
ORIGINAL RESEARCH
published: 18 May 2022

doi: 10.3389/fnbot.2022.904017

Frontiers in Neurorobotics | www.frontiersin.org 1 May 2022 | Volume 16 | Article 904017

Edited by:

Jose De Jesus Rubio,

Instituto Politécnico Nacional (IPN),

Mexico

Reviewed by:

Luis Arturo Soriano,

Chapingo Autonomous University,

Mexico

Genaro Ochoa,

Instituto Tecnológico Superior de

Tierra Blanca, Mexico

Ricardo Balcazar,

Technological Institute of Higher

Studies of Coacalco (TESCO), Mexico

*Correspondence:

Alejandro Juarez-Lora

jjuarezl2020@cic.ipn.mx

Victor H. Ponce-Ponce

vponce@cic.ipn.mx

Received: 25 March 2022

Accepted: 14 April 2022

Published: 18 May 2022

Citation:

Juarez-Lora A, Ponce-Ponce VH,

Sossa H and Rubio-Espino E (2022)

R-STDP Spiking Neural Network

Architecture for Motion Control on a

Changing Friction Joint Robotic Arm.

Front. Neurorobot. 16:904017.

doi: 10.3389/fnbot.2022.904017

R-STDP Spiking Neural Network
Architecture for Motion Control on a
Changing Friction Joint Robotic Arm
Alejandro Juarez-Lora*, Victor H. Ponce-Ponce*, Humberto Sossa and Elsa Rubio-Espino

Instituto Politécnico Nacional, Centro de Investigación en Computación, Mexico City, México

Neuromorphic computing is a recent class of brain-inspired high-performance computer

platforms and algorithms involving biologically-inspired models adopting hardware

implementation in integrated circuits. The neuromorphic computing applications have

provoked the rise of highly connected neurons and synapses in analog circuit systems

that can be used to solve today’s challenging machine learning problems. In conjunction

with biologically plausible learning rules, such as the Hebbian learning and memristive

devices, biologically-inspired spiking neural networks are considered the next-generation

neuromorphic hardware construction blocks that will enable the deployment of new

analog in situ learning capable and energetic efficient brain-like devices. These features

are envisioned for modern mobile robotic implementations, currently challenging to

overcome the pervasive von Neumann computer architecture. This study proposes a

new neural architecture using the spike-time-dependent plasticity learning method and

step-forward encoding algorithm for a self tuning neural control of motion in a joint robotic

arm subjected to dynamic modifications. Simulations were conducted to demonstrate

the proposed neural architecture’s feasibility as the network successfully compensates

for changing dynamics at each simulation run.

Keywords: neuromorphic, robotics, reinforcement learning, STDP, rewardmodulation, control theory, applications

1. INTRODUCTION

Spiking neural networks (SNNs), also called the third generation of neural networks, represent
a new design paradigm where some biological neural dynamics are replicated, with similar
energy efficiency and in situ learning capabilities, as seen in living organisms, whereas hardware
miniaturization is feasible. Neuromorphic computing (Saxena et al., 2018; Kendall and Kumar,
2020) emerges as an effort to create built-in neural hardware, emulating the neuronal impulsive-like
electrical activity and in-situ synaptic learning in analog devices. Therefore, neuron dynamics have
to be translated into circuit proposals to achieve these behaviors. As for the synapses, where learning
occurs in biological brains, memristors are taking their role as the electrical element counterpart
(Zhang et al., 2021). These devices, theorized by Leon Chua, relate flux with charge, resulting in a
variable resistor. The conductivity is given by how much current has flowed between its ports in

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2022.904017
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2022.904017&domain=pdf&date_stamp=2022-05-18
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jjuarezl2020@cic.ipn.mx
mailto:vponce@cic.ipn.mx
https://doi.org/10.3389/fnbot.2022.904017
https://www.frontiersin.org/articles/10.3389/fnbot.2022.904017/full


Juarez-Lora et al. Self Tuning PID With SNN

a determined period. Therefore, its conductance serves as the
synaptic weight which can be tuned by applying current (Yue and
Parker, 2019). At Zamarreño-Ramos et al. (2011), an exploration
into how neurons and memristors can be interconnected
as an array scheme to achieve large scale spiking systems,
using synaptic time-dependant plasticity (STDP), is presented.
Since then, several proposals have been presented. Recently, a
memristor analog crossbar circuit is used to emulate a single layer
perceptron for the MNIST image classification problem (Kim
et al., 2021). In Shi et al. (2021), a circuit proposed to manage
reward modulation is presented, setting the building blocks for
implementation.

Cutting-edge neuromorphic implementations still demand
going deeper into studying the neuron dynamics and plausible
learning methods since the non-differentiable nature of the
neuron dynamic doesn’t allow the use of the well-known
backpropagation synaptic weight adjustment; widely employed
in ordinary artificial neural networks (ANN). Therefore, there
are some open challenges to address before constructing high-
performance neuromorphic devices, as well as encoding and
decoding information techniques. According to Hu et al. (2022),
learning algorithms used in SNNs are summarized in:

• Modified gradient-descendent-based algorithms: As neuron
models are non-differentiable, some modifications are
pertinent to achieve the classical backpropagation learning
rule, employed in most of the ANNs, i.e., SpikeProp
(Kheradpisheh and Masquelier, 2020).

• Algorithms using a spike train kernel:Where an error function
is used to compute and update synaptic weights, using a spike
train kernel, i.e., SPAN (Mohemmed et al., 2012).

• Algorithms using synaptic plasticity: Based on Hebbian
learning, the synaptic weights tuning is given by the
correlation of pre and post-synaptic spikes. In STDP, the
modification of the neural strength connections is performed
as the learning process occurs, as in biological brains (Hao
et al., 2020).

Synaptic plasticity phenomena explain how learning is conducted
in biological brains, enhancing conductivity between neurons
that fire together, wire together, and deprecating those unused
connections.

On other hand, information, usually shaped as an analog
signal, has to be encoded into the neuron spike domain. The
scientific community is still debating how information from
the environment is converted into electrical neural activity.
According to Dupeyroux et al. (2021), neuron spike coding
methods can be classified into three categories.

• Population encoding: A group of n neurons, each one with
different characterization (i.e., different τm,Rm,Cm), is set to
be excited about an input current. As a result, at a given
time-step, some neurons will spike faster than others. The
characterization of neurons is made in such a way the domain
of the input signal is distributed between the n neurons, using
tuning curves (Voelker and Eliasmith, 2020).

• Rate-based encoding: One neuron is used to encode the
variation of the input signal ∈ [Imin, Imax]. As larger an input

signal gets, the spiking frequency of the neuron increases.
A minimal input current traduces into a minimum spike
frequency, inside a frequency interval ∈ [fmin, fmax].

• Temporal encoding: Also called pulse coding, produces spikes
according to a temporal change of the input signal. This is, if
an input signal is constant, no spikes are produced, even if the
signal is large. As soon the signal increases or decreases, spikes
will be emitted.

While population encoding reaches the best performance, its
efficiency is reduced, as it needs a huge amount of resources
(neurons) in order to be implemented. Rate-based encoding has
become the standard, but it presents the need to spike even
with a zero input signal, increasing the power consumption.
Besides, it can’t encode negative values, as seen in Bing et al.
(2019a), where a negative input signal has to be fed as its absolute
value. The temporal encoding provides a time-based method,
providing more information capacity per synaptic event, and it
is supported by neurophysiological studies in auditory and visual
processing in the brain (Guo et al., 2021). SNNs can send data
encoded as the timing of spikes occurrences, allowing fast and
low energy consumption hardware implementation, applicable
to real-world robotics problems. Furthermore, SNNs are more
prominent than non-spiking ANN as they profit from temporal
stimulus information, referring to the precise timing of events
that allows obtaining and processing of information.

Spiking neural networks on robotic design systems are
a promising research topic as online learning, and huge
computational capacities are commonly required in this field.
For instance, at Chen et al. (2020), an SNN controls a 4-
DOF (Degree of Freedom) manipulator arm using population
encoding and a proposed learning rule. Bing et al. (2019b)
use a reward-modulation learning rule to teach a differential
robot how to track a path, using rate-based encoding to do
conversion of visual input into spiking activity. A similar task is
studied numerically by Bing et al. (2019b), controlling a snake’s
movement instead. Lu et al. (2021) achieve obstacle avoidance
for an Ackerman-type mobile robot, using two neurons and
two synapses, implemented on a digital development board.
Bing et al. (2019a) achieve obstacle avoidance and goal-reaching
for a differential robot, implementing separate neural control
structures for each task. Over these articles, while control is
achieved based on interaction with the environment, changing
dynamics in the robot produced by weathering in the joints
or unknown environmental perturbances are not addressed. A
typical control strategy for a robotic open-chain manipulator
requires re-tuning each time friction or mass on the robot
changes, affecting performance. This article proposes an SNN
architecture that learns how to reconstruct an input signal.
Inspired by control theory, this structure is then used in a
control loop, using the same input signals in a PID, but fed into
the structure in order for the synaptic weights to evolve over
changing dynamics on a 1-DOF robotic arm.

The document is structured as follows: Section 2 describes the
control problem to be tackled, neuron and synapse dynamics,
and how these are ensembled for a controlling proposal.
Section 3 shows the simulation results of the proposed SNN

Frontiers in Neurorobotics | www.frontiersin.org 2 May 2022 | Volume 16 | Article 904017

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Juarez-Lora et al. Self Tuning PID With SNN

FIGURE 1 | LIF model (A) diagram of a spiking LIF neuron. (B) Spiking activity

for a LIF neuron with Isyn = 1.51 nA. (C) Tuning curve of the neuron model.

Neuron parameters are in Table 1.

implemented in 1-link. Section 4 discusses results, advantages,
and drawbacks, while at last, Section 5 is devoted to conclusion
and future study.

2. MATERIALS AND METHODS

2.1. Control Problematic
According to Craig (1986), Lynch (2017), the dynamics of an
open chain robotic manipulator can be written in joint space as:

τ = M(q)q̈+ C(q, q̇)q̇+ g(q) (1)

Where q = [θ1, θ2, ..., θn]
T are the joint angles of the robotic

arm with n DOFs, M(·) stands for inertia matrix terms, C(·)
is the Coriolis’s matrix and friction dynamics, g(·) are gravity
compensation terms and τ = [τ 1, τ 2, ..., τn]T means the torque
control for each joint. Typically, PID control strategies are the
standard. Based on the desired state xd(t), a tracking error qe =

qd − q is defined, setting the control input τ (t) as:

TABLE 1 | Neuron and synapse modeling parameters.

Model Parameters Value

LIF neuron Membrane resistance Rm = 10 M�

Membrane’s capacitance Cm = 1 nF

Time decay membrane τm = 0.010 s

Resting voltage El = −70 mV

Reset voltage Vreset = −75 mV

Spike voltage Vspike = 20 mV

Threshold voltage Vth = −55 mV

RSTDP synapse LTP scaling A+ = 1

LTD scaling A− = −1

Elegibity trace scale τE = 0.010 s

Min. Synaptic weight wmin = 1

Max. Synaptic weight wmax = 1,000

τ (t) = KPθe + Ki

∫

θe(t)dt + Kdθ̇e (2)

At Equation (2), KP ∈ Rn×n,Kd ∈ Rn×n,Ki ∈ Rn×n are the gain
matrix for proportional, derivative, and integral control, which
elements are zeros except in the diagonal. This strategy is the
function of the tracking error, which on zero, there will be no
control output. Consider:

τ = M̃(q)q̈+ C̃(q, q̇)+ g̃(q) (3)

Here, M̃, C̃, g̃ represents our model representation of the plant,
and it is perfect if M̃(q̈) = M(q̈), C̃(q, q̇) = C(q, q̇), and g̃(q) =
g(q). Therefore, if the control loop works on the estimation,
it would work for the real model. Usually, in the development
process of a robot controller, Kp,Ki, and Kd are tuned for initial

M̃, C̃, and g̃. This becomes a problem as the robot’s weathering
modifies its dynamic properties, such as friction. Or perhaps,
mass changes over time, as seen in biological limbs in living
creatures.

2.2. Spiking Neural Network Modeling
In order to describe the proposed structure, a review of how a
neuron generates spikes, how synapses store learning, and how
to generate reward signals is presented.

2.2.1. Neuron Modeling
As an input stimulus is provided to the neuron cell, shaped as
an input current, the membrane’s potential vm increases. Once
it overpasses a threshold voltage vth, the neuron produces a
spike, and then it immediately resets its membrane potential to
a reset voltage vreset . The neuron cannot fire again until a certain
refractory period has elapsed. Some differential equation models
illustrate these neural dynamics with high biological plausibility
but prohibitive computational cost such as Hodgin and Huxley
or Izhikevich models (Izhikevich, 2004; Valadez-Godínez et al.,
2020). Nonetheless, others with a lesser plausibility can compute
the membrane potential with less effort degrading the accuracy,

Frontiers in Neurorobotics | www.frontiersin.org 3 May 2022 | Volume 16 | Article 904017

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Juarez-Lora et al. Self Tuning PID With SNN

FIGURE 2 | Step Forward + STDP Neural structure. (A) Schematic of the structure. (B) Sinusoidal Signal sin = sin(ωt)+ cos(3ωt) being reconstructed. (C) Synaptic

Weight evolution. (D) Gaussian noise with σ = 0.01 was added to foster synaptic update. (E) Synaptic Weight evolution with added noise. Simulation Parameters are

available at Table 2.

TABLE 2 | Step Foward + STDP Encoding simulation.

Model Parameters Value

Simulation parameters Time step dt = 0.1ms

Signal angular velocity ω = 2rad/s

Total time simulation 10s

SF encoder Threshold sth = 0.02

Initial base value sb = 0

SF decoder Threshold sth = 0.02

Initial base value sb = 0

but are still useful as a goodmodel approximation, due that spikes
generation with the same characteristics as biological neurons
might not be necessary for circuit implementations, such as the
Leaky Integrate and Fire (LIF) (Lu et al., 2021) model, given by:

τm
dvm(t)

dt
= −vm(t)+ El + RmIsyn (4)

At Equation (4), vm(t) represents the neuron’s membrane
potential, El is the resting potential of the neuron, Rm membrane
resistance, τm = RmCm is the decay time for vm(t), being Cm

the neuron’s membrane capacitance. Isyn stands for the injected
current to the neuron. Each time a spike arrives at the neuron,
Isyn increases. On the other hand, if no spikes arrive at the
neuron, the current decays. This phenomenon is described by
LIF conductance-based model (Hao et al., 2020; Lu et al., 2021),
composed of Equations (4 and 5):

τm
dIsyn

dt
= −Isyn + Cm

N
∑

i

wijδ(t − t
f
i ) (5)

Frontiers in Neurorobotics | www.frontiersin.org 4 May 2022 | Volume 16 | Article 904017

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Juarez-Lora et al. Self Tuning PID With SNN

FIGURE 3 | Modified Step Forward + STDP Neural structure. (A) Schematic of the structure. (B) Sinusoidal Signal sin = sin(ωt)+ cos(3ωt) being reconstructed.

(C) Synaptic Weight evolution. (D) Gaussian noise with σ = 0.3 was added to foster synaptic update. (E) Synaptic Weight evolution with added noise. Simulation

parameters are available at Table 3.

In Equation (5), wij is the synapse strength value between a
presynaptic, i− th, neuron and a postsynaptic, j− th, neuron. As
for each postsynaptic neuron, there can beN presynaptic neurons

connected, t
f
i is then a vector with firing times from each of theN

presynaptic neurons. δ is the Kronedecker delta function, which
δ(x) = 1 for x = 0 and δ(x) = 0 for x 6= 0. Equation (5) assumes
all presynaptic spikes have been produced at time t. For each time

a new spike happens, t
f
i = t, therefore, δ(t − t

f
i ) = 1. Once the

neuron threshold voltage vth is over-passed, the neuron spikes,
emitting a pulse of magnitude vspike, then, the neuron resets to a
reset potential v = vreset and it starts integrating again. Figure 1A
shows the LIF structure model, while its spiking activity for a
given fixed and variable input current is shown at Figures 1B,C,
respectively.

2.2.2. Synaptic Modeling
Once we define how neurons produce spikes, we will expose
how synaptic strength is adjusted. STDP (Bing et al., 2019b)

TABLE 3 | Modified Step Foward + STDP Encoding simulation.

Model Parameters Value

Simulation parameters Time step dt = 0.1 ms

Signal angular velocity ω = 2 rad/s

Added gaussian noise 10%

Total time simulation 10 s

SF encoder Threshold sth = 0.0005

Initial base value sb = 0

Current output Ic = 4.6 nA

SF decoder Threshold sth = 0.025

Initial base value sb = 0

is an unsupervised learning algorithm (based on the Hebbian
learning rule) for SNN. It describes how synaptic weights are
strengthened or weakened according to neural spike activity, and

Frontiers in Neurorobotics | www.frontiersin.org 5 May 2022 | Volume 16 | Article 904017

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Juarez-Lora et al. Self Tuning PID With SNN

FIGURE 4 | SNN-PID control proposal flow chart showing steps for implementation.

FIGURE 5 | SNN-PID controller neural structure for 1-DOF robot pendulum.

it has demonstrated plausibility over conducted experiments in
biological systems. First, a synaptic weight value is randomly
assigned for each defined synapse. Then, the time difference
between pre and post-synaptic firing times 1t = tpost − tpre
is computed and it determines the rate of change 1w on the
synaptic weight w as:

STDP(1t) =

{

A+e
−1t/τpost 1t ≥ 0

A−e
−1t/τpre 1t < 0

(6)

ẇ =
∑

tpre

∑

tpost

STDP(1t) (7)

Here, A+,A− are scaling constants depicting whether our
synaptic weight has been incremented (Long Term Potentiation
LTP) or decremented (Long Term Depression LTD). τpre, τpost are
positive and negative constants representing decay time. Once
again, these equations imply all spikes have been produced. Since
neurons do not have a memory of all their fired spikes (Bing et al.,

2019a), Equation (6) can be rewritten in the function of the last
firing time (Morrison et al., 2008; Gerstner et al., 2018). This
results in the following expressions:

STDP(t − tpre/post) =

{

A+δ(t − tpre)
A−δ(t − tpost)

(8)

As each time a presynaptic spike tpre is produced, tpre = t and
δ(t − tpre) = 1. With each postsynaptic spike, tpost = t and
δ(t − tpost) = 1. Next, we define an eligibility trace Ejk for
each synapse between a presynaptic neuron j and a post-synaptic
neuron k as:

Ėjk(t) = −
Ejk

τE
+ STDP(t − tpre/post) (9)

This expression computes synaptic weight changing history,
generated by the collected spikes. To control the sensitivity
of the plasticity to delayed reward, an exponential τE =

τpre = τpost constant for Ejk(t) is defined. This implies a
symmetric learning rate for LTD and LTP (Taherkhani et al.,

Frontiers in Neurorobotics | www.frontiersin.org 6 May 2022 | Volume 16 | Article 904017

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Juarez-Lora et al. Self Tuning PID With SNN

FIGURE 6 | 1-Link robot controller performance comparison. (A) Robot Angle evolution for each robot, SNN-RSTDP: with Rjk = tanh q̈e (Yellow), SNN-STDP:

proposal with Rjk = 1 (Blue), PID-Controller tuned with Ziegler Nichols (Green), compared against reference (Red). (B) Control output of each controller. (C) Error

position: difference against the reference. (D) Synaptic weights evolution for constant reward robot (SNN-STDP). (E) Synaptic weight evolution for the rewarded robot

(SNN-RSTDP). (F) Reward signal for both SNN proposals.

2020). Change in synaptic weights is obtained by integrating
(Equation 9). The reward modulated STDP, or R-STDP learning
rule model, integrates the reinforcement learning paradigm in
SNNs, modifying the STDP algorithm based on dopamine effects
for learning in biological brains (Framaux and Gerstner, 2016).
Consider:

ẇjk(t) = Rjk(t)× Ejk(t) (10)

Here, Rjk(t) ∈ Rn×1 is a reward signal for the synapses between

layer a j − th and k − th layer in a network, bounded inside

[−1, 1], which enables or disables synaptic modification (called

learning), and it is defined by interaction with the environment as

a function of an objective (i.e., the desired path, desired position,

desired action). It is worth mentioning that, when Rjk = 1, the

R-STDP rule equals STDP, as Equation (7) equals Equation (10).
When Rjk is equal to 0, learning is inhibited.

Frontiers in Neurorobotics | www.frontiersin.org 7 May 2022 | Volume 16 | Article 904017

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Juarez-Lora et al. Self Tuning PID With SNN

Algorithm 1:Modified step forward encoding algorithm.

Data: input, threshold, base
Result: Out+(i), Out−(i)
L = length(input);
for i = 2:L do

if input(i) > base + threshold then
base = base + threshold
Out+(i) = 1 ;
Out−(i) = 0 ;

else if input(i) < base + threshold then
base = base - threshold
Out+(i) = 0 ;
Out−(i) = 1 ;

end

TABLE 4 | RMSE analysis result comparison for STDP-SNN, RSTDP-SNN, and

PID controllers.

Signal RSTDP STDP PID

Position 0.101231 0.12089 0.116812

Velocity 0.116812 0.21960 0.33481

Acceleration 0.43922 0.400311 1.49198

Best cases are in bold.

2.2.3. Encoding and Decoding Between Continuous

and Spike Domains
Step forward encoding (SF henceforth), described in Kasabov
et al. (2016) and Dupeyroux et al. (2021), is considered a
temporal encoding algorithm, as it converts the variation of
an input signal to spikes. The module for the step forward
encoding contains two outputs ports Out+,Out−, and an
input port, sin, which is compared with a baseline value sb.
If the incoming signal is bigger than a certain predefined
threshold value sth (this is: sin > sb + sth), then a spike
will be produced over Out+. On the contrary, if the signal
has decreased (sin < sb − sth), a spike will be produced in
Out−. As the spike’s domain is always positive, the emitted
spikes can be processed by SNNs representing positive and
negative changes in value. The procedure herein is shown
in Algorithm 1.

A neural structure proposal for exploiting SF encoding
with SNN and STDP is shown in Figure 2A. An input signal
is fed to an encoder and the decoded output signal tends
to match the original, as the synaptic weights get updated
(Figure 2B). For signal growth, learning in the w+ synapse
occurs. Once the signal decreases, an update for negative synapse
w− begins (Figure 2C). In order to foster a quick synaptic
weight adjustment in both synapses, Gaussian noise was added
to the input signal sin (Figure 2D), with a SD of σ = 0.01.
As a secondary effect, accumulation in the decoder’s output
signal takes place, as seen in Figure 2E. In order to harness
the low-pass filter dynamics of the LIF neuron model, a slight
modification is proposed. Instead of spikes, a given current Ic

is sent as the encoder outputs. Figure 3 shows the same signal
reconstruction obtained with the proposed modifications, setting
Ic = 4.6 nA as current input to a LIF neuron which, according
to its tuning curve (refer to Figure 1C), it would produce spikes
at a frequency of 200 Hz. Signal reconstruction is achieved.
Moreover, Gaussian noise with σ = 0.3 is added to the input
signal, achieving signal reconstruction and filtering, as seen
in Figure 3D.

2.3. Self Tuning SNN Controller Proposal
The objective is to create an SNN structure that enables the
learning of the robot’s dynamics and reconstructs the necessary
torque control output based on Equation (2). In order to take
advantage of synaptic plasticity properties, tuning PID control
parameters K on the fly is performed. The procedure steps are
shown in Figure 4 and described in detail upnext. First, a module
computes the desired path, using a cubic polynomial trajectory
planning generation Algorithm (Craig, 1986; Spong et al., 2005),
with initial and final points randomly defined between the
joint’s boundaries, and initial and final desired velocities set to
zero. Next, qe,

∫

qedt, q̇e are computed and added; then, they
are applied to an SF encoder module, which out is sent to an
SNN processing positive changes (called SNN+), and another
for negative changes (called SNN-). Both networks share the
same structure, as SNN+ and SNN- are intended to process
the necessary signal increments and decrements, respectively.
These networks are composed of two layers j − th and k −

th composed of n LIF neurons each (same amount of DOFs
in the robot), modeled by Equations (4), (5). Between j − th
and k − th layers, there are wjk ∈ Rn×n synapse matrices
with randomly initialized weight values between minimum and
maximum synaptic values [wmin,wmax]. For all synapses, its value
will be modified accordingly to Equations (8–10). Each output
spike from the neurons of the k − th layer in SNN+ and SNN-
serves as input for the n SF decoders, which output corresponds
to each torque input signal for the robot. The proposed structure
is shown in Figure 5.

3. RESULTS

3.1. 1-DOF SNN Simulation Implementation
For a 1-link robot (a pendulum), its non-linear model has a shape
like in Equation (1) and is given by:

τ = ml2θ̈ +mgl sin(θ)+ml2kθ̇ (11)

Where m stands for the arm’s weight, l its length, g is the gravity
acceleration term, k is the viscous friction in the joint, θ ∈

[θmax, θmin] is the joint angle, τ represents torque in the robot’s
joint, acting as the input control signal to the system.

Figure 6 shows simulation results comparing performance
between three controllers:

• SNN-STDP: proposed model with fixed reward signal Rjk = 1.
• SNN-RSTDP: proposed model with reward signal Rjk given as

a function of acceleration error q̈e.

Frontiers in Neurorobotics | www.frontiersin.org 8 May 2022 | Volume 16 | Article 904017

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Juarez-Lora et al. Self Tuning PID With SNN

FIGURE 7 | Neuron activity for 1-link controller pendulum. First, t = 100s of the entire control execution is shown, for SNN-STDP (Up) and SNN-RSTDP (down).

A zoom at t = 0ms− 250ms is shown at the highest neuron activity.

• Amanually tuned PID controller, tuned by the Ziegler Nichols
technique (Ogata, 2010)

For the SNN-RSTDP controller, a bounded reward signal
delimited by [−1, 1], is given next:

Rjk = tanh(q̈e) (12)

For each episode of length 15s, the desired path is computed,
selecting initial and final positions randomly, but setting the final
position of the current episode as the initial position for the next

episode. The proposed SNN quickly tunes itself. At t = 45s (refer
to red dotted vertical line), the link’s joint friction coefficient k
and weight m increase to a new knew and mnew values. From
t = 90s to t = 100s, qd = constant, q̇d = 0.

In Figures 6A,B, it can be seen that robot angle runs evolve

smoothly on both RSTDP and STDP controlled robots, in

contradistinction from PID controlled robots, in which evolution

oscillates more. Besides, in Figure 6C, it can be seen at the output

control for the PID presents jittering, which in real scenarios
would produce fatigue on the motor, decreasing its lifespan. In

Frontiers in Neurorobotics | www.frontiersin.org 9 May 2022 | Volume 16 | Article 904017

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Juarez-Lora et al. Self Tuning PID With SNN

TABLE 5 | 1-link robot simulation parameters.

Model Parameters Value

1-DOF robot Joint angle boundaries [θmax , θmin] = [0,2π ]

parameters Mass M = 1 kg

New mass at 45s Mnew = 3 kg

Longitude L = 2.5 m

Gravity acceleration g = 9.8 m/s2

Initial viscous friction constant k 0.1 kg/s

New viscous friction constant at 45s knew 0.5 kg/s

PID controller Proportional gain kp = 180

Integral gain ki = 50

Derivative gain kd = 12.5

Simulation Time step dt = 0.1 ms

parameters Number of episodes 6

Length of an episode 15s

Total time simulation 100s

SF encoder Threshold sth = 0.001

Initial base value sb = 0

Output current Ic = 140nA

SF decoder Threshold sth = 0.2

Initial base value sb = 0

order to analyze the variance of the tracking task, a root mean
squared error (RMSE) metric signal (Petro et al., 2020), which is
intended to be minimized, is defined as:

RMSEq =

√

∑N
t=1(q− qd)2

N
(13)

Where N is the number of all timesteps along with the
experiment. Similar values RMSEq̇, RMSEq̈ can be obtained using
velocities q̇ and accelerations q̈ instead. Table 4 shows the mean
RMSE values for a hundred iterations with random desired
trajectories, comparing the position, velocity, and acceleration
for each of the three used controllers. It can be seen that RSTDP
and STDP controllers achieve better performance, having lower
RMSE values. RMSEq̈ presents the worst metrics for the PID
controller, explaining the jittering for the torque output, which
is the function of the acceleration of the robot.

Figure 7 shows the spiking frequency of each neuron
for both STDP and RTDP controllers. It can be seen
that for the first 200ms (Refer to zoomed section), the
frequency grows and drops quickly, as decoders send current
to each input neuron according to the sensibility sth. All
the values used for RSTDP synapses, LIF neuron model,
and SF encoding and decoding are depicted in Table 1. 1-
link Robot simulation parameters are shown in Table 5. The
simulation has been performed using Python3 scripts.

4. DISCUSSION

The utility of a neuromorphic controller operation for a 1-
DOF robot capable of learning the changing dynamics has

been experimentally demonstrated with results comparable with
a standard control technique. The PID used for comparison
is tuned using a pretty standard and popular procedure for
industrial applications. It is an iterative process that intends
to eliminate response oscillations based on select proper gains
throughout multiple testing executions in the plant. The
procedure ends when the responsible technician is pleased with
the performance, making it as precise as its interpretation, and
it has to be re-tuned each time the dynamics of the plant
change.

Unlike the PID, our proposal eliminates the need for tuning
procedures. Nonetheless, some issues have to be addressed. First,
SNN parameters were selected to mimic biological brain systems,
which can bemodified to fit actual electrical circuit standards. For
example, values of wmin and wmax were chosen arbitrarily, while
they should be scaled to fit actual memristor conductance limit
values.

A+, A−, which control LTD and LTP, play an important
role in stability, as they control the learning rate of the
system. Small values will result in slow convergence, while
larger values will overshoot the output control signal. Value
sth for SF encoding will determine its sensitivity against the
input signal, setting the amount of neural activity (spikes) as
the response. For decoding, sth determines output modification,
as it has to be sufficiently large to scale the outgoing signal
and sufficiently small to avoid overshoot and under-damping
behavior. SF encoding also shows no neural activity for the
SNN- stage for always increasing signals. Ic modules spiking
frequency, as for higher values, output signal amplitude is
affected too.

A stability analysis to determine proper LTD, LTP values,
thresholds, and current inputs for encoding/decoding and
learning rate values is needed. While it is a pending task,
some challenges arise, as some system dynamics are not
differentiable (LIF, SF models). Therefore, Lyapunov asymptotic
stability analysis cannot be performed. However, some possible
alternatives are proposing differentiable models of the neuron
dynamics, defining the system on the frequency domain, or
conducting Von Neumann stability studies.

On the other hand, noise then allows to update synaptic
weights constantly, but the sensibility of the encoding is crucial,
as for small sth values, signal variation produces redundant neural
activity, generating an accumulative error for decoding. Our
proposal effectively used neuron dynamics as a filter, in an open
loop. A possible alternative to use or implement alongside would
be to use the Moving-Window SF algorithm instead. Similar to
SF, starting from an initial baseline and threshold values, the
baseline is updated differently as an average input signal for a
time window. This corresponds to a median filter.

As this scheme proposal tackles fully actuated 1-DOF robotic
manipulators, its usage in N-DOF has to be studied. SNN
structuremight be usable in under-actuated systems, but the SNN
architecture must be modified. Hyper-redundant manipulators
present a similar problem, as flexible robotic arms can be
considered like infinite DOF systems. An infinite neural structure
generation is problematic. Therefore, modifications have to be
proposed in the future.

Frontiers in Neurorobotics | www.frontiersin.org 10 May 2022 | Volume 16 | Article 904017

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Juarez-Lora et al. Self Tuning PID With SNN

5. CONCLUSION

A self-tuning SNN architecture for a 1-DOF manipulator
robot arm is proposed, based on a typical control scheme.
Numerical simulation shows the feasibility and, in some
cases, outperforms PID performance. The architecture
also shows self-tuning properties on changing dynamics.
From the control theory point of view, a neural structure
with similar PID performance is described. Nevertheless,
stability analysis is still pending, describing the relationship
between spiking activity, current injection, learning rate, and
coding velocity. Besides, explainable neural networks are
possible, considering control loop architectures. However,
neuron models, synapses, and coding/decoding modules
should be implemented in analog circuit counterparts to
achieve real-time computing scenarios with efficient energy
consumption.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in
online repositories. The name of the repository and accession
number can be found below: Github, https://github.com/
AlejandroJuarezLora/Frontiers-SNN.git.

AUTHOR CONTRIBUTIONS

AJ-L proposed, developed, programmed the neural control code
and conducted simulation runs, and wrote the first draft of
the manuscript. VP-P and HS proposed modifications to the
SNN architectures. ER-E reviewed the code required for the PID
controller experiments. All authors contributed to the conception
and design of the study and manuscript revision, read, and
approved the submitted version.

FUNDING

The authors would like to thank the economic support of
the projects SIP 20210124, 20221780, 20211657, 20220268,
20212044, 20221089, 20210788, 20220226, and COFAA and
CONACYT FORDECYT-PRONACES 6005.

ACKNOWLEDGMENTS

The authors would like to thank the support provided by
Instituto Politécnico Nacional, Secretaría de Investigación y
Posgrado, Comisión de Operación y Fomento de Actividades
Académicas, and CONACYT-México for the support to carry out
this research.

REFERENCES

Bing, Z., Baumann, I., Jiang, Z., Huang, K., Cai, C., and Knoll, A.

(2019a). Supervised learning in snn via reward-modulated spike-timing-

dependent plasticity for a target reaching vehicle. Front. Neurorobot. 13, 18.

doi: 10.3389/fnbot.2019.00018

Bing, Z., Jiang, Z., Cheng, L., Cai, C., Huang, K., and Knoll, A. (2019b). “End to end

learning of a multi-layered snn based on r-stdp for a target tracking snake-like

robot,” in 2019 International Conference on Robotics and Automation (ICRA),

9645–9651.

Chen, X., Zhu, W., Dai, Y., and Ren, Q. (2020). “A bio-inspired spiking neural

network for control of a 4-dof robotic arm,” in 2020 15th IEEE Conference on

Industrial Electronics and Applications (ICIEA) (Kristiansand: IEEE), 616–621.

Craig, J. J. (1986). Introduction to Robotics: Mechanics and Control. Reading, MA:

Addison-Wesley Publishing Co. Inc.

Dupeyroux, J. (2021). A toolbox for neuromorphic sensing in robotics. arXiv

[Preprint]. Available online at: https://arxiv.org/abs/2103.02751

Framaux, N., and Gerstner, W. (2016). Neuromodulated spike-timing-dependent

plasticity, and theory of three-factor learning rules. Front. Neural Circ. 9, 85.

doi: 10.3389/fncir.2015.00085

Gerstner, W., Lehmann, M., Liakoni, V., Corneil, D., and Brea, J. (2018).

Eligibility traces and plasticity on behavioral time scales: experimental support

of NeoHebbian three-factor learning rules. Front. Neural Circ. 12, 53.

doi: 10.3389/fncir.2018.00053

Guo, W., Fouda, M. E., Eltawil, A. M., and Salama, K. N. (2021). Neural coding

in spiking neural networks: a comparative study for robust neuromorphic

systems. Front. Neurosci. 15, 638474. doi: 10.3389/fnins.2021.638474

Hao, Y., Huang, X., Dong, M., and Xu, B. (2020). A biologically plausible

supervised learning method for spiking neural networks using the

symmetric stdp rule. Neural Netw. 121, 387–395. doi: 10.1016/j.neunet.2019.

09.007

Hu, T., Lin, X., Wang, X., and Du, P. (2022). Supervised learning algorithm based

on spike optimization mechanism for multilayer spiking neural networks. Int.

J. Mach. Learn. Cybern. doi: 10.1007/s13042-021-01500-8

Izhikevich, E. (2004). Which model to use for cortical spiking neurons? IEEE

Trans. Neural Netw. 15, 1063–1070. doi: 10.1109/TNN.2004.832719

Kasabov, N., Scott, N. M., Tu, E., Marks, S., Sengupta, N., Capecci, E., et al. (2016).

Evolving spatio-temporal data machines based on the neucube neuromorphic

framework: design methodology and selected applications. Neural Netw. 78,

1–14. doi: 10.1016/j.neunet.2015.09.011

Kendall, J. D., and Kumar, S. (2020). The building blocks of a brain-inspired

computer. Appl. Phys. Rev. 7, 011305. doi: 10.1063/1.5129306

Kheradpisheh, S. R., and Masquelier, T. (2020). Temporal backpropagation for

spiking neural networks with one spike per neuron. Int. J. Neural Syst. 30,

2050027. doi: 10.1142/S0129065720500276

Kim, H., Mahmoodi, M. R., Nili, H., and Strukov, D. B. (2021). 4k-

memristor analog-grade passive crossbar circuit. Nat. Commun. 12, 5198.

doi: 10.1038/s41467-021-25455-0

Lu, H., Liu, J., Luo, Y., Hua, Y., Qiu, S., and Huang, Y. (2021). An autonomous

learning mobile robot using biological reward modulate stdp. Neurocomputing

458, 308–318. doi: 10.1016/j.neucom.2021.06.027

Lynch, K. (2017).Modern Robotics: Mechanics, Planning, and Control. Cambridge,

United Kingdom; New York, NY: Cambridge University Press.

Mohemmed, A., Schliebs, S., Matsuda, S., and And Kasabov, N. (2012). Span: spike

pattern association neuron for learning spatio-temporal spike patterns. Int. J.

Neural Syst. 22, 1250012. doi: 10.1142/S0129065712500128

Morrison, A., Diesmann, M., and Gerstner, W. (2008). Phenomenological models

of synaptic plasticity based on spike timing. Biol. Cybern. 98, 459–478.

doi: 10.1007/s00422-008-0233-1

Ogata, K. (2010).Modern Control Engineering. Boston, MA: Prentice-Hall.

Petro, B., Kasabov, N., and Kiss, R. M. (2020). Selection and optimization of

temporal spike encoding methods for spiking neural networks. IEEE Trans.

Neural Netw. Learn. Syst. 31, 358–370. doi: 10.1109/TNNLS.2019.2906158

Saxena, V., Wu, X., Srivastava, I., and Zhu, K. (2018). Towards neuromorphic

learning machines using emerging memory devices with brain-like energy

efficiency. J. Low Power Electron. Appl. 8, 34. doi: 10.3390/jlpea8040034

Shi, C., Lu, J., Wang, Y., Li, P., and Tian, M. (2021). “Exploiting memristors

for neuromorphic reinforcement learning,” in 2021 IEEE 3rd International

Conference on Artificial Intelligence Circuits and Systems (AICAS) (Washington

DC: IEEE), 1–4.

Spong, M. W., Hutchinson, S., and Vidyasagar, M. (2005). Robot Modeling and

Control. Wiley. 146–189.

Frontiers in Neurorobotics | www.frontiersin.org 11 May 2022 | Volume 16 | Article 904017

https://github.com/AlejandroJuarezLora/Frontiers-SNN.git
https://github.com/AlejandroJuarezLora/Frontiers-SNN.git
https://doi.org/10.3389/fnbot.2019.00018
https://arxiv.org/abs/2103.02751
https://doi.org/10.3389/fncir.2015.00085
https://doi.org/10.3389/fncir.2018.00053
https://doi.org/10.3389/fnins.2021.638474
https://doi.org/10.1016/j.neunet.2019.09.007
https://doi.org/10.1007/s13042-021-01500-8
https://doi.org/10.1109/TNN.2004.832719
https://doi.org/10.1016/j.neunet.2015.09.011
https://doi.org/10.1063/1.5129306
https://doi.org/10.1142/S0129065720500276
https://doi.org/10.1038/s41467-021-25455-0
https://doi.org/10.1016/j.neucom.2021.06.027
https://doi.org/10.1142/S0129065712500128
https://doi.org/10.1007/s00422-008-0233-1
https://doi.org/10.1109/TNNLS.2019.2906158
https://doi.org/10.3390/jlpea8040034
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Juarez-Lora et al. Self Tuning PID With SNN

Taherkhani, A., Belatreche, A., Li, Y., Cosma, G., Maguire, L. P., and

McGinnity, T. (2020). A review of learning in biologically plausible spiking

neural networks. Neural Netw. 122, 253–272. doi: 10.1016/j.neunet.2019.

09.036

Valadez-Godínez, S., Sossa, H., and Santiago-Montero, R. (2020). On the accuracy

and computational cost of spiking neuron implementation. Neural Netw. 122,

196–217. doi: 10.1016/j.neunet.2019.09.026

Voelker, A. R., and Eliasmith, C. (2020). Programming Neuromorphics Using the

Neural Engineering Framework. Singapore: Springer Singapore.

Yue, K., and Parker, A. C. (2019). “Analog neurons with dopamine-modulated

stdp,” in 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS) (Nara:

IEEE), 1–4.

Zamarreño-Ramos, C., Camuñas-Mesa, L. A., Pérez-Carrasco, J. A., Masquelier,

T., Serrano-Gotarredona, T., and Linares-Barranco, B. (2011). On

spike-timing-dependent-plasticity, memristive devices, and building a

self-learning visual cortex. Front. Neurosci. 5, 26. doi: 10.3389/fnins.2011.

00026

Zhang, X., Lu, J., Wang, Z., Wang, R., Wei, J., Shi, T., et al. (2021). Hybrid

memristor-cmos neurons for in-situ learning in fully hardware memristive

spiking neural networks. Sci. Bull. 66, 1624–1633. doi: 10.1016/j.scib.2021.

04.014

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

The handling editor JD declared a shared affiliation with the authors at the

time of review.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Juarez-Lora, Ponce-Ponce, Sossa and Rubio-Espino. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neurorobotics | www.frontiersin.org 12 May 2022 | Volume 16 | Article 904017

https://doi.org/10.1016/j.neunet.2019.09.036
https://doi.org/10.1016/j.neunet.2019.09.026
https://doi.org/10.3389/fnins.2011.00026
https://doi.org/10.1016/j.scib.2021.04.014
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	R-STDP Spiking Neural Network Architecture for Motion Control on a Changing Friction Joint Robotic Arm
	1. Introduction
	2. Materials and Methods
	2.1. Control Problematic
	2.2. Spiking Neural Network Modeling
	2.2.1. Neuron Modeling
	2.2.2. Synaptic Modeling
	2.2.3. Encoding and Decoding Between Continuous and Spike Domains

	2.3. Self Tuning SNN Controller Proposal

	3. Results
	3.1. 1-DOF SNN Simulation Implementation

	4. Discussion
	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


