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Natural Killer (NK) cells were initially described as part of the innate immune system

and characterized by their ability to lyse malignant and virus-infected cells. The cytolytic

function of NK cells is tightly controlled by activating and inhibitory receptors expressed

on the cell surface. Ligands that interact with a variety of NK-cell receptors include the

human leukocyte antigen (HLA) molecules, and the regulation of NK-cell function by HLA

class I molecules is well-established. Earlier studies also suggested a role of HLA class II

molecules in regulating NK cell activity; yet, interactions between HLA class II molecules

and NK cell receptors have not been well-characterized. We recently identified a subset

of HLA-DP molecules that can serve as ligands for the natural cytotoxicity receptor

NKp44 and activate NK cells. This novel receptor-ligand interaction provides a potential

mechanism to explain the strong associations of HLA-DP molecules with HBV infection

outcomes, graft-vs.-host disease and inflammatory bowel disease. Furthermore, it adds

a new mechanism for NK-cell crosstalk with immune cells expressing HLA class II

molecules. In this perspective article, we discuss the potential implications of NK cell

receptor interactions with HLA class II molecules for the regulation of immune responses.
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HLA CLASS II MOLECULES CAN SERVE AS LIGANDS FOR NK
CELL RECEPTORS

The functional activity of Natural Killer (NK) cells is regulated by the expression of inhibitory
and activating receptors, many of which interact with human leukocyte antigen (HLA) molecules.
HLA class I (HLA-I) molecules have been well-characterized as ligands for the NK cell receptor
group of killer-cell immunoglobulin like receptors (KIR) (Jost and Altfeld, 2013). The specificity of
KIR-HLA-I interactions as well as the influence of peptides presented byHLA-I on KIR-binding has
been extensively studied (Vales-Gomez et al., 1998; Moesta et al., 2008; Fadda et al., 2011; Rahim
et al., 2014; Guethlein et al., 2015; Holzemer et al., 2015; O’Connor et al., 2015; Garcia-Beltran
et al., 2016; Chapel et al., 2017; Naiyer et al., 2017). HLA-I complexes consist of a polymorphic
α-chain and a conserved chain, termed β2-microglobulin, and present intracellularly-derived
peptides on the cell surface. HLA-I molecules are expressed on the surface of all nucleated cells.
In contrast, the expression pattern of HLA class II molecules (HLA-II) is mainly restricted to
antigen-presenting cells under homeostatic conditions (Muhlethaler-Mottet et al., 1997; Ting and
Trowsdale, 2002). However, also non-hematopoietic cells have been shown to express HLA-II
molecules after exposure to IFN-γ (Herkel et al., 2003; Stevanovic et al., 2013). HLA-II molecules
consist of two polymorphic chains, a α- and a β-chain, and mainly present exogenous-derived
peptides. Surface-expressed HLA-II complexes classically interact with CD4+ T cells; however
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HLA-II recognition has also been described for CD8+ T cells,
especially in the context of chronic virus infections (Heemskerk
et al., 2001; Rist et al., 2009; Ranasinghe et al., 2016). Earlier
studies suggested a regulation of NK cell activity not only by
HLA-I but also HLA-II molecules (Jiang et al., 1996; Lobo et al.,
1996). In particular, reduced cytolytic activity of NK cells has
been reported after co-incubation with HLA-DR+ target cell
lines in comparison to non-HLA-II-expressing target cell lines
(Jiang et al., 1996). Which NK cell receptors are involved in
the recognition of HLA-DR and subsequent inhibition of NK
cells remains unknown. The authors suggested a “missing-self ”
hypothesis not only for HLA-I but also HLA-II molecules and
further discussed the possibility of specific NK cell populations
not only recognizing HLA-DR, but also HLA-DQ and HLA-DP
molecules (Jiang et al., 1996).

We recently identified a subset of HLA-DP molecules as
ligands for the activating NK cell receptor NKp44 (Figure 1).
The interaction between NKp44 and HLA-DP was dependent
on the HLA-DP allotype and further modulated by the
peptide presented by HLA-DP molecules (Niehrs et al., 2019),
reminiscent of KIR binding to HLA-I. KIR molecules have
been crystallized in complex with HLA-I molecules, and these
structures clarified how KIR-HLA-I interactions are modulated
by the presented peptide, in particular by the C-terminal amino
acids of the peptide (Maenaka et al., 1999; Boyington et al.,
2000; Fan et al., 2001; Liu et al., 2014). NKp44 has not yet been
crystallized in a ligand-bound state and a crystal structure of
NKp44 in complex with HLA-DP will help to further elucidate
the factors that determine binding of NKp44 to HLA-DP. In
contrast to previous studies, we detected activation of NK cells
after NKp44-binding to HLA-II. Since we observed differential
binding of HLA-DP to NKp44 in a peptide-dependent manner,
we cannot exclude that NKp44 is able to bind to other HLA-
II molecules during malignancies or infection, where these
molecules present a different peptide reservoir. NKp44 has
been described as an activating NK cell receptor, but also has
an inhibitory splice isoform, NKp44-1 (Cantoni et al., 1999).
This inhibitory splice form of NKp44 is the predominant form
in decidua tissue (Siewiera et al., 2015), and engagement of
HLA-DP molecules by tissue-resident NK cells might result
in a different functional activity than by peripheral blood NK
cells. In addition, NKp44 has been described to be expressed
on diverse cell types, including innate lymphoid cells (ILCs)
and plasmatocytoid dendritic cells (pDCs), and the binding of
NKp44-expressing cells to HLA-DP might therefore result in
different functional outcomes. NKp44+ pDCs within the tonsils
for example have displayed reduced production of IFN-α after
encountering an NKp44 ligand (Fuchs et al., 2005). Furthermore,
there is the possibility of an inhibitory counterpart to NKp44,
binding to different HLA-II molecules and inhibiting NK cell
activity, similar to what has been described for activating and
inhibitory KIR molecules.

LAG-3, a homolog of the CD4 molecule, has been shown to
interact with HLA-II molecules (Figure 1) and is also expressed
on activated NK cells (Baixeras et al., 1992; Huard et al.,
1995). There are conflicting results regarding the regulation
of NK cell function by LAG-3 via HLA-II. Studies in mice

FIGURE 1 | NK cell receptor interactions with HLA class II molecules. FCRL6+

NK cells have been shown to interact with HLA-DR molecules. The binding of

FCRL6 to HLA-DR molecules inhibits NK cell function. LAG-3 has been

described to bind to HLA-II molecules and has been attributed an inhibitory

function after engagement of HLA-II molecules. NKp44 has been described to

bind to a subset of HLA-DP molecules and transmit activating signals after

binding. Inhibitory splice isoforms of NKp44 expressed on tissue-resident NK

cells or NKp44 expression on other innate immune cells might transmit

inhibitory signaling after engagement of HLA-DP molecules.

described an inhibition of NK cell activity after binding to
HLA-DR molecules (Miyazaki et al., 1996), while later studies,
using primary human NK cells, did not observe an effect on
NK cell activity toward several HLA-II expressing target cell
lines after blocking the LAG-3 receptor (Huard et al., 1998).
Recent studies described a peptide-dependent interaction of
LAG-3 with the HLA-II complex, and furthermore showed a
functional inhibition of CD4+ T cells upon ligand engagement
of LAG-3 (Maruhashi et al., 2018). Yet, an inhibition of the
interaction between CD4 and HLA-II molecules by LAG-3 has
not been observed (Maruhashi et al., 2018). In addition to HLA-
II molecules, the liver-secreted protein fibrinogen-like protein
1 (FGL1) has been recently identified as a ligand for LAG-3
(Wang et al., 2019). FGL1 can be overexpressed on tumor cells
and blocking of FGL1-LAG-3 interactions led to an increased
immune activity (Wang et al., 2019). Interaction of LAG-3 with
FGL1 was HLA-II-independent, indicating that LAG-3might not
be restricted to HLA-II recognition but interact with a spectrum
of different cellular ligands. A second molecule described to be
expressed on NK cells and to interact with HLA-II molecules
is FCRL6 (Schreeder et al., 2010). FCRL6 reporter cell lines
interacted with HLA-DR molecules, yet, whether FCRL6 is able
to recognize a broad spectrum of HLA-DR molecules or only
specific allotypes has not been determined (Schreeder et al.,
2010). FCRL6 possess an intracellular immunoreceptor tyrosine-
based inhibition motif (ITIM), implying that FCRL6 transmits
inhibitory signaling cascades. A recent study identified high levels
of FCRL6 on NK cells in HLA-II+ solid tumor environment,
and expression of HLA-DR molecules on the surface of K562
cells inhibited the cytotoxic function of FCRL6+ NK-92 cells
(Johnson et al., 2018). Interestingly, FCRL6 is down-modulated
on the surface of NK cells upon exposure to IL-2 and IL-15
(Wilson et al., 2007), in contrast to NKp44, which expression is
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induced after stimulation with these cytokines. The conflicting
modes of transcriptional regulation of FCRL6 and NKp44 and
their opposite effects on NK cell activity might implicate FCRL6
as a potential inhibitory counterpart to NKp44 in the context of
HLA-II ligand recognition (Figure 1).

NK cells are part of the innate immune system, but also play
an important role in regulating adaptive as well as innate immune
responses. NK cells have been shown to regulate immune cell
responses of T cells (Waggoner et al., 2011; Cook et al., 2014;
Crouse et al., 2015), antigen-presenting cells (Andrews et al.,
2005; Moretta et al., 2005; Alter et al., 2010; Altfeld et al., 2011;
Michel et al., 2012), and indirectly B cells (Rydyznski et al., 2015,
2018), all of which express HLA-II molecules. In addition, NK
cells themselves are able to express HLA-II molecules (Sedlmayr
et al., 1996; Erokhina et al., 2018; Costa-Garcia et al., 2019),
implicating that a potential interaction between HLA-II and
NK cell receptors can not only occur in trans but also in
cis. The identification of HLA-II molecules as ligands for NK
cell receptors now provides a possible molecular mechanism to
investigate the immune cross-talk between NK cells and HLA-
II-expressing immune cells, and the implications for immune
responses against malignant cells and pathogens. Furthermore, a
variety of non-hematopoietic cells have been described to express
HLA-II molecules after exposure to IFN-γ (Kambayashi and
Laufer, 2014). These “atypical” antigen-presenting cells might
also represent potential targets for innate immune cell receptors
recognizing HLA-II, especially under inflammatory conditions.

HLA-II MOLECULES IN MALIGNANCIES
AND AUTO-INFLAMMATORY DISEASES

HLA-II molecules have been associated with the outcome of
a variety of malignancies, auto-inflammatory and infectious
diseases. The identification of innate immune cell receptors
interacting with HLA-II now provides additional mechanisms to
explain these disease associations, and can potentially lead to new
therapeutic strategies. Anti-PD-1 immunotherapy has proven
substantial success in the treatment of cancer patients (Page et al.,
2014; Zou et al., 2016). Yet, not all patients respond to anti-
PD-1 immunotherapy and some develop resistances (Kleponis
et al., 2015). The level of HLA-II expression within the tumor
environment can predict patient responses toward anti-PD-1
immunotherapy (Johnson et al., 2016). Interestingly, high FCRL6
expression has been detected on NK cells within HLA-II+ solid
tumors, and blocking of FCRL6 increased the functional response
of NK cells as well as T cells toward HLA-DR+ tumor cells
(Johnson et al., 2018). In addition, FCRL6 levels were elevated
at relapse within patients that progressed under anti-PD-1-
therapy (Johnson et al., 2018). Therefore, the authors suggested
the possibility of a combined immune checkpoint inhibitor
treatment, targeting both PD-1 and FCRL6, to boost cytotoxic
immune cell responses. Within certain tumors, such as colorectal
carcinomas, high HLA-II expression has been associated with
a favorable clinical outcome (de Bruin et al., 2008; Sconocchia
et al., 2014). Induction of HLA-II expression on tumor cells
has been attributed to IFN-γ exposure (de Bruin et al., 2008),

indicating that the tumor microenvironment and infiltrating
immune cells contribute to a favorable clinical outcome (Galon
et al., 2006). However, these studies focused on T cell responses
and did not exploit a possible role of innate immune cells in
tumor progression. Thus, the newly identified HLA-II-NKp44
interaction might possibly contribute to the favorable prognosis
of certain high HLA-II-expressing tumors.

One of the major risk factors for the development of
graft-vs.-host disease (GvHD) are different HLA-DP allotypes
between donor and recipient. Furthermore, in particular a
single nucleotide polymorphism (SNP) within the HLA-DP
β-chain that determines the expression levels of HLA-DP is
associated with GvHD (Petersdorf et al., 2015), with high HLA-
DP expression levels in the recipient being associated with a
higher risk of developing GvHD (Petersdorf et al., 2015). The
gut is one of the first sites where a GvHD response evolves,
and serves as a diagnostic marker for the prognosis of GvHD.
Recent studies described the expression of MHC-II molecules on
the surface of intestinal epithelial cells (IECs) within the ileum
of mice upon IFN-γ exposure (Koyama et al., 2019). The gut
microbiota contributed to the induction of HLA-II expression,
and HLA-II molecules were absent in the ileum of germ-free
mice. The exposure of IECs to microbes and consequently IFN-
γ secretion was essential for HLA-II expression. Interestingly,
IFN-γ secretion during the course of GvHD within the murine
gut was not only detected by CD4+ T cells but also type 1
innate lymphoid cells (ILC1s) (Koyama et al., 2019). HLA-
II expression has also been described by human gut enteroid
organoids after IFN-γ exposure (Koyama et al., 2019; Wosen
et al., 2019), indicating that a similar mechanism might apply
for the development of GvHD within humans. Which specific
receptor-ligand interactions trigger IFN-γ secretion of ILC1s has
to be determined, but intraepithelial IFN-γ producing ILC1s have
been previously described within the tonsils and gut mucosa.
Here, the secretion of IFN-γ was higher within the NKp44+ cell
population (Fuchs et al., 2013), indicating that IFN-γ-secretion
can be triggered by an NKp44-dependent mechanism.

Furthermore, specific HLA-II molecules represent risk factors
for development of inflammatory bowel disease (Goyette et al.,
2015). In particular, the HLA-DR β-chain HLA-DRB1∗01:03 and
the HLA-DP α-chain HLA-DPA1∗01:03 have been associated
with a higher risk of manifesting Crohn’s disease. HLA-
DPA1∗01:03 interacts with a variety of HLA-DP β-chains, such as
HLA-DPB1∗04:01, to form HLA-DP401 molecules. HLA-DP401
is one of the most frequent allotypes within the Caucasoid
population (Sidney et al., 2010) and interacts strongly with
NKp44 (Niehrs et al., 2019). However, in patients developing
Crohn’s disease a reduced fraction of NKp44-expressing mucosal
NK cells has been described, and high IFN-γ production
contributing to disease development has been attributed to
NKp46+ NK cells (Takayama et al., 2010), indicating an
NKp44-independent mechanism. Nevertheless, ILC1s have also
been shown to be high producers of IFN-γ during Crohn’s
disease (Bernink et al., 2013; Fuchs et al., 2013), contributing
substantially to pathogenesis. Whether IFN-γ secretion by
NKp44+ ILC1s is linked with recognition of HLA-II molecules
needs to be determined. In conclusion, certain HLA-II molecules
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have been associated with a variety of auto-inflammatory diseases
and malignancies, and NCR+ innate cell interactions with HLA-
II molecules might provide additional molecular mechanisms
underlying these disease associations.

HLA-II MOLECULES IN HEPATITIS B
INFECTION

Despite existence of an effective vaccine, hepatitis B virus (HBV)
infection remains one of the major global health problems with
more than 200 million chronically infected people (Schweitzer
et al., 2015). Risk factors for the development of chronic HBV
include a lack of functional Th1 cytokine responses during the
acute phase of infection (Penna et al., 1997) as well as genetic
factors, with SNPs within the HLA-DP region representing the
main genome-wide genetic determinant for development of
chronic HBV infection throughout different ethnic populations
(Kamatani et al., 2009; Thomas et al., 2012). Importantly, a

SNP in the 3
′

untranslated region of the HLA-DP β-chain
has been linked to HLA-DP surface expression levels, and
HBV persistence and clearance, respectively. Low-expressed
HLA-DP variants, e.g., HLA-DPB1∗04:01 and HLA-DPB1∗02:01,
have been described to be protective while highly-expressed
variants, e.g., HLA-DPB1∗03:01 and HLA-DPB1∗06:01, have
been associated to a higher risk of developing chronic HBV
(Thomas et al., 2012). The identification of binding of the NK
cell receptor NKp44 to a subset of HLA-DP molecules might
provide an additional molecular mechanism for the described
disease association with HBV. We observed a functional
interaction between NKp44 and HLA-DP401, an HLA-DP
molecule associated with low surface expression and HBV
clearance, but not between NKp44 and HLA-DP301, which is
associated with high surface expression and HBV persistence
[overview for high and low-expressed variants provided in
Fleischhauer (2015)]. In a HLA-II bead-based screening assay,
NKp44 interacted mainly with low-expressed HLA-DP β-chains
but to some extent also displayed binding to high-expressed
HLA-DP variants. Yet, we observed binding of NKp44 to high-
expressed HLA-DP variants only in combination with a specific
subset of HLA-DP α-chains (Niehrs et al., 2019), indicating that
NKp44-binding depended on the combination of both HLA-DP
chains, and suggesting that NKp44 binding occurred in close
proximity to the peptide binding groove.

Interestingly, HLA-DP401 and HLA-DP201, in addition to
being associated with low HLA-DP surface expression, also
share a second similarity, namely the amino acid Glycine at
position 84 within the HLA-DP β-chain. This amino acid
position plays an important role for peptides presented by
HLA-DP (Diaz et al., 2003). Recent studies have described low
affinity binding of the class II invariant chain peptide (CLIP)
to HLA-DP molecules possessing Gly84, and thereby insufficient
blocking of the peptide binding groove of these molecules during
cellular HLA-II trafficking (Yamashita et al., 2017; Anczurowski
et al., 2018). Therefore, HLA-DP molecules carrying Gly84
residues are prone to present endogenous peptides derived
from HLA-I peptide processing pathways (Yamashita et al.,
2017). While these observations warrant further confirmation,

they suggest that certain HLA-DP molecules, such as HLA-
DP401 and HLA-DP201, could present intracellularly-produced
peptides during HBV infection, and therefore possibly also
HBV-derived peptides, which might alter the binding to TCRs
of CD4+ T cells as well as NKp44+ NK cells and ILCs.
Future studies characterizing the peptide-repertoires presented
by HLA-II during HBV infection will provide insights into these
potential interactions between NKp44+ immune cells and HBV-
infected cells.

In the course of acute HBV infection, IFN-γ secreted by Th1
cells has been described to be associated with self-limitation of the
virus infection (Penna et al., 1997) and in addition to Th1 cells,
NK cells are also able to secrete IFN-γ upon activation. During
the course of HBV infection, IFN-γ has a direct anti-viral activity
itself (Guidotti et al., 1999; Xia et al., 2016) but also induces
HLA-II expression on hepatocytes, which in turn can function
as “atypical” antigen-presenting cells (Herkel et al., 2003). The
induction of an NK cell receptor ligand by pro-inflammatory
cytokines is reminiscent of the induction of B7-H6, a ligand
for the NKp30 receptor, upon exposure to interleukin 1-β or
tumor necrosis factor-α (Matta et al., 2013). Another effector
cytokine secreted by Th1 cells is interleukin-2 (IL-2), which
induces the expression of NKp44 on NK cells, while NKp44
surface expression is absent on resting NK cells (Cantoni et al.,
1999). These data suggest a model in which the acute phase of
HBV infection induces production of IFN-γ by NK cells and Th1
cells, which also produce IL-2. IFN-γ can trigger expression of
HLA-II on infected hepatocytes, while secretion of IL-2 promotes
NKp44 expression on NK cells. The simultaneous expression of
NKp44 and HLA-DP permits an interaction between NK cells
and infected hepatocytes in individuals encoding for HLA-DP401
and other HLA-DP molecules serving as NKp44-ligands, leading
to lysis of the HBV-infected cells (Figure 2A). In contrast, in
HBV-infected individuals encoding for HLA-DP301 or other
HLA-DP molecules not serving as NKp44-ligands, IFN-γ and
IL-2 secretion can also induce HLA-DP and NKp44 expression,
but NKp44+ cells are unable to bind to the expressed HLA-
DP molecules (Figure 2B). The lack of innate immune cell
recognition of HBV-infected cells might contribute to a higher
risk for persistent HBV infection and provides a newmechanistic
link for the described association between specific HLA-II
allotypes and chronic HBV disease.

A POSSIBLE ROLE FOR NKP44-HLA-II
INTERACTIONS IN NK CELL MEMORY

A hallmark of the innate immune system is the prompt reaction
toward infected and malignant cells without the need of prior
antigen-dependent stimulation. However, over the past years,
studies have described an antigen-dependent memory function
of NK cells (O’Leary et al., 2006; Sun et al., 2009; Paust et al.,
2010). Memory NK cells have been mainly characterized by the
expression of CD49a and CXCR6, are thought to be enriched
in the liver and subsequently migrate to the site of infection
(Paust et al., 2010; Peng et al., 2013; Reeves et al., 2015;
Nikzad et al., 2019). In addition, NK cell memory has been
demonstrated to be inducible by cytokine exposure as well as
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FIGURE 2 | Model for HLA-DP-NKp44 interactions during HBV infection in individuals with different HLA-DP genotypes. During acute HBV infection HLA-DP

molecules are upregulated on the surface of human hepatocytes in response to IFN-γ secreted by Th1 and NK cells. NKp44 expression by NK cells is initiated by IL-2

secreted by Th1 cells. In HLA-DP401+ HBV-infected individuals, NKp44 interacts with HLA-DP401 molecules expressed on the surface of infected hepatocytes,

contributing to lysis of infected cells and HBV control (A). In HLA-DP301+ HBV-infected individuals, NKp44 is unable to bind to HLA-DP301 molecules expressed on

the surface of infected hepatocytes, resulting in inefficient lysis of infected hepatocytes by innate immune cells and higher risk of chronic HBV infection (B).

exposure to tumor cells (Cooper et al., 2009; Pal et al., 2017).
It is still unclear which NK cell receptors mediate the observed
memory responses. The newly identified interaction between
NKp44 and HLA-DP was modulated by the HLA-II presented
peptide, and can thus be potentially dependent on the respective
antigen, indicating NKp44 as a possible receptor candidate for
mediating NK cell memory responses. It is however unlikely,
that NKp44 can explain all antigen-specific NK cell memory
responses reported to date. Yet, NKp44-HLA-DP interactions
might provide a first hint toward a possiblemechanismmediating
NK cell memory responses.

CONCLUDING REMARKS

Interactions between HLA-II molecules and innate immune cells
including NK cells are poorly understood. However, regulation
of NK cell activity by HLA-II molecules in complex with specific
pathogenic and cellular-derived peptides might help to better
explain described associations between certain HLA-II allotypes
and distinct outcomes of infectious as well as auto-inflammatory
diseases or malignancies. Notably, the induced expression of
HLA-II molecules by IFN-γ also on non-hematopoietic cells

favors an interaction with NK cell receptors under inflammatory
conditions. Future studies will have to determine the extent by
which different NK cell receptorsmight interact withHLA class II
molecules during physiologic conditions and in disease settings,
and how these receptor-ligand interactions influence NK cell
function and disease outcomes.
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