspeta et al., 2012

sau Staphylococcus aureus 0.52 Lee et al., 2009

sce S.cerevisiae 0.56 Herrgård et al., 2008

sce S.cerevisiae 0.53 Förster et al., 2003

sco Streptomyces coelicolor 0.64 Borodina et al., 2005

sco S.coelicolor 0.63 Alam et al., 2010

son Shewanella oneidensis 0.55 Pinchuk et al., 2010

syn Synechocystis PCC6803 0.57 Nogales et al., 2012

vvu Vibrio vulnificus 0.52 Kim et al., 2011

ypm Yersinia pestis 0.55 Navid and Almaas, 2009

zmo Zymomonas mobilis 0.61 Widiastuti et al., 2011

Note: The final classifier was applied to KEGG metabolic models, and the results

were compared with curated genome-scale metabolic models for these species.

i158

R.Liberal and J.W.Pinney

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt236/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt236/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt236/-/DC1


prokaryotes (Ochman and Moran, 2001). These two groups of

species tend to enhance the correlation between predicted anno-

tation quality and genome size. Without these species, the cor-

relation becomes slightly weaker (changing from R2 ¼ 0:51 to

R2 ¼ 0:48).
In addition to the intracellular obligates and well-studied bac-

teria, the box plots in Figure 5 show the predicted annotation

quality for two further sets of species: those with available manu-

ally curated genome-scale reconstructions (GENREs) (Price

et al., 2004) and those that are facultatively intracellular. We

can clearly see the low-quality scores in the obligate (although

not the facultative) intracellular species (P¼ 1.16e-08) and the

high accuracy scores in the well-studied species set (P¼ 3.06e-

06). However, the extra curation possibly provided by the

existence of a GENRE is not seen to be reflected in the semi-

automated annotations within KEGG.
For prokaryotes, possible dependencies on other species attri-

butes were also considered: motility, phylum, pathogenicity,

Fig. 2. Predicted quality of draft metabolic networks across a prokaryote phylogeny. The classifier was applied to all prokaryote species present in the

iTOL phylogeny (Letunic and Bork, 2007, 2011). Coloured clades represent the different phyla present (only phyla with more than one species were

coloured). The names of the phyla are shown to the right. Predicted annotation quality values are represented by grey bars next to the species name
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oxygen requirement and habitat (Supplementary Figs S8–S12).

The quality scores do not seem to depend on these attributes,

with the exception of habitat: the species living in specialized

habitats have lower accuracy scores compared with all other spe-

cies (P¼ 4.33e-08). As stated earlier in the text, specialized en-

vironments may be responsible for differences in selective

pressures that could result in detectable differences in metabolic

network topologies.
The possible link between annotation quality and genome size

was also checked in eukaryotes. As show in Figure 4, a positive

correlation is present. However, closer inspection shows that

there are two well-defined groups that contribute to this correl-

ation. Towards the bottom left (small genomes, low-annotation

quality) are the protists and the fungal species, and at the top

right are a group of animals (mostly vertebrates) and plants.

Taken together with the fact that the number of species present

is small, there does not seem to be strong evidence for a direct

link between genome size and annotation quality in eukaryotes.

For both eukaryotes and prokaryotes, other possible depen-

dencies were studied, including the number of publications found

in PubMed for each species and the year that the genomes con-

sidered were published. However, no significant correlations

were found between the quality of the model and these factors

(Supplementary Figs S15–S17).

4 CONCLUSION

Our results have demonstrated that simple topological features

can be used to predict incorrect functional annotations within

metabolic networks. The random forest classifier has not only

achieved high overall cross-validation accuracy but has also been

shown to be informative when applied to enzymes belonging to

superfamilies that were not used in training. This approach is

entirely independent of sequence properties; hence, it could be

used to support automated metabolic reconstruction pipelines, as

well as helping to identify incorrectly annotated enzymes within

public databases. Subsequent improvements in the accuracy of

the genome-scale metabolic models obtained will be of benefit in

their downstream analysis, for example, using constraint-based

methods, such as flux balance analysis (Oberhardt et al., 2009).
For both prokaryotes and eukaryotes, it seems that the quality

of automated metabolic reconstruction decreases with phylogen-

etic distance to the major model organism for biochemistry,

E.coli and human, respectively. However, differences in network

topology between free-living organisms and obligate intracellular

species may make the classifier less accurate when applied to the

latter group of species. Given a larger amount of training data, it

should be possible to produce separate classifiers for each of

these two groups.
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Fig. 5. Variation of predicted annotation quality with organism type.

Box plot of the distribution of quality scores in different sets of prokary-

ote species: orange—well-studied species (E.coli strains and the closely

related species Salmonella and Yersinia); olive—species for which there is

a GENRE (Price et al., 2004) available; green—facultative intracellular

species; blue—intracellular obligate species; magenta—all other species
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