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Abstract

The function of miR165/166 in plant growth and development has been extensively studied,

however, its roles in abiotic stress responses remain largely unknown. Here, we report that

reduction in the expression of miR165/166 conferred a drought and cold resistance pheno-

type and hypersensitivity to ABA during seed germination and post-germination seedling

development. We further show that the ABA hypersensitive phenotype is associated with a

changed transcript abundance of ABA-responsive genes and a higher expression level of

ABI4, which can be directly regulated by a miR165/166 target. Additionally, we found that

reduction in miR165/166 expression leads to elevated ABA levels, which occurs at least

partially through the increased expression of BG1, a gene that is directly regulated by a

miR165/166 target. Taken together, our results uncover a novel role for miR165/166 in the

regulation of ABA and abiotic stress responses and control of ABA homeostasis.

Author Summary

Functions of miRNAs in plant development and stress responses have been extensively
studied. However, little is known about how a miRNA may perform critical functions in
both plant development and abiotic stress responses. One well-knownmiRNA, miR165/
166, has critical roles in plant development. In this study, we show that this miRNA also
has important functions in ABA and abiotic stress responses. Since the expression level of
miR165/166 can be reduced to different extents using short tandem target mimicry
(STTM), in the present work, we used STTM165/166 transformants with moderate devel-
opmental phenotype to examine its potential role in abiotic stress responses. Our results
show that miR165/166 plays critical roles in drought and cold stress resistance as well as in
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ABA responses. Our work reveals that miR165/166-mediated regulatorymodule is linked
with ABA responses and homeostasis through ABI4 and BG1.

Introduction

The phytohormone abscisic acid (ABA) plays critical roles in plant growth and development,
such as seedmaturation, seed germination, seedling growth, stomatal movement, as well as
plant responses to abiotic and biotic stress, including drought, salinity, cold and pathogen
infection [1–4]. The fluctuation of cellular ABA levels, which are determined by biosynthetic
and catabolic pathways, allow plants to cope with physiological and environmental conditions
[5–7]. De novo ABA biosynthesis from carotenoids is the primary pathway to produce ABA
[7]. Many genes involved in this pathway have been identified, such as ABA1, ABA2, ABA3,
NCED3 and AAO3 [8, 9]. An additional biosynthetic pathway occurs through hydrolysis of
Glc-conjugated ABA (abscisic acid-glucose ester [ABA-GE]) to ABA by two glucosidases,
AtBG1 and AtBG2, which localize to the ER and vacuole, respectively [10, 11]. Hydroxylation
and conjugation are catabolic pathways that mediate the fine-tuning of ABA levels. Members
of the cytochrome P450 family, CYP707A1 to CYP707A4, control the hydroxylation reaction,
and ABA uridine diphosphate glucosyltransferase (UGT) catalyzes the conjugation of ABA
with Glc to produce ABA-GE [12–17].

Plant responses to ABA is mediated by a network of signaling pathways. In the core path-
way, ABA is perceived by the ABA receptors, PYRABACTIN RESISTANCE1 (PYR1)/PYR1--
likes/REGULATORY COMPONENTOF ABA RECEPTORs (RCARs) [18, 19]. Once bound
to ABA, PYLs will recruit PROTEIN PHOSPHOSTASE 2C (PP2C) [20] and form a PYR/
RCAR-PP2C complex to inhibit the PP2C activity, thereby activating the SNF1-RELATED
PROTEIN KINASE2 (SnRK2) kinases [21–23]. The activated SnRK2s phosphorylate down-
stream effector proteins including the AREB/ABF-type basic/region leucine zipper (bZIP) tran-
scription factors, which control the expression of many ABA-responsive genes [24, 25].
Among these transcription factors, ABA INSENSITIVE 3 (ABI3), ABI4 and ABI5 are essential
regulators in the control of seed germination and early seedling growth [26–32].

A class of single-strandedRNAs that are 20–22 nucleotides in length and are referred to as
microRNA (miRNAs) can regulate gene expression at post-transcriptional levels through spe-
cific base-pairing to target messenger RNAs [33]. miRNAs play critical roles in plant develop-
ment, such as phase transition, pattern formation and morphogenesis [34]. miRNAs also play
crucial roles in biotic and abiotic stress responses [35–38].

Additionally, more and more evidence is revealing that miRNAs are involved in hormonal
responses. miR159 targets severalMYB transcription factors, such as MYB33, MYB65 and
MYB101, which interact with GA-response elements and control anther development and
flowering time under short days [39, 40]. Disruption of the miR159-mediated repression of
MYB33 and MYB101 alters responses to ABA during seed germination [41]. The auxin
response pathway is also regulated by miRNAs. Proper regulation of Auxin Response Factor 10
(ARF10),ARF16 and ARF17 by miR160 is required for both shoot and root development [42–
44]. ARF6 and ARF8 are targeted and negatively regulated by miR167 [45, 46]. Expression of a
miR167-resistant ARF6 or ARF8 gene results in ovule and anther development defects [47].
miR167 could also target IAA-Ala Resistant3 (IAR3), which converts an inactive form of auxin
to bioactive auxin [48]. miR390 guides the generation of trans-acting siRNAs, which target
ARF2,ARF3 and ARF4 that are required for the proper establishment of adaxial-abaxial iden-
tity of lateral organs and vegetative phase transition [49–52]. The NAC1 transcription factor is
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targeted by miR164 and acts on lateral root development through regulating auxin responses
[45, 53–56]. miR393 targets auxin receptor TIR1 and closely related F-box genes [46, 57]. In
addition, miR319-mediated regulation of TCP4 is required for the biogenesis of jasmonic acid
through the modulation of LIPOXYGENASE2 (LOX2) [58].

miR165/166 is one of the most extensively studiedmiRNAs, which have been shown to be
involved in plant development. miR165/166 targets the Class III homeodomain leucine zipper
family of transcription factor genes, including PHBULOSA (PHB), PHVOLUTA (PHV),
REVOLUTA (REV),ATHB-8 and ATHB-15, which are required for the promotion of adaxial
identity of lateral organs [59–62]. Recent work revealed that REV could directly regulate the
expression of auxin biosynthetic enzymes TAA1 and YUCCA5 (YUC5), which in turn influence
free auxin levels, and this was shown to be required for the shade-avoidance response [63]. The
cytokinin (CK) biosynthesis gene ISOPENTENYL TRANSFERASE7 (IPT7) was found to be
the direct target of PHB, and the direct activation of IPT7 by PHB was shown to control the
root meristem differentiation regulatory network [64].

Here we present evidence for an important role for miR165/166 in the regulation of ABA
and abiotic stress responses and the maintenance of ABA homeostasis.We show that disrup-
tion of miR165/166-mediated repression of its targets through reducing miR165/166 expres-
sion levels leads to a drought and cold resistance phenotype and ABA hypersensitivity during
and after seed germination.We found that ABI4 acts downstream of a miR165/166-mediated
pathway and could be directly regulated by a miR165/166 target. We also discovered that
miR165/166-mediated negative regulation of its targets is essential for maintaining ABA
homeostasis at least partly throughmodulating the expression of BG1, which converts inactive
ABA to active ABA. Our study links the miR165/166-mediated regulatorymodule to the ABA
regulatory network and demonstrates a critical role for the miRNA in ABA responses and
homeostasis.

Results

STTM165/166 displays a drought and cold resistance phenotype

To determine whether the miR165/166mediated network plays important roles in response to
abiotic stress, the previously reported stable transgenicArabidopsis STTM165/166-31nt plants
[65], in which the expression of miR165/166 is dramatically reduced, were used in stress resis-
tance tests.

We compared the phenotype of wild type and STTM165/166 plants under drought condi-
tions. When water was withheld from 3-week-old plants for up to 2 weeks, wild type plants
severely wilted and displayed injury and reduced growth. In contrast, STTM165/166 plants
appeared much healthier and less affected by the limited water (Fig 1A). When the wilted wild
type and STTM165/166 plants were re-watered, only a small proportion of the wild type plants
survived and continued to grow. However, a substantial proportion of STTM165/166 plants
recovered (Fig 1A and 1B). Altered sensitivity to drought stress in plants is often caused by an
altered rate of water loss from leaves. Consequently, we analyzed the water loss rate and found
that detached wild type leaves lost water at a faster rate than STTM165/166 leaves (Fig 1C).

Interestingly, STTM165/166 is also more resistant to freezing temperatures compared with
wild type based on freezing survival assay and cold-induced electrolyte leakage assay (Fig 2A
and 2B). Given that CBF genes play critical roles in freezing tolerance, we analyzed the expres-
sion of these genes to test whethermiR165/166 mediated regulation of freezing tolerance
occurs throughmodulating CBF factors. However, no substantial difference in the expression
levels and patterns of CBF1-3 under cold treatment was detected betweenwild type and
STTM165/166 plants (Fig 2C). The expression of known CBF downstream genes, such as
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RD29A and COR15A, was also analyzed (Fig 2D) and we found that the transcript levels of
these genes in STTM165/166 in response to cold stress are similar to that of wild type. These
results indicate that miR165/166 may modulate freezing tolerance through CBF-independent
factors.

Deregulation of miR165/166 results in an ABA response phenotype

We also tested the response of STTM165/166 to ABA. Without ABA treatment, there was no
significant difference in the seed germination and cotyledon greening betweenwild type and
STTM165/166 (Fig 3A). However, when the wild type and STTM165/166 seeds were sown on
MSmedium supplemented with ABA, we found that STTM165/166 was hypersensitive to
ABA during seed germination. A delay of cotyledon greening was also observed for STTM165/
166 plants (Fig 3A, 3B and 3C and S1 Fig). We examined the expression of miR165/166 and
its targets in STTM165/166 at this early developmental stage with or without ABA treatment
by qRT-PCR analysis, and found that the levels of mature miR165/166 were indeed dramati-
cally reduced (Fig 3D and S2 Fig), and all the five target RNAs examined were elevated to dif-
ferent extents (Fig 3E and S2 Fig). These results indicate that blocking the full function of
miR165/166 disturbs ABA responses.We also tested the ABA response of mutants of
miR165/166 target genes, but did not observe a significant difference with that of the wild
type (S3 Fig).

Fig 1. STTM165/166 plants exhibit drought stress resistance phenotype. (A) Drought resistance phenotype.

3-week-old plants (upper panel) were grown under the same conditions but without irrigation for 14 days (middle

panel), and then rewatered for 2 days (lower panel). (B) Quantification of the survival rate. Forty plants of wild type

and STTM165/166 were used in each experiment, and the survival rate was calculated from the results of four

independent experiments. (C) Water loss assay. Aerial parts of 3-week-old plants were detached and weighed at

the indicated time points. Water content at any time point was calculated as percentage of the fresh weight at time

zero. Data were derived from four independent experiments (±SD).

doi:10.1371/journal.pgen.1006416.g001
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The miR165/166 mediated regulatory module affects the expression of

ABA- responsive genes

The ABA-related phenotype that results from the compromised miR165/166 function indicates
that a miR165/166 mediated regulatorymodule may affect ABA responses. To establish the
molecular link between a miR165/166mediated regulatorymodule and an ABA mediated reg-
ulatory network, we first compared expression of ABA-responsive genes, such as RESPONSIVE
TO DESSICATION 29A (RD29A),RD29B,RAB18,EM1 and EM6 in wild type and STTM165/
166 plants. Interestingly, without ABA treatment, the transcript levels of these genes were upre-
gulated to different extents in STTM165/166 plants (Fig 4A). However, the difference in the
expression of these genes disappeared when exogenous ABA was applied (Fig 4B). When seed-
lings were treated with 50 μM ABA for different time periods, there were still no significant dif-
ferences in the transcript levels of ABA-responsive genes betweenwild type and STTM165/166
plants (S4 Fig).

Targets of miR165/166 directly regulate the expression of ABI4

Since the expression of ABA-responsive genes was upregulated in STTM165/166 under normal
conditions, we speculated that ABA signalingmay be activated or endogenous ABA level is
altered. We examined the expression of core components of ABA signaling pathway, such as

Fig 2. STTM165/166 plants display cold tolerance phenotype. (A) Comparison of the survival rates of freezing-

treated wild type and STTM165/166 seedlings after 5 days of recovery at 23˚C. (B) Leakage of electrolytes from

excised leaves of wild type and STTM165/166 plants exposed to indicated freezing temperatures. Wild type and

STTM165/166 plants were grown under normal conditions for three weeks and then subjected to cold acclimation

(4˚C for 7 days) before freezing treatment. (C) Comparison of the expression of CBF genes in wild type and

STTM165/166 under cold treatment. (D) Comparison of the expression of cold responsive genes in wild type and

STTM165/166 under cold treatment.

doi:10.1371/journal.pgen.1006416.g002
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PYLs (PYR1, PYL1, PYL2, PYL4, PYL5), SnRK2s (SnRK2.2, SnRK2.3, SnRK2.6), ABI1, ABI2
and HAB1. No significant difference in the expression of these genes was found betweenwild
type and STTM165/166 (S5 Fig). We also compared the expression of these genes in wild type
and STTM165/166 seedlings treated with 50 μM ABA for different time periods, and no signifi-
cant difference was detected (S6, S7 and S8 Figs). Since ABI3,ABI4 and ABI5 are central regu-
lators in the control of ABA- responsive genes, we determined the effect of knockdown
miR165/166 on the expression of these genes. We found that the expression of ABI4was sub-
stantially increased in STTM165/166 under normal conditions (Fig 5A). We then tested the
expression of ABI4 in PHB:PHB G202G-YFP lines expressing a miRNA-resistant version of
PHB fused to GFP driven by the PHB promoter. Interestingly, we found that ABI4 transcripts
accumulated to higher levels in the tagged lines compared with that of wild type (Fig 5B). Bio-
informatic analysis revealed that a typical HD-ZIPIII binding consensus sequence exists in the
ABI4 promoter region (Fig 5C), and this prompted us to determine whetherABI4 could be
directly regulated by a miR165/166 targeted HD-ZIPIII. Thus, we conducted an EMSA assay,

Fig 3. STTM165/166 plants are hypersensitive to ABA during seed germination and early seedling

development. (A) The phenotype of wild type and STTM165/166 plants grown on MS medium supplemented with

1.0 μM ABA. Seedlings were photographed 9 days after stratification. (B, C) Germination and cotyledon greening

analysis of the STTM165/166 and wild type plants in response to different concentrations of ABA (0, 1.0, 1.5 and

2.0 μM). Germination was scored at 4 days and greening was scored at 9 days after stratification. Three

independent experiments were performed, and >100 seeds for each treatment were used for each experiment.

Values are means ± standard deviation. (D, E) Quantitative RT-PCR analysis of the expression of both mature

miR165/166 and its targets at seedling stage. Three independent experiments were performed, and values are

means ± standard deviation.

doi:10.1371/journal.pgen.1006416.g003
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and found that PHB protein could bind to the region containing the typical HD-ZIPIII binding
consensus sequence (Fig 5D). This indicates that a miR165/166 target can directly modulate
ABI4 expression.

ABA homeostasis is altered in STTM165/166

We also examined the expression of genes involved in the ABA homeostasis pathway. We
could not detect any significant difference in the transcript level of any gene involved in de
novo ABA biosynthesis, such as ABA1 and NCED3, betweenwild type and STTM165/166 (S9
Fig). In addition to genes involved in ABA de novo synthesis, genes required for ABA conjuga-
tion or deconjugation also affect ABA homeostasis.We then checked the expression of genes
involved in this pathway. Interestingly, we found that the expression of BG1was dramatically
elevated in STTM165/166 seedlings compared with that of wild type (Fig 6A), but the expres-
sion of UGT genes was not altered (Fig 6A). We also found that the upregulation of BG1 in
STTM165/166 was not limited to the seedling stage. The transcript level of BG1was also higher
in STTM165/166 leaves and flowers compared with that of wild type (Fig 6B).

To examine the effect of the altered expression of these genes on ABA levels in STTM165/
166, we measured the content of ABA by ELISA using an anti-ABA antibody [10]. We found
that the ABA content in STTM165/166 plants was approximately 3 fold of that in wild type
(Fig 6C). This indicates that regulation of the BG1 gene mediated by the miR165/166 regula-
torymodule contributes to changes in ABA content.

Fig 4. Quantitative RT-PCR analysis of ABA-responsive genes in wild type and STTM165/166 seedlings.

(A) The expression of ABA-responsive genes was analyzed in wild type and STTM165/166 2-day-old seedlings

grown on MS medium. Three independent experiments were performed and values are means ± standard

deviation. (B) The expression of ABA-responsive genes was analyzed in wild type and STTM165/166 2-day-old

seedlings grown on MS medium with 10 μM ABA. Three independent experiments were performed and values are

means ± standard deviation.

doi:10.1371/journal.pgen.1006416.g004
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To determine whether the upregulated BG1 expression might contribute to the drought
resistance and reduced water loss phenotypes of STTM165/166 plants, we generated
STTM165/166 plants in bg1-2mutant background by crossing STTM165/166 plants and bg1-2
mutant plants, and we found that the drought resistance and reduced water loss phenotypes
of STTM165/166 plants were partially suppressed by bg1-2 (S10 Fig). These indicate that
the upregulation of BG1 in STTM165/166 accounts at least partially for its abiotic stress
phenotypes.

miR165/166 targets directly regulate the expression of BG1

Since the expression of BG1was enhanced in STTM165/166, we next investigated its expres-
sion in PHB:PHB G202G-YFP lines to determine whether higher expression of PHB could
also affect the expression of BG1. We found that the expression of BG1was upregulated in
the PHB:PHB G202G-YFP line (Fig 7A). To determine whether PHB is directly associated with
the BG1 promoter, we first analyzed the sequence of the BG1 promoter and found that it con-
tains a PHB recognitionmotif (Fig 7B). A ChIP assay was then performed using PHB:PHB
G202G-YFP lines and this showed that one region of the promoter was highly enriched relative
to the 35S:GFP control (Fig 7C). The enriched region contains the PHB recognitionmotif.
Additionally, EMSA assay further confirmed that PHB protein could bind to the enriched
region (Fig 7D). These findings indicate that BG1 is also a direct target of PHB.

Fig 5. PHB promotes ABI4 expression by directly binding to its promoter. (A) ABI4 expression was analyzed

in wild type and STTM165/166 2-day-old seedlings using qRT-PCR. (B) ABI4 expression was analyzed in PHB:

PHB G202G-YFP lines using qRT-PCR. (C) Analysis of ABI4 promoter. A 3.0kb fragment upstream of ATG was

chosen for the promoter analysis. (D) EMSA assay showed that PHB binds to an ABI4 promoter region. Labeled

probe of the ABI4 promoter region was incubated with GST-PHB fusion protein. For the competition test, a non-

labeled probe was added at 10-fold and 100-fold concentrations.

doi:10.1371/journal.pgen.1006416.g005
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Discussion

Unlike somemiRNAs, such as miR160, miR167 and miR393, which directly target and regulate
the expression of key components of the auxin response pathway, the miR165/166 targets
themselves are not major components of hormone response pathways but they regulate the
transcription of important components of hormone pathways. Recent work showed that REV
could directly modulate auxin biosynthetic gene expression and is involved in the shade-avoid-
ance response pathway [63], whereas PHB directly activates the CK biosynthesis gene IPT7
and is integrated into the root meristem differentiation regulatory network [64]. Here we pro-
vide evidence that the miR165/166-PHBmodule is involved in regulating ABA homeostasis.
The expression of BG1 could be directly promoted by PHB. Therefore, upregulation of the
miR165/166 target gene expression caused by compromised miR165/166 function results in
the increased expression of BG1, which in turn furthermodulates ABA homeostasis.

Proper regulation of miR165/166 is important for normal ABA responses. Once miR165/
166 is repressed, its repression on target genes will be released, and the upregulated expression
of miR165/166 targets will directly promote the accumulation of ABI4, which in turn activates
downstream ABA responsive genes. Meanwhile, the increasedmiR165/166 targets could also

Fig 6. ABA content is altered in STTM165/166 plants. (A) Quantitative RT-PCR analysis of the expression of

genes involved in ABA conjugation and de-conjugation. (B) Quantitative RT-PCR analysis of BG1 expression in

various tissues of wild type and STTM165/166 plants. (C) Comparison of the ABA content between wild type and

STTM165/166 plants.

doi:10.1371/journal.pgen.1006416.g006
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upregulate the expression of the BG1 gene, which at least in part contributes to the elevation of
ABA content in STTM165/166. Thus, the ABA hypersensitivity phenotype of STTM165/166
during seed germination and post-germination stages might be attributed to both the higher
levels of active ABA and stronger ABA response caused by higher expression of BG1 and ABI4,
respectively.

Like the ABI3 and ABI5 transcription factors, ABI4 also plays a critical role in ABA
responses, but compared with ABI3 and ABI5, how the activity of ABI4 is modulated is largely
unknown. In this study, we found that HD-ZIPIII transcription factors, which are the direct
targets of miR165/166, could directly bind to the ABI4 gene promoter and regulate its expres-
sion. Thus, miR165/166 is relevant to ABI4 in ABA responses. It has been observed that the
expression of miR165/166 was altered under different abiotic stress conditions, such as cold,
heat, salt and oxidative stress [66–70]. Regulation of miR165/166 expression may help plants
to cope with environmental stresses. Given that miR165/166 is an important regulator in plant
growth and development, the miR165/166meditated regulatorymodulemight help coordinate
developmental programs with environmental cues to optimize plant growth and developmen-
tal processes under stress. miR165/166 is evolutionarily conserved in a wide range of plant

Fig 7. PHB directly upregulates the expression of BG1. (A) BG1 expression was analyzed using qRT-PCR in

PHB:PHB G202G-YFP lines. (B) Analysis of BG1 promoter. The diagram shows a 4.0kb fragment upstream of the

first ATG codon. (C) ChIP-qPCR was performed using specific primers corresponding to different promoter

regions. (D) EMSA assay showed that PHB binds to the BG1 promoter region. Labeled probes of the BG1

promoter region were incubated with GST-PHB fusion protein. For the competition test, a non-labeled probe was

added at 10-fold and 100-fold concentrations.

doi:10.1371/journal.pgen.1006416.g007
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species and its function in plant development is also very conserved. Future studies will deter-
mine whether the role of miR165/166 mediated regulatorymodule in ABA response and
homeostasis is conserved in other plant species.

Materials and Methods

Plant materials and growth conditions

All Arabidopsis plants used in this study are in the Columbia-0 (Col-0) ecotype. Plants were
grown in soil at 23°C under a 16h light/8h dark cycle. STTM165/166, PHB:PHB G202G-YFP
lines, bg1-2 and abi4-1 have been describedpreviously [10, 65, 71, 72].

Plasmid construction

To constructGST-PHB, the DNA of PHB was amplified using the genomic DNA of PHB:PHB
G202G-YFP lines as template. The PCR products were purified and digested with EcoRI and
inserted into the corresponding sites of the pGEX4T-1 vector.

Germination assay

To measure the rate of germination, seeds were harvested and stored under identical condi-
tions. Seeds were surfaced sterilized and stored at 4°C for 3 days. Seeds were plated on MS
plates containing 1% sucrose and 0.3% phytogel, and germinated at 22°C in a 16-h/8-h light/
dark condition.

Freezing tolerance assay

Electrolyte leakage assay was performed as previously described [73] to determine the freezing
tolerance of plants in this study. In brief, 3-week-old plants grown in soil were subjected to
cold acclimation at 4°C for 7 days before freezing treatment. At each temperature point, three
replicates were performed.A fully developed rosette leaf was placed in a small tube containing
100 ul deionizedwater, and a small ice chip was then added to each tube. Incubate the tube in a
freezing bath (model 1187, VWRScientific)with temperature at 0°C. The temperature was
reduced by 1°C every 30 min until -11°C was reached. At each temperature point, the tubes
were removed from the freezing bath and placed on ice. Transfer the leaves and solutions to
large tubes with 25 ml deionizedwater. Shake the tubes overnight and measure the conductiv-
ity of solutions. Then autoclave the tubes at 121°C around 20 min, and shake the tubes for
another 3 hours before measuring the conductivity. Finally, calculate the ratio of conductivity
before and after autoclaving.

For freezing survival assay, 12-day-old seedlings grown on MS plates containing 1% sucrose
and 0.8% agar were subjected to cold acclimation at 4°C for 7 days. The freezing treatment was
conducted in a freezing chamber with the following program: the temperature was set at 4°C
and reduced to 0°C within 30 min and then the temperature was reduced 1°C every 1hr until
-7°C was reached. Transfer the plates at 4°C for 12hr in the dark and recover the seedlings at
23°C for 5 days.

ABA treatment

For ABA treatment, seedlingswere grown in ½MS liquid medium for one week were treated
with 50 μm ABA for the indicated times as describedpreviously [74].
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Real-time RT-PCR analysis

For the examination of mRNA expression level, total RNA was extracted using the RNeasy
mini kit (Qiagen) according to the manufacturer’s instructions, and reversely transcribedusing
the High-Capacity cDNA Archive Kit (Applied Biosystems). Quantitative real-time PCR was
performed using the SYBR Green PCRmaster mix kit according to the manufacturer’s instruc-
tions. Actin mRNA was used as an internal control. Relative gene expression level was calcu-
lated from 2-ΔΔCt values. Primers used for qPCR are listed in S1 Table.

Mature miRNA quantification

Mature miRNA quantification was performed according to TaqMan Small RNA Assays proto-
col (Applied Biosystems). Arabidopsis SnoR101 was used as an internal control. TaqMan Gene
Expression Master Mix (Applied Biosystems) was used to perform qRT-PCR.

Chromatin Immunoprecipitation (ChIP) assays

ChIP assays were conducted as previously described [75]. Briefly, 2.0 g materials and the anti-
GFP (Abcam) antibody were used for ChIP assay. The precipitated DNA was dissolved in 100
ul of TE buffer, and 2 ul was used for ChIP real-time PCR. Three independent biological repli-
cates were performed, and a representative result is presented. Primer pairs used for ChIP
enrichment test are described in S1 Table.

Electrophoretic Mobility Shift Assay (EMSA)

GST-PHB recombinant fusion protein was expressed in the E. coli BL21 strain and purified
using Glutathione sepharose 4B beads (GE Healthcare). The oligonucleotides were labeled with
α-32P-dATP using T4 Polynucleotide Kinase (NEB), the 32P-labeled probes were incubated in
20 ul reactionmixtures containing 20 mM Tris-HCI (pH7.5), 300 mMNaCI, 5 mMMgCI2,
0.1% NP-40, 0.5 mMDTT for 20 to 60 min at room temprature, and separated on 6% poly-
acrylamide gels in Tris-glycine buffer (50 mM Tris, 380 mM glycine, 2 mM EDTA, pH 8.0).
The oligonucleotides used for EMSA are listed in S1 Table.

Measurement of endogenous ABA levels

ABA content was measured with a Phytodetek ABA test kit (Agdia, Inc., Elkhart, IN) following
the manufacturer’s instructions.

Supporting Information

S1 Fig. The phenotype of wild type and STTM165/166 plants grown on MSmedium sup-
plementedwith 0.1 μM ABA. Seedlingswere photographed 7 days after stratification.
(TIF)

S2 Fig. Quantitative RT-PCR analysis of the expression of bothmature miR165/166 and its
targets of 2-day-old seedlingsgrown on theMSmedium containing 1.0 μM ABA. Three
independent experiments were performed, and values are means ± standard deviation. Values
are means ± standard deviation.
(TIF)

S3 Fig. The phenotype of wild type and phb-13phv-11 plants grown on MSmedium supple-
mented with 1.0 μM and 2.0 μM ABA. Seedlingswere photographed 9 days after stratifica-
tion.
(TIF)
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S4 Fig. Comparison of the expression of ABA-responsive genes in wild type and STTM165/
166 seedlings treated with 50 μM ABA with a time course.Transcript abundance of RD29B
and RAB18was analyzed using qRT-PCR. Three independent experiments were performed,
each with three replicates. Values are means ± standard deviation.
(TIF)

S5 Fig. Comparison of the expression of core components of the ABA signaling pathway in
wild type and STTM165/166 seedlings.Transcript abundance of genes involved in ABA sig-
naling pathway was analyzed using qRT-PCR. Three independent experiments were per-
formed, each with three replicates. Values are means ± standard deviation.
(TIF)

S6 Fig. Comparison of the expression of core components of the ABA signaling pathway,
PYLs, in wild type and STTM165/166 seedlings treated with 50 μM ABA for different time
periods.Transcript abundance of PYLs was analyzed using qRT-PCR. Three independent
experiments were performed, each with three replicates. Values are means ± standard devia-
tion.
(TIF)

S7 Fig. Comparison of the expression of other core components of the ABA signaling path-
way, ABI1, ABI2 and HAB1, in wild type and STTM165/166 seedlings treated with 50 μM
ABA for different time periods.Transcript abundance of ABI1,ABI2 and HAB1 was analyzed
using qRT-PCR. Three independent experiments were performed, each with three replicates.
Values are means ± standard deviation.
(TIF)

S8 Fig. Comparison of the expression of other core components of ABA signaling pathway,
SnRK2.2, SnRK2.3 and SnRK2.6, in wild type and STTM165/166 seedlings treated with
50 μM ABA for different time periods.Transcript abundance of SnRK2.2, SnRK2.3 and
SnRK2.6was analyzed using qRT-PCR. Three independent experiments were performed, each
with three replicates. Values are means ± standard deviation.
(TIF)

S9 Fig. Comparison of the expression of genes involved in de novo ABA biosynthesis in
wild type and STTM165/166 seedlings.Transcript abundance of genes involved in de novo
ABA biosynthesis was analyzed using qRT-PCR. Three independent experiments were per-
formed, each with three replicates. Values are means ± standard deviation.
(TIF)

S10 Fig. Comparison of the phenotypes of wild type, STTM165/166 and STTM165/166 in
bg1-2 background under drought conditions. (A) Drought resistance test. 3-week-old plants
(upper panel) were grown under the same conditions but without irrigation for 12 days (mid-
dle panel), and then re-watered for 3 days (lower panel). (B) Quantification of survival rates.
Thirty plants of wild type and STTM165/166 were used in each experiment, and the survival
rate was calculated from the results of four independent experiments. (C)Water loss assay.
Aerial parts of 3-week-old plants were detached and weighed at the indicated time points.
Water content at any time point was calculated as percentage of the fresh weight at time zero.
Data were derived from four independent experiments (±SD).
(TIF)

S1 Table. Primers and oligonucleotidesused in this study.
(XLSX)
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