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Concomitant with the development of deep learning, brain–computer interface (BCI)

decoding technology has been rapidly evolving. Convolutional neural networks (CNNs),

which are generally used as electroencephalography (EEG) classification models, are

often deployed in BCI prototypes to improve the estimation accuracy of a participant’s

brain activity. However, because most BCI models are trained, validated, and tested

via within-subject cross-validation and there is no corresponding generalization model,

their applicability to unknown participants is not guaranteed. In this study, to facilitate

the generalization of BCI model performance to unknown participants, we trained a

model comprising multiple layers of residual CNNs and visualized the reasons for BCI

classification to reveal the location and timing of neural activities that contribute to

classification. Specifically, to develop a BCI that can distinguish between rest, left-hand

movement, and right-hand movement tasks with high accuracy, we created multilayers

of CNNs, inserted residual networks into the multilayers, and used a larger dataset than

in previous studies. The constructed model was analyzed with gradient-class activation

mapping (Grad-CAM). We evaluated the developed model via subject cross-validation

and found that it achieved significantly improved accuracy (85.69 ± 1.10%) compared

with conventional models or without residual networks. Grad-CAM analysis of the

classification of cases in which our model produced correct answers showed localized

activity near the premotor cortex. These results confirm the effectiveness of inserting

residual networks into CNNs for tuning BCI. Further, they suggest that recording

EEG signals over the premotor cortex and some other areas contributes to high

classification accuracy.

Keywords: deep learning, brain-computer interface, Grad-CAM, electroencephalography, deep residual

convolutional neural networks (CNN)
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INTRODUCTION

Brain–computer interface (BCI) decoding techniques have been
rapidly evolving in the recent years. Electromyogram (EMG)
can be decoded from local field potential (LFP) (Krasoulis
et al., 2014), and listened speech can be decoded from
electrocorticogram (ECoG) (Pasley et al., 2012; Kubanek et al.,
2013; Martin et al., 2018). However, for BCI decoding from
electroencephalography (EEG), although the time and spatial
resolutions are lower than those of LFP and ECoG, there
are ongoing attempts at task classification, such as estimating
whether the participant is resting, moving the right or left hand,
or moving the foot (Wolpaw et al., 2000; Pfurtscheller et al.,
2005; LaFleur et al., 2013; Aghaei et al., 2016). In these BCIs,
the methods to convert waveforms, which are divided into time
windows or frequency domain features using techniques such as
fast Fourier transform (FFT) (Cooley and Tukey, 1965; Welch,
1967), or features using a specific frequency band power, have
been used to classify the target task via advanced machine
learning (Aler et al., 2010a,b; Thang and Temiyasathit, 2014).

A method utilizing common spatial pattern (CSP), which is
often used in BCI, has been proposed to improve the accuracy
of multiclass classification of motor imagery by utilizing the
important clusters in the CSP feature set (Zhang et al., 2021).
Further, a method combining CSP and support vector machine
(SVM) with regularization has also been shown to improve
the classification accuracy of motor imagery through sparse
optimization (Jiao et al., 2020). The recent methods with task-
related component analysis (TRCA) and canonical correlation
patterns (CCP) (Duan et al., 2021) have also been proposed.
These methods combine filter banks and SVM to classify between
pre-movement and resting states with high accuracy (Jia et al.,
2022a). An improved method for multiclass pre-movement
classification by optimization with both filter bank and time
window selection has also been proposed (Jia et al., 2022b).

Some BCIs have also been applied to rehabilitation using
ad hoc handcrafted features based on medical or physiological
findings instead of advanced machine learning (Shindo et al.,
2011; Ramos-Murguialday et al., 2013; Ang et al., 2014; Frolov
et al., 2017; Ibáñez et al., 2017; Biasiucci et al., 2018). EEG-
based BCI has great potential for medical or everyday device
applications owing to its non-invasive property and capability
to decode the brain with an inexpensive device compared to
functional magnetic resonance imaging (fMRI) (Miyawaki et al.,
2008; Naselaris et al., 2011; Nishimoto et al., 2011; Shen et al.,
2019a,b). However, because its time and spatial resolutions are
lower than those of LFP and ECoG, the decoding accuracy tends
to be lower, and complicated decoding is not as effective as in LFP
and ECoG.

Recently, with the development of deep learning technologies
such as convolutional neural networks (CNNs), including
EEGNet, Deep-ConvNet, and Shallow-ConvNet, such issues
are gradually being overcome (Sakhavi et al., 2015, 2018;
Schirrmeister et al., 2017; Zhang et al., 2017; Lawhern et al., 2018).
Yang et al. (2015) reported improved classification accuracy for
motor imagery within-subject validation using CNN combined
with CSP. Dai et al. (2019) also reported that a method

combining CNN and variational autoencoder (VAE) improved
the classification accuracy of motor imagery. In addition, there
is currently the prospect of classifying even end-to-end learning
by applying deep learning directly to raw waveforms, whereas
in the past, machine learning was applied to features in the
frequency domain. In the frequency domain, features that assume
the stationarity of time series data for EEG tend to be detected.
However, by applying end-to-end learning to the raw waveform,
it may be possible to detect features that reflect non-stationary
waveform features, such as those identified in clinical EEG,
because the stationarity of the features is not assumed.

However, some previous studies have been validated on
datasets with a small number of participants, for example, nine
participants (Sakhavi et al., 2015, 2018; Schirrmeister et al., 2017;
Lawhern et al., 2018). In such cases, there is a need to exercise
caution, particularly when the performance validation is carried
out within-subject, which is a method of learning with the
same participant data as the test data. This method, however,
does not guarantee high generalization performance to unknown
participants, in which case calibration is not needed.

In the recent years, there have been validations with
large datasets consisting of more than 50 participants, but
generalizable models that do not require calibration have not
been built, possibly for reasons such as the existence of
participant groups with low accuracy (Lee et al., 2020) or the
requirement for calibration concerning each participant (Lun
et al., 2020). From the practical viewpoint of application of BCI,
it requires consideration as to whether calibration should be
actively carried out. For example, in a BCI such as a game device
(Ahn et al., 2014; Kerous et al., 2018), which simply needs to
move exactly as the participant desires, calibration using the
participant’s own EEG will not be problematic if it is acceptable
to the participant. However, BCI is not only used in applications
such as gaming devices for the purpose of entertainment, but also
for long-term training purposes to improve users’ abilities or to
treat diseases.

When applied in amedical field such as rehabilitation, training
with neurofeedback may be conducted using orthoses or other
devices that are moved by BCIs to achieve motor function
recovery (Shindo et al., 2011; Kasashima et al., 2012; Ramos-
Murguialday et al., 2013; Ang et al., 2014; Frolov et al., 2017;
Ibáñez et al., 2017; Biasiucci et al., 2018). In such a case, if
calibration is to be carried out, it should be performed to improve
the effect of treatment, to expand the number of participants to
whom the BCI can be applied, and to obtain clinical significance
(Ramos-Murguialday et al., 2013; Ono et al., 2014; Ibáñez et al.,
2017).

However, in the case of models whose performance has been
improved by within-subject cross-validation, it is required as a
matter of policy that performance be guaranteed using only the
data of the training participants in the calibration. Although BCIs
for training purposes such as therapeutic use should be adjusted
to be closer to the generalized model of the training target, this
policy implies that the BCI is only closer to the supervised label
presented to the training participants in the calibration session
and the training participants’ own brain activity data at that
time, and not to the training target. In therapeutic scenarios, this
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implies that we are only approaching the patient’s ownmodel as a
training participant, even though the training participants should
be induced to be healthy persons for motor function recovery.

One of the reasons for the above policy is that most of
the current studies are aimed at increasing the accuracy of
within-subject cross-validation, increasing the accuracy in cross-
subjects, and building a generalized model of the induction
target of the training participants, which does not ensure the
base accuracy without calibration. Training from the generalized
model to the individual model by performing calibration for
increasing the training effect of individual participants may
contribute to the practical use of BCI, but if the performance
of the generalized model is high initially, the need to rely
on calibration will be reduced. Thus, BCI devices that can
be used without calibration are generally focused only on
the advantage of saving time and effort of preparation before
use. However, because of the high robustness owing to the
generalized model, they may also contribute to the induction
effect and performance guarantee for use in neurofeedback
for training purposes. Therefore, the basic policy of our
research is to build a generalized model for the induction
target of the training participants for BCI training, that is, to
build a generalized model of healthy participants in BCI for
therapeutic purposes.

Another important improvement for the development of
BCI is that multilayer CNNs can be effective for improving
the accuracy of BCI. In the recent studies, it has been
recommended to insert residual networks into multilayer CNNs
to solve the degradation problem of multilayer neural networks
(Simonyan and Zisserman, 2014). Residual networks have the
advantage of solving the degradation problem during training
and contributing to accuracy improvement. The degradation
problem is a phenomenon in which, because CNN ismultilayered
(for example, more than 20 layers in one previous study), it
is challenging to improve the error on the training data rather
than improving the error on the test data as the layers become
deeper. According to research in image recognition, residual
nets can solve the degradation problem by adding a shortcut
connection, which is a copy of the input, after the CNN layer,
to prevent performance degradation by inserting more layers.
However, previous BCI studies have reported that the insertion
of residual networks adversely affects classification accuracy
(Schirrmeister et al., 2017).

In our study, we evaluate the effect of residual nets for
BCI not by within-subject validation of previous studies, but
by cross-subject validation using preprocessing, multilayering,
and as much data as possible. We consider that there is still a
possibility that the insertion of residual networks can contribute
to the improvement of classification accuracy by improving
CNN-based EEGNet (Lawhern et al., 2018), which can apply
end-to-end learning on the raw EEG, and learning it with
large datasets. After the batch normalization layer, we insert a
residual network into the multilayered blocks and use an EEG
dataset of more than 100 healthy participants obtained while
they were resting, executing left-hand movement, and executing
right-hand movement to validate the classification accuracy
by cross-validation.

As scientific and medical findings indicate that event-related
desynchronization (ERD), recorded near the sensorimotor area
(SM1), is involved in hand movements (Pfurtscheller and Lopes
da Silva, 1999), some conventional BCIs that classify hand
movements from EEG are controlled by handcrafted features
designed to capture only ERD (Shindo et al., 2011; Ang et al.,
2014; Ono et al., 2014; Ibáñez et al., 2017). Even if they try
to design BCIs using phenomenon and evaluation indices that
are statistically significant using known neuroscience findings,
they do not necessarily show high generalization performance,
and it is probable that the neuroscience findings necessary for
high-performance BCIs are not fully understood. By contrast,
with the development of machine learning technology, there
is room for the development of high-performance BCIs if
large amounts of data are available. Furthermore, recently,
technologies such as Grad-CAM (Selvaraju et al., 2017) that can
visualize the reasons for CNN decisions have been developed,
and it is now possible to obtain neuroscientific findings from
high-performance BCIs with generalized models. That is, it is
possible to obtain the type of neuroscientific findings required
for generalized models by considering a different approach from
the conventional findings.

There are two sides to this approach: (1) the previously known
neuroscientific findings and (2) new findings, but with improved
performance that will allow us to obtain new findings. However,
the way in which the cross-validation was conducted should be
noted. Previous studies evaluated within-subject cross-validation
and visualized the model, so that it represented individual
features of within-subject, but it could not describe generalized
features across participants (Schirrmeister et al., 2017; Lawhern
et al., 2018). Upon high-accuracy classification of whether the
BCI proposed in this study executes the hand movements of
healthy participants and demonstrating this using the test data of
unknown participants against training data, we can visualize the
model and obtain generalized knowledge across participants as to
when and which brain region influences the hand movements of
healthy participants.

This study was conducted to develop a generalized BCI
model, visualize the model, and classify hand movements
in healthy participants as an induction target for training,
thereby demonstrating that the data-driven scheme of scientific
exploration is valid and has neuroscientific value.

MATERIALS AND METHODS

This section describes the datasets used to train, validate, and
test the proposed model, its architecture, and how to visualize
the model.

Dataset
A dataset with a large number of participants is required to tune
the multilayer residual network and analyze the classification
model on a test dataset with a sufficient number of participants.
The PhysioNet EEG dataset (Goldberger et al., 2000; Schalk
et al., 2004) was chosen; it consists of 109 participants from an
open public EEG dataset during motor execution and imagery
tasks. The analysis of the classification model was aimed at
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FIGURE 1 | EEG channels map (Schalk et al., 2004).

explaining the neurological process during movement in healthy
participants. Thus, motor execution, which is less affected
by participants’ unfamiliarity and has higher label reliability
compared with motor imagery, was focused upon, and the rest
and motor execution data of both the right and left fists for
the task were used, resulting in a three-task classification. The
opening and closing fist movements were repeated. The duration
of each task was 4.5 s.

The details of the EEG motor execution dataset from
PhysioNet are as follows:

Participants: 109 healthy participants
Tasks: rest, left-hand fist, right-hand fist
Sampling frequency: 160 Hz
EEG channels: 64 electrodes as, per the international 10–10

system (Figure 1)
Trials: 30 trials (one trial selects any task)
Sessions: three sessions
There are 109 participants× 3 sessions× 30 trials data.
To perform data expansion on the training data during the

data preprocessing, the EEG was normalized to the mean value of
0, standard deviation of 1, and the noise generated by normalized
random numbers with 10% standard deviation in each trial
scale and 3% in each channel scale were added. Because four
participants (#88, #89, #92, and #100) did not complete the
experiment, their data were not used in the study.

The data of 20 participants out of 105 were randomly assigned
as test data, from which the data of the four abovementioned
participants were removed. Then, 5-fold cross-validation was
performed on the data of the remaining 85 participants, and
the model was evaluated by averaging the accuracy of the test
data for 20 participants. Because the training, validation, and test
data were divided by cross-subjects and not within-subjects, the
data for the participants in the training, validation, and test were
not mixed and did not overlap. In addition, when calculating

the accuracy of the test and validation data, no calibration was
conducted using data from the same participant.

Model Architecture
Residual-EEGNet (Figure 2) was constructed by revising
EEGNet—a model from a previous study (Lawhern et al.,
2018). The following is a description of the blocks used in its
architecture. The variable F1 was set to eight, D was set to two,
F2 was set to 16, and N_class was set to three.

The Conv2Dtype0 block consists of a convolution layer
(Krizhevsky et al., 2012) and a batch normalization layer (Ioffe
and Szegedy, 2015) in that order. The convolution layer performs
convolution with a kernel size of (1, 64) for a compressed 2D
vector (channels scale, time scale). The number of input feature
maps is one and the number of output feature maps is F1.

The Conv2Dtype1 block consists of a convolution layer,
a batch normalization layer, and a residual block (Simonyan
and Zisserman, 2014) in order (Figure 3). The convolution
layer performs convolution with a kernel size of (1, 64) for a
compressed 2D vector (channel scale, time scale). The number of
input feature maps is F1 and the number of output feature maps
is F1.

The Conv2Dtype2 block consists of a convolution layer,
a batch normalization layer with an exponential linear unit
(ELU) activation function, average pooling layer, and dropout
layer (Krizhevsky et al., 2012), in that order. The convolution
layer performs convolution with a kernel size of (64, 1)
for a compressed 2D vector (channel scale, time scale). The
convolution filter is regularized using a maximum norm
constraint of one on its weights. The average pooling layer
performs convolution with a kernel size of (1, 4) for a compressed
2D vector (channel scale, time scale). The dropout ratio is 25%.
The number of input featuremaps is F1 and the number of output
feature maps is F1× D.

In the Conv2Dtype3 block, two convolution layers for
depthwise convolution and pointwise convolution (Chollet,
2017) are used, as in the EEGNet. The depthwise convolution
layer has a convolution with a kernel size of (1, 16) for a
compressed 2D vector (channel scale, time scale). The number
of input feature maps is F1×D and the number of output
feature maps is F1×D. The pointwise convolution layer has a
convolution with kernel size of (1, 1), the number of input
feature maps is F1×D, and the number of output feature maps is
F1×D. After depthwise convolution and pointwise convolution
for the input, Conv2Dtype3 has a batch normalization layer, and
a residual block, in that order (Figure 3).

In the Conv2Dtype4 block, two convolution layers for
depthwise convolution and pointwise convolution are used, as
in EEGNet. The depthwise convolution layer has a kernel size of
(1, 16) for a compressed 2D vector (channel scale, time scale).
The number of input feature maps is F1×D, and the number
of output feature maps is F1×D. The pointwise convolution
has a kernel size of (1, 1), the number of input feature maps
is F2, and the number of output feature maps is F1×D. After
depthwise convolution and pointwise convolution for the input,
Conv2Dtype4 contains a batch normalization layer, residual
block with the ELU activation function (Clevert et al., 2016),
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FIGURE 2 | Architecture of residual-EEGNet. This model consists of Conv2Dtype0∼4 blocks and classifier.

average pooling layer, and dropout layer. The average pooling
layer performs convolution with a kernel size of (1, 8) for a
compressed 2D vector (channel scale, time scale). The dropout
ratio is 25%.

In the Classifier block, the input is processed and the output
is processed through a convolution layer with a kernel size of (1,
23) using the LogSoftmax function. The number of input feature
maps is F2 and the number of output feature maps is N_class
units, with N_class being the number of classes in the data.

The architecture presented above is that of Residual-
EEGNet. Residual-EEGNet is coupled with a forward flow of
one block of Conv2Dtype0, ten blocks of Conv2Dtype1, one
block of Conv2Dtype2, five blocks of Conv2Dtype3, one block
of Conv2Dtype4, and one Classifier block (Figure 2). Non-
Residual-EEGNet has the same architecture, but the residual
block present in Residual-EEGNet is absent; Non-BN-EEGNet
has the same architecture but the batch normalization layer is
absent; Non-Dropout-EEGNet has the same architecture, but
the dropout layer is absent. Non-Preprocessing is the method
without the data preprocessing from Residual-EEGNet. EEGNet,
Deep-ConvNet, and Shallow-ConvNet are legacy models that
were used in the previous studies (Schirrmeister et al., 2017;
Lawhern et al., 2018).

Stochastic gradient descent (SGD) (Robbins and Monro,
1951; Rumelhart et al., 1986; Zhang, 2004; Bottou, 2010; Bottou
et al., 2018) was employed to optimize the model parameters
with cosine annealing of the learning rate (Loshchilov and

FIGURE 3 | Architecture of the residual layer. After the convolutional layer and

batch n normalization layer (Batch Norm), copies of the inputs are added to

those outputs. This is the final output.

Hutter, 2017). The categorical cross-entropy loss function was
minimized. A total of one thousand training iterations (epochs)
were run. The initial learning rate was set to 0.001 and
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momentum to 0.9 in the SGD optimizer, and the maximum
update period was set to 29,000 iterations in cosine annealing.
The batch size was set to 100. These three network models were
optimized using a training dataset.

Visualization Method of the BCI
Classification Process
Class activation mapping (CAM) (Zhou et al., 2016)-based
approaches are often used to provide a visual understanding of
predictions made by CNNs. Because the CAM algorithm assumes
a neural network with a global average pooling (GAP) layer (Lin
et al., 2013), which calculates the average value for each feature
map and assigns that value to the subsequent neural network,
we used Grad-CAM (Selvaraju et al., 2017), which is generalized
to allow visualization of the reasons for classification in CNN
architectures without GAP.

In CAM, the weights connecting the GAP calculation values
and the output layer of the neural network are applied to the
feature map to visualize the regions in the image that are used
as decision criteria.

CAM: For the CNNs containing GAP layers, which this
algorithm can support, the weighted sum of the GAP values
determines the final output class of the image slice.

Plugging Fk =
∑

x,y fk
(

x, y
)

into the class score, Sc, yields

Sc =
∑

k

wc
k

∑

x,y

fk
(

x, y
)

=
∑

x,y

∑

k

wc
kfk

(

x, y
)

.

We define Mc as the class activation map for class c, where each
spatial element is given by

Mc

(

x, y
)

=
∑

k

wc
kfk

(

x, y
)

.

Thus, Sc =
∑

x,y Mc

(

x, y
)

, and hence,Mc

(

x, y
)

directly indicates

the importance of the activation at spatial grid
(

x, y
)

, leading
to classification of an image as class c (Zhou et al., 2016). This
computation maps the importance of the information from the
output, which is used to classify decisions, directly into each layer.

Grad-CAM:We differentiate the probability score yc of class c
with respect to the intensity Ak

ij at the
(

i, j
)

pixel of the kth feature

map and calculate the gradient
∂yc

∂Ak
ij

. By averaging them over all

pixels (global average pooling), we calculate the weight factor αc
k

for the kth filter of class c,

αc
k =

1

z

∑

i

∑

j

∂yc

∂ Ak
ij

.

The larger the value of weight factor αc
k
, the more influence the

feature map Ak has on class c.
Consequently, the heatmap generation used the

following formula:

LcGrad−CAM = ReLU
(

∑

k
αc
kA

k
)

,

where the rectified linear unit (ReLU) function was only allowed
to evaluate features with positive impact. The weighted average of
the k filters is calculated using weighting factor αc

k
, and the output

is calculated using activation function RELU (x) ≡ max{x, 0},
defined as the heatmap output.

Thus, Grad-CAM can visualize the reasons for decisions using
the gradient between the feature map and the output values
of the neural network. This study employed Grad-CAM as a
visualization method for the BCI classification process. Here,
the convolutional layer of the block, which is one block before
the dimension reduction block in the first pooling layer, was
used for visualization, although it is said that visualizing the
last convolutional layer can reveal the most discriminative part
locally based on the results of Grad-CAM analysis.

RESULTS

Comparison With the Cross-Validation of
Cross-Subject in Terms of BCI
Performance
Figures 4, 5 and Table 1 compare the accuracies of Residual-
EEGNet (the proposed model), Non-Residual-EEGNet (the
model without a residual network), Non-BN-EEGNet (the
model without a batch normalization layer), Non-Dropout-
EEGNet (themodel without a dropout layer), Non-Preprocessing
(the model without data preprocessing), EEGNet (a legacy
model), Deep-ConvNet, and Shallow-ConvNet. Here, statistical
comparisons were made using Welch’s t-test (Welch, 1938,
1947) for each of the two unpaired samples, and the applied
threshold was set to control the false discovery rate (FDR) at
p-value using the Benjamini–Hochberg procedure (Benjamini
and Hochberg, 1995). The Benjamini–Hochberg procedure
prevents type I errors. On comparing the decoding accuracy of
Residual-EEGNet to Non-Residual-EEGNet, Non-BN-EEGNet,
Non-Dropout-EEGNet, and Non-Preprocessing for the ablation
study, three statistically significant differences without Non-BN-
EEGNet (Figure 4) were observed. On comparing the decoding
accuracy of Residual-EEGNet to EEGNet, Deep-ConvNet, and

FIGURE 4 | Comparison of decoding accuracy for four models. The mean

and standard deviation of the accuracy in the test data were evaluated by

cross-validation. The error bar shows the standard deviation. The accuracy of

Residual-EEGNet was higher than that of EEGNet, Deep-ConvNet, and

Shallow-ConvNet and was statistically significant (*p < 0.05).
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Shallow-ConvNet, which are legacy models, three statistically
significant differences (p < 0.05) were observed (Figure 5).

Grad-CAM Results
We analyzed the accuracy of the brain activity classification
results obtained using our BCI model. For the visualized model,
the highest accuracy (87.1%) of the Residual-EEGNet model
for cross-validation was selected. The confusion matrix of the
model is shown in Table 2. The histogram of the accuracy
averaged for participants in the model is shown in Figure 6.
Except for one participant, the results exhibit high accuracy. For
the data classified by the selected model, the classification was
visualized using Grad-CAM to obtain the correct answers where
the actual label and the estimated value matched. For the selected
layer for Grad-CAM, the 10th layer was chosen, the last of the
Conv2Dtype1 block, to locally analyze the parts that contributed
more to the classification. The 10th layer was a 2D layer of
features for 64 channels and 720 time points.

In Figures 7–10, the mean in the time domain of the
Grad-CAM scores is shown for the three tasks (rest, left-
hand motor execution, and right-hand motor execution) on
Residual-EEGNet. In Figure 7, the mean Grad-CAM scores
are shown in the heatmap. In Figures 8–10, we show the
mean of the Grad-CAM scores and the standard deviation
of the participants. The baseline is also shown—obtained by

FIGURE 5 | Comparison of decoding accuracy for five models. The mean and

standard deviation of the accuracy in the test data were evaluated by

cross-validation. The error bar shows the standard deviation. The accuracy of

Residual-EEGNet was higher than that of Non-Residual-EEGNet,

Non-BN-EEGNet, Non-Dropout-EEGNet, Non-Preprocessing and was

statistically significant (*p < 0.05).

calculating the average of all the channels. In Figures 8, 10, the
channels with locally high scores were identified by statistically
comparing the difference between each channel’s Grad-CAM
score and the baseline. Here, statistical comparisons were made
using Welch’s t-test (Welch, 1938, 1947) for each of the two
unpaired samples, where the applied threshold should be set
to control the FDR at p-value by the Benjamini–Hochberg
procedure (Benjamini and Hochberg, 1995). For the rest task,
Grad-CAM scores of FC6, C5, and Iz were locally higher than
the baseline, with statistical significance (∗p < 0.05). For the left-
hand motor execution task, the Grad-CAM score of FC5 was
locally higher than the baseline, with statistical significance (∗p
< 0.05). These localized increases in Grad-CAM score are also
confirmed in Figure 7. On the other hand, for the right-hand
motor execution task, no channel was locally higher than the
baseline statistically.

In Figures 11–13, the changes in the Grad-CAM scores in
the time domain for each channel are shown. By statistically
comparing the difference between each channel’s Grad-CAM
score and the baseline for each time point, we identified
the time zones with locally high scores for each channel.
Similarly, statistical comparisons were made using Welch’s
t-test (Welch, 1938, 1947) for each of the two unpaired
samples, where the applied threshold should be set to control
the FDR at p-value using the Benjamini–Hochberg procedure
(Benjamini and Hochberg, 1995).

In Figure 11, for the rest task, only Grad-CAM scores in
the FC1, FC4, FC6, C3, C5, Iz, and T7 channels were locally
higher than the baseline at specific time points and were
statistically significant (∗p < 0.05). The scores of the other
channels did not significantly increase. In particular, the Grad-
CAM scores in FC6, C3, C5, and Iz significantly increased

TABLE 2 | Confusion matrix for the highest accuracy (87.1%) residual-EEGNet

model.

Predicted

Rest Left Right

Actual Rest 810 38 52

Left 40 361 27

Right 39 31 357

TABLE 1 | Differences in the decoding accuracies of Residual-EEGNet, Non-Residual-EEGNet, Non-BN-EEGNet, Non-Dropout-EEGNet, Non-Preprocessing, EEGNet,

Deep-ConvNet, and Shallow-ConvNet.

Residual-

EEGNet

Non-

Residual-

EEGNet

Non-BN-

EEGNet

Non-

Dropout-

EEGNet

Non-

Preprocessing

EEGNet Deep-

ConvNet

Shallow-

ConvNet

Mean % 85.69 83.00 84.95 82.84 80.25 78.01 80.40 78.66

Std % 1.10 1.22 1.45 1.03 0.83 3.18 0.780 0.585

P-value (diff to Residual-EEGNet) – 0.0064* 0.39 0.0029* 0.000033* 0.0039* 0.000042* 0.000013*

The accuracy of Residual-EEGNet was higher than those of Non-Residual-EEGNet, Non-Dropout-EEGNet, Non-Preprocessing, EEGNet, Deep-ConvNet, and Shallow-ConvNet, with

statistical significance (*p < 0.05).
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FIGURE 6 | Histogram of accuracy averaged by participants for the highest

accuracy Residual-EEGNet model. The black line represents the total average

accuracy (87.1%).

for an extended period. In Figure 12, regarding the left-hand
motor execution task, only the Grad-CAM scores in the FC3
and FC5 channels were locally higher than the baseline at
specific time points and were statistically significant (∗p <

0.05). Meanwhile, the scores of the other channels did not
significantly increase. In particular, the Grad-CAM scores in
FC5 significantly increased for an extended period. In Figure 13,
for the right-hand motor execution task, only the Grad-CAM
scores in the FC3 and PO7 channels were locally higher
than the baseline at specific time points and were statistically
significant (∗p < 0.05). The scores for the other channels did not
significantly increase.

DISCUSSION

BCI Performance Evaluation
The accuracy of Residual-EEGNet was significantly higher than
that of Non-Residual-EEGNet (∗p < 0.05). This implies that
the residual network contributed to improving the accuracy.
Schirrmeister et al. (2017) previously reported that introducing
a residual network negatively affects the accuracy improvement
and contributes to a decrease in the BCI accuracy, which
classifies motor imagery with EEG. Unlike previous studies,
which did not succeed in improving the accuracy by introducing
residual networks, the current model achieved success, which
is attributed to a significant difference compared to previous
studies. Specifically, 85 subjects participated in 5-fold cross-
validation and ∼80% in training; by contrast, previous studies
used datasets with fewer than 10 participants, for example, nine
participants (Schirrmeister et al., 2017).

For reference, the ablation studies examined the performance
of the model components by, respectively, removing two
components (batch normalization and dropout) and the data
preprocessing function from Residual-EEGNet. The ablation
results for the two components, which are considered important
components of Residual-EEGNet, showed that the accuracy
of Non-Dropout-EEGNet was significantly lower than that of

FIGURE 7 | Heatmap of Grad-CAM score on Residual-EEGNet for three tasks

(rest, left-hand motor execution, and right-hand motor execution). The

heatmap was made from Grad-CAM scores of 64 channels.
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FIGURE 8 | Comparison of all channels’ Grad-CAM scores on Residual-EEGNet for rest. The baseline was calculated as the mean of 64 channels’ scores. The

Grad-CAM scores for FC6, C5, and Iz were higher than the baseline, and were statistically significant (*p < 0.05). The error bar shows the standard deviation between

participants.
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FIGURE 9 | Comparison of all channels’ Grad-CAM scores on Residual-EEGNet for left-hand motor execution. The baseline was calculated as the mean of 64

channels’ scores. The Grad-CAM score for FC5 was higher than the baseline and was statistically significant (*p < 0.05). The error bar shows the standard deviation

between participants.
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FIGURE 10 | Comparison of all channels’ Grad-CAM scores on Residual-EEGNet for right-hand motor execution. The baseline was calculated as the mean of 64

channels’ scores. No Grad-CAM score was statistically significant (*p < 0.05). The error bar shows the standard deviation between participants.
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FIGURE 11 | Time series changes of Grad-CAM scores during rest. In the gray-filled background, the Grad-CAM scores for the FC1, FC4, FC6, C3, C5, Iz, and T7

channels were higher than the baseline and were statistically significant (*p < 0.05).
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FIGURE 12 | Time series changes of Grad-CAM scores during left-hand

motor execution. In the gray-filled background, the Grad-CAM scores for the

FC3 and FC5 channels were higher than the baseline and were statistically

significant (*p < 0.05).

Residual-EEGNet. Batch normalization and dropout are the well-
known methods for improving the accuracy of CNNs, and they
are also used in the legacy EEGNet model, so removing them
generally tends to reduce accuracy. However, the standalone
removal of batch normalization did not significantly reduce
the accuracy, and we consider that dropout, which significantly
reduced the accuracy, contributed to the improved accuracy
of Residual-EEGNet. The accuracy was also significantly lower
when the data preprocessing function was removed. In this case,
the removal of the data preprocessing function resulted in the
raw waveforms being fed directly into the model, which may
have affected the differences in impedance and noise conditions
between subjects and between electrodes. The data preprocessing
function in this study was found to be beneficial.

Furthermore, the accuracy of Residual-EEGNet was higher
than that of EEGNet, Deep-ConvNet, and Shallow-ConvNet,
and was statistically significant (∗p<0.05). As EEGNet was
originally validated on a small dataset (nine participants) in
the previous study, the accuracy of the model when trained
with the different dataset under the different conditions was
unknown (Lawhern et al., 2018). This study calculated the
accuracy of the previous EEGNet when trained on the same
dataset of over 100 participants as our Residual-EEGNet and

FIGURE 13 | Time series changes of Grad-CAM scores during right-hand

motor execution. In the gray-filled background, the Grad-CAM scores for the

FC3 and PO7 channels were higher than the baseline and were statistically

significant (*p < 0.05).

compared it to the BCI model, confirming the improvement
in accuracy over the previous EEGNet. In this comparison, the
only difference between the current Residual-EEGNet and the
previous EEGNet was the architecture of themodel. The previous
EEGNet (Lawhern et al., 2018) had three convolutional layers,
whereas the current model has 10 layers, with a residual network
inserted. This implies that the multiple layers of the residual
CNNs improved accuracy.

From these results, a generalized model of motor classification
for healthy people can be obtained by training the end-to-
end learning model using raw EEG data. We found that
inserting residual networks and multilayer networks improved
the BCI accuracy and contributed to the development of a
generalized model.

Visualizing the Location and Timing of
Neural Activities That Contribute to BCI
Classification
The BCI model has a higher accuracy (87.1%) than previous
models, such as EEGNet, Deep-ConvNet, Shallow-ConvNet
(Schirrmeister et al., 2017; Lawhern et al., 2018). Consequently,
the part of the brain activity that has a more generalized finding
can be determined. The histogram of the accuracy averaged
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by participants for the model demonstrates that a generalizable
model was successfully built. If the model is analyzed with
Grad-CAM, generalizable knowledge about the brain processes
related to hand movement can be obtained. In addition, because
this study developed a more generalizable model for healthy
participants, the model can be treated as an induction model of
BCI for training.

The brain areas contributing to each task classification can
be discussed based on the results of Grad-CAM. Regarding the
rest task, a significant increase in Grad-CAM scores in the FC6,
C3, C5, and Iz channels was observed. Notably, this suggests
that these channels are related to specific characteristic cortical
areas of rest against left- and right-hand motor execution, rather
than all characteristics of rest. Furthermore, these channels reflect
the activity of the premotor cortex (PMc), M1, and visual cortex
(Kandel et al., 2000). In addition, a study on the development
of BCI using supplementary motor area (SMA) and M1 as
features trained within-subject has been published (Wang et al.,
2006). Although not a generalized finding, Frolov et al. (2020)
analyzed the classification component of BCIs for motor imagery
trained using within-subject cross-validation and reported the
involvement of SMA. Herein, it was assumed that activity near
the PMc and SMA (Kandel et al., 2000), which are involved in
motor execution planning, would become an apparent factor in
classifying between rest and left- or right-hand motor execution,
but the results of the current analysis did not show any brain
activity near the SMA. In this regard, the results of this analysis
only suggest that the PMc is at least highly localized and involved
in classification and does not deny the involvement of activity
other than that of the PMc in classifying between rest and
motor execution.

In the field of image recognition, the results of Grad-CAM
analysis of the final convolutional layer often show strong
localization, but the results of this model generally show weak
localization and non-zero baseline behavior. We consider that
we have achieved high BCI accuracy by considering weak effects
from various brain activity areas.

For the left-hand motor execution task, a significant increase
in Grad-CAM scores in the FC3 and FC5 channels was
confirmed. Notably, this suggests that these channels are related
to specific characteristic brain sites of the left-hand motor
execution task against rest and right-hand motor execution.
However, for the right-hand motor execution task, a significant
increase in the Grad-CAM scores in the FC3 and PO7
channels was observed. Notably, this suggests that the channels
are related to specific characteristic brain sites of the left-
hand motor execution task against rest and right-hand motor
execution. These channels are thought to reflect the activity near
the PMc.

The presence or absence of motor commands for the
right- or left-hand can be classified in relation to the resting
state using the activity near the SMA and PMc, called non-
primary motor-related areas. However, it is not sufficient to
discriminate between right- and left-hand motor commands,
where it was assumed that it would be difficult to improve

the accuracy without using the activity near M1, which has
somatotopic localization. Anatomically, motoneurons in the
right-hand are activated by motor commands from the M1 of
the contralateral left hemisphere via the corticospinal tract, and
vice versa (Kandel et al., 2000). Therefore, when using brain
activity in the M1 to discriminate between left- and right-hand
motor executions, it would be effective to discriminate between
contralateral changes in brain activity in the right and left
hemispheres, such as C4 and C3 on the electrode, respectively.
However, the results of the Grad-CAM analysis failed to show
any contrasting localization of the brain activity changes in
C4 and C3, respectively, but showed a biased localization
near the PMc of the left hemisphere, such as FC3 and FC5.
FC3 during the right-hand movement is near the contralateral
PMc; however, FC3 and FC5 during the left-hand movement
are near the ipsilateral PMc, which was not assumed in the
previous studies.

Although it is difficult to explain this observation based
on current physiological knowledge completely, especially in
terms of the activation of the ipsilateral side, there are several
possibilities. There may be cases in which brain activity with
different timing is observed near the left PMc for the right- and
left-hand motor execution tasks even though the location is the
same, or where different waveforms are observed, but these have
not been identified in this study. Nevertheless, this study showed
that it is possible to improve the BCI accuracy without relying on
the somatotopic localization near the M1 region.

In general terms, the channels involved in classifying resting,
left-handed, and right-handed motor executions in our BCI
reflect activity near the PMc and M1 regions. The activity of
these regions was reported to be activated during exercise from
the studies of ERD (Pfurtscheller and Lopes da Silva, 1999),
transcranial magnetic stimulation (TMS) (Aono et al., 2013),
sensory evoked potentials (SEPs) (Starr and Cohen, 1985; Jiang
et al., 1990; Seki et al., 2003; Seki and Fetz, 2012), and fMRI
(Kasess et al., 2008; Ritter et al., 2009). In particular, BCI
rehabilitation was reported to increase the effective connectivity
from the affected SM1 to PMc and SMA around FC5, FC3,
and FC1 with motor function recovery. These are the important
parameters as an induced target of BCI rehabilitation, which
is one of the BCIs for the training purpose (Biasiucci et al.,
2018).

Considering studies on repetitive transcranial magnetic
stimulation (rTMS) (Chen et al., 2003; Murase et al., 2005),
SEPs (Starr and Cohen, 1985; Jiang et al., 1990; Seki et al.,
2003; Seki and Fetz, 2012), fMRI (Kasess et al., 2008; Ritter
et al., 2009), etc., it is desirable to improve the accuracy
of such BCI by designing candidate generalized BCI features
validated with cross-subjects for SM1 and other motor-related
areas such as the SMA and PMc. However, there are no known
successful cases of such an approach, owing to the feature
design difficulty. This study adopted the different approach
of data-driven design of a highly accurate BCI by end-to-end
training of raw EEG data and discriminative labels, without
assuming specific features and visualization of the model. The
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BCImodel was tuned to reflect the influence of brain activity near
the PMc.

Features of Grad-CAM as a BCI Model
Visualization Method for Residual-EEGNet
The BCImodel has been visualized in amanner such that the CSP
weight vector is displayed on a topography map (Jia et al., 2022a).
The weight of CSP is calculated by maximizing the variance ratio
between classes for each EEG channel, and the weight vector
itself is visualized. The fundamental difference as a visualization
method is that CAM and Grad-CAM can calculate and visualize
feature maps for each input dataset. Because it is possible to
visualize a collection of cases with only correct answers, omitting
incorrect answers from the model, we consider that the findings
obtained from the visualization results are highly reliable, which
is the procedure followed in this study.

Note that the visualization of the CSP weight vectors includes
both sides of the misclassified and correctly classified cases.
Considering that it is also important to know how well our
proposed model, which is the subject of the visualization,
classifies the correct answers, i.e., how accurate it is, we compared
it with models proposed in the previous studies (Schirrmeister
et al., 2017; Lawhern et al., 2018) and also conducted an
ablation study. The results showed that the model is more
accurate than the compared three othermodels from the previous
studies, thus ensuring a high degree of confidence in the
visualization results. The Deep-ConvNet and Shallow-ConvNet
models of previous studies were found to be as accurate or more
accurate than the Filter Bank Common Spatial Pattern (FBCSP)
(Schirrmeister et al., 2017). However, because CSP is often used
in a preprocessing role, and its accuracy differs depending on the
machine learning-based classification method of the main block,
it is difficult to make comparisons in all cases.

We also consider that the reliability of the visualization results
will vary depending on the method used to visualize the cross-
validated models in this study. We distinguish between within-
subject and cross-subject in cross-validation. Because within-
subject validation is trained for each subject (Schirrmeister et al.,
2017; Lawhern et al., 2018), we consider that the reliability of the
model is not guaranteed for unknown subjects. This is because
even if the model is trained to prevent overfitting in within-
subject validation, the prevention of overfitting in cross-subjects
is not guaranteed. Therefore, we consider that the latter type
of model visualization, which guarantees the reliability of the
model for unknown subjects, is more appropriate for finding
neuroscientific knowledge for the target group of subjects. In
this study, we adopted the latter method and confirmed that
the reliability of the model for unknown subjects, i.e., the
accuracy in the test data, is also higher than the accuracy of the
conventional model.

In addition, the following is a supplemental explanation of the
technical details. The model used for visualization is also often
combined with a frequency filter in CSP to visualize the weight
vector for a specific frequency, as shown by Jiao et al. (2020). That
visualization method often captures phenomena such as ERD
localized in SM1 (Zhang et al., 2021). However, in this study, we

did not limit ourselves to frequency domain analysis assuming
stationarity of the EEG, but used a model in which the features
of the raw waveform were learned end-to-end to deal with the
reliability issue in the methods. The visualization results showed
that ipsilateral activity and frontal area (SMAor/and PMc), rather
than phenomena such as ERD localized in SM1, were helpful for
classification with high accuracy.

The advantage of Grad-CAM over CAM is that it can
visualize the weights of the layers that contribute to the
output of the predictive labels for each input dataset by
calculating the variation in the output of the predictive
labels of the final layer in response to the variation in the
feature map, which is the feature gradient, and multiplying
it by the feature map instead of the weight vector of the
GAP in CAM. This allows visualization of CNN models not
limited to GAP. In addition, we recognize that Grad-CAM
can theoretically be applicable and used for CSP as long as
the feature gradients can be calculated. Furthermore, models
combining CSP and CNN have been reported (Yang et al., 2015).
Therefore, we consider CSP as a candidate for a method to be
combined as a preprocessing method rather than a model to
be compared.

Technical Limitations and Contributions to
Future BCI Studies
In the recent years, it is being anticipated that BCI
will be used in various fields, particularly in medicine.
However, there is a need to improve its accuracy, the
sophistication of the decoding targets, and the effectiveness
of its use. The immediate goal of this study was to
improve generalization performance without calibration.
As this study is still a rudimentary attempt, the decoding
targets were resting state and motor execution of left- and
right-hand movements. It has not been validated on high-
difficulty decoding tasks, which is a technical limitation
at present.

In future work, we plan to further increase the number of
layers in the model and try to improve the accuracy and difficulty
of the decoding targets. Further technical improvements are
also needed, such as increasing the size of the current dataset
and data augmentation. If a motor execution task decoding
model for healthy subjects, which is different from the patient
model, can be constructed with sufficient generalizability through
this study, it could result in an efficacy advantage over
previous studies with respect to its application to rehabilitation
for the purpose of restoring motor function in patients
with stroke.

CONCLUSION

This study confirmed the following:

(1) The proposed BCI can be trained by end-to-end learning
from raw EEG data.

(2) A generalized model of motor classification of healthy
people, who are the targets of BCI rehabilitation
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patients, was developed as a generalized BCI model
for training.

(3) The insertion of residual networks and the multilayer
networks improved the accuracy of our BCI.

(4) The proposed BCI contributed to the non-primary and
primary motor-related areas in the Grad-CAM analysis.

In the future, an increase in the training data is expected to scale
up the BCI model.
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