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Abstract

EGFR family members and c-Src are co-overexpressed in many cancers. The synergistic effect of 

EGFR and c-Src has been shown in the tumorigenesis of breast and other cancers. Reported 

mechanisms of synergy include transcriptional regulation by STAT5b and the regulation of 

cellular ATP production by mitochondrial protein COX II. Here we report a new mechanism of 

EGFR-c-Src synergy through choline kinase α (CHKA). The first enzyme of the phosphatidyl 

choline production pathway, CHKA is overexpressed in many cancers, and the product of the 

enzyme, phosphocholine, is also increased in tumor cells. In this report, we find that CHKA forms 

a complex with EGFR in a c-Src dependent manner. Endogenous CHKA and EGFR co-

immunoprecipitated from a variety of breast cancer cell lines and immortalized mammary 

epithelial cells. CHKA interacted with the EGFR kinase domain upon c-Src co-overexpression and 

was phosphorylated in a c-Src-dependent manner on Y197 and Y333. Overexpression of EGFR 

and c-Src increased total cellular activity and protein levels of CHKA. Mutation of CHKA Y197 

and Y333 reduced complex formation, EGFR-dependent activation of CHKA enzyme activity and 

EGF-dependent DNA synthesis. Furthermore, siRNA-mediated knockdown of CHKA in MCF-7 

and MCF-10A cells reduced EGF-dependent cell proliferation. Together, these results strongly 

implicate a new c-Src-dependent link between CHKA and EGFR, which contributes to the 

regulation of cell proliferation and tumorigenesis.
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Introduction

Epidermal growth factor receptor (EGFR/HER1) is overexpressed in a wide variety of 

human cancers, including colon, lung, prostate, and breast (Biscardi et al 2000)(Biscardi et 
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al 1999b), implicating its function in tumorigenesis. The non-receptor tyrosine kinase, c-Src, 

is also overexpressed in many of these same tumors, suggesting that the two tyrosine kinases 

may functionally interact. In breast tumors, for example, 70–100% overexpress c-Src, with 

the majority of these tumors co-overexpressing one of the EGFR family members (HER1–4) 

(reviewed in (Ishizawar and Parsons 2004)). Breast cancer cells or murine fibroblasts that 

co-overexpress EGFR and c-Src exhibit synergistic increases in anchorage-independent 

growth in cell culture and development of tumors in mouse xenograft models than those 

overexpressing only one of the pair (Maa et al 1995)(Biscardi et al 1998). In the 

immortalized mammary epithelial-derived cell lines, co-overexpression of EGFR and c-Src, 

but not EGFR or c-Src alone causes hyperproliferation, aberrant three dimensional acinar 

structures, enhancement of migration and invasion, and anchorage independent cell growth 

(Dimri et al 2007). Taken together, those results strongly suggest that co-overexpression of 

EGFR and c-Src is not just a by-product of tumorigenesis but a driver of the process in 

mammary epithelial cells.

Subsequent investigations have revealed several molecular mechanisms by which c-Src and 

EGFR cooperate. First, c-Src phosphorylates Y845 of the EGFR, a residue that resides in the 

activation loop of the kinase domain and is highly conserved among receptor tyrosine 

kinases (Biscardi et al 1999a)(Hunter and Cooper 1985). (Note that several reports indicate 

that Src-independent phosphorylation of Y845 can occur of (Qiu et al 2009)(Yang et al 

2008)). Mutation of Y845 to phenylalanine (Y845F) has little to no affect on the ligand-

activated catalytic activity of the EGFR but reduces EGF-induced DNA synthesis and 

growth in soft agar of murine fibroblasts and human breast cancer cell lines (Tice et al 1999) 

(Biscardi et al 1999a). These results indicate that phosphorylated Y845 (pY845) in EGFR 

plays a key role in anchorage-dependent and -independent cell proliferation. pY845 is 

required for activation of STAT5b, a cytosolic transcription factor whose action is critical 

for EGF-induced DNA synthesis (Kloth et al 2003). pY845 is also required for binding of 

the EGFR to a mitochondrial protein, cytochrome c oxidase subunit II (CoxII), a key 

component of the oxidative phosphorylation pathway (Boerner et al 2004). EGF-induced 

translocation of the EGFR to the mitochondria is accompanied by phosphorylation of Cox II 

and modulation of cellular ATP production (Demory et al 2009). Thus, to date, evidence 

suggests that the biological synergy between the EGFR and c-Src is mediated, at least in 

part, by pY845, which regulates cellular transcriptional programs through STAT5b and 

bioenergetics through Cox II. In this study we investigated additional mechanisms by which 

the EGFR and c-Src synergize to promote tumor progression.

Choline kinase α (CHKA), which converts choline to phosphocholine in the 

phosphatidylcholine synthesis (Kennedy) pathway (Aoyama et al 2004)(Wu and Vance 

2010), is overexpressed in breast, lung, prostate, colorectal and bladder cancers (Ramirez de 

Molina et al 2002a)(Ramirez de Molina et al 2002c)(Ramirez de Molina et al 2002b)

(Ramirez de Molina et al 2007)(Hernando et al 2009). The product of this enzyme, 

phosphocholine, is also increased in primary malignant tumors of the breast, brain, and 

prostate and in cancer cell lines (reviewed in (Glunde et al 2006)).

High levels of CHKA correlate with poor prognosis of non-small-cell lung cancers (Ramirez 

de Molina et al 2007), histological grade of breast cancer (Ramirez de Molina et al 2002a), 
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and aggressiveness of bladder cancer (Hernando et al 2009). As a result of these studies, this 

enzyme is under consideration for therapeutic targeting. In pre-clinical studies, a small 

molecule choline kinase inhibitor (Ramirez de Molina et al 2004) or lentivirus shRNA-

mediated knock-down of CHKA (Krishnamachary et al 2009) was found to suppress 

xenograft growth in vivo and growth factor-induced breast cancer cell growth in vitro 

(Cuadrado et al 1993)(Ramirez de Molina et al 2004), suggesting that CHKA plays a pivotal 

role in tumorigenesis. However, little is known about how CHKA is regulated and how high 

levels of the enzyme are achieved in cancer cells. In this study, we reveal one mechanism of 

regulation involving EGFR and c-Src. Specifically, we found that CHKA activity is 

increased upon overexpression of EGFR and c-Src and this increase requires c-Src kinase 

activity and complex formation of CHKA with EGFR and c-Src. c-Src-mediated 

phosphorylation enhances the association of CHKA with EGFR and is critical for EGF-

induced DNA synthesis. Furthermore, EGF-induced breast epithelial cell proliferation is 

dependent upon CHKA. Together, these findings provide evidence for a third pathway that 

mediates the synergistic actions of EGFR-c-Src in breast cancer development.

Results

Yeast two-hybrid identification of an EGFR/choline kinase α2 interaction

To identify additional EGFR signaling pathways, we performed a yeast two-hybrid screen 

with the EGFR kinase domain (aa 672–960) as bait. In addition to MIG-6(Hackel et al 2001) 

and other clones, a single clone was identified that contained a splice variant or a splicing 

intermediate sequence of choline kinase α2 (CHKA2). Encoded within this clone were a 

228-nucleotide (76 amino acid) sequence of an alternative reading-frame and a segment of 

an intron of CHKA2, followed by the C-terminal 343 aa (aa115–457) of CHKA2 in-frame. 

The resulting product of this clone activated transcription of yeast reporter genes in the two-

hybrid system only when the EGFR-kinase domain bait was co-expressed. But neither the 

N-terminal 76 aa segment of the original clone, the CHKA aa115–457 segment, nor full 

length CHKA2 activated the reporter genes in the presence of the EGFR kinase domain, 

suggesting either that the full length splice variant was the only form of CHKA that could 

efficiently bind EGFR or that full-length wild type (wt) CHKA2 might require other co-

factor(s) or some modification(s) to the protein for efficient binding. In this study we 

explored the latter possibility.

EGFR and CHKA2 form a complex in a c-Src-dependent manner in mammalian cells

Since c-Src and EGFR have been shown to synergize in promoting tumorigenesis (Maa et al 

1995)(Tice et al 1999), we hypothesized that c-Src could be a co-factor that facilitates the 

association of CHKA2 with the EGFR kinase domain in mammalian cells. To test this 

hypothesis, a co-immunoprecipitation assay of transiently transfected CHKA2 and EGFR 

kinase domain was performed in 293T cells that were co-overexpressing either wild type 

(wt, K+) or kinase-defective (K−) c-Src. Figure 1A shows that without any overexpression of 

c-Src, immunoprecipitates of flag-tagged CHKA2 contained only slightly detectable 

amounts of myc-tagged EGFR kinase domain (center panel, lane 7), which was significantly 

augmented by co-overexpression of wt c-Src (center panel, lane 8). The interaction was 

abolished by co-overexpression of K− c-Src (A430V, Fig. 1A, center panel, lane 9). The K+ 
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c-Src-dependence of this association was confirmed in the reciprocal co-

immunoprecipitation (right panel, lanes 7–9). These results suggest that the EGFR kinase 

domain and CHKA2 indeed make a complex in a c-Src-activity-dependent manner. Note 

that association of c-Src with this complex requires the expression of both EGFR kinase 

domain and CHKA2 (c-Src panel, lanes 8). Binding was observed with the K721A or 

Y845F mutants of the EGFR kinase domain (kinase inactive and c-Src-dependent 

phosphorylation site mutants, respectively) (data not shown), suggesting that neither pY845 

nor EGFR kinase activity is required for association with CHKA2.

We next asked whether any other region in the EGFR intracellular domain could support 

complex formation with CHKA2. Figure 1B shows that CHKA2 protein associated with the 

complete intracellular domain of EGFR (aa 672–1186) (center and right panels) and the 

isolated kinase domain (aa 672–960) in a K+ c-Src-dependent manner, but not to the C-

terminal region (aa 952–1186). This result indicated that CHKA2 forms a complex with the 

EGFR cytosolic region mainly via its kinase domain and that the binding is dependent on c-

Src activity.

Figure 2A shows that full length EGFR also bound to CHKA in a c-Src-dependent manner, 

with enhanced association compared to the amount formed in the absence of overexpressed 

K+ c-Src. Confocal immunofluorescence highlighted the plasma membrane localization of 

CHKA when EGFR and c-Src were co-expressed in contrast to its cytosolic localization 

when expressed alone (SFig. 1), suggesting that the EGFR/c-Src complex recruited CHKA 

to the membrane. Similarly, association of endogenous EGFR with endogenous choline 

kinase α was examined before and after EGF stimulation. As shown in Figure 2B–D, in two 

breast cancer-derived cell lines, MDA-MB-231 and MCF-7, and in the immortalized 

mammary epithelial cell line, MCF-10A, antibody specific for CHKA co-precipitated EGFR 

with or without EGF stimulation. Association appeared to be slightly enhanced following 

EGF treatment, but with varying times of peak complex formation. In MCF-7 and MCF-10A 

cells the time of complex formation following EGF stimulation coincided with 

phosphorylation of EGFR at Y1068 and Y845 and c-Src at Y418 (SFig. 2). Pharmacological 

inhibition of c-Src but not of EGFR reduced CHKA tyrosine phosphorylation in response to 

EGF treatment of MCF-7 cells (SFig. 3), suggesting that tyrosine phosphorylation of CHKA 

in breast cancer cells is largely mediated by c-Src.

CHKA is required for maximum EGF-dependent cell growth in mammary epithelium-
derived cell lines

Since complex formation between endogenous EGFR and CHKA was observed, we 

examined the role of CHKA in EGF-dependent cell growth. Figure 3 shows the effects of 

silencing CHKA on cell growth of MCF-7 and MCF-10A cells. In an alamarBlue assay, 

clear suppression of EGF-dependent growth was seen in siCHKA transfected MCF-7 cells 

compared to control siRNA transfected cells at day 4 (p=0.0062) (Panel A). Cells 

undergoing control siRNA transfection without EGF stimulation and CHKA siRNA 

transfection with or without EGF stimulation were statistically undistinguishable, suggesting 

that CHKA is required for EGF-dependent cell growth in the MCF-7 cell line. Knock-down 

of CHKA protein was confirmed by western blotting (Panel C).
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Cell growth of MCF-10A cells was monitored by counting cell number (Panel B) and the 

MTS assay (data not shown). Results from both assays were similar. At days 2 and 3, 

silencing of CHKA significantly reduced EGF-dependent cell proliferation compared to 

control siRNA (p = 0.037 and 0.036, respectively). Knock-down of CHKA in MCF-10A 

was confirmed (Panel D). Overall, these results strongly support a role for CHKA in the 

EGF-dependent cell growth of mammary epithelial-derived cell lines.

Two newly identified c-Src-dependent phosphorylation sites of CHKA2 protein are 
required for EGFR-dependent cell proliferation

To characterize the functional relationship between CHKA, EGFR and c-Src, we 

investigated the phosphorylation sites on CHKA. We had previously noticed that CHKA2 

became tyrosine phosphorylated in a c-Src-dependent manner with or without EGFR kinase 

domain overexpression (Fig. 1A, middle panel). We hypothesized that phosphorylation of 

CHKA2 could contribute to the complex formation and/or activation of CHKA2. To identify 

phosphorylation sites on CHKA2, flag-tagged CHKA2 was overexpressed along with c-Src 

in 293T cells, purified and sequenced by mass spectrometry. With >90% coverage of the 

protein sequence (which included all the tyrosine residues in the protein), two phospho-

tyrosines (pY), pY197 and pY333, were identified. The Y197 site is located just C-terminal 

to the dimer interface, and the Y333 site is in the choline kinase motif (Peisach et al 2003)

(Malito et al 2006)(Fig. 4A). Mutagenesis of either of these residues partially reduced the 

total tyrosine phosphorylation of CHKA2 (Panel B, anti-pY blot), while mutation of both 

residues reduced phosphorylation to almost undetectable levels (lane 9), suggesting that 

Y197 and Y333 are the major tyrosine phosphorylation sites on the protein. The absence of 

CHKA2 tyrosine phosphorylation in the presence of kinase defective c-Src indicated that 

phosphorylation of both residues is c-Src mediated, although it is not clear whether this 

occurs in a direct or indirect manner. In the same context, the binding of various CHKA2 

mutants to full length EGFR was examined. Co-immunoprecipitated EGFR with wt or 

mutant forms of CHKA2 was detected with anti-EGFR antibody and quantified (Fig. 4B). 

The two single tyrosine mutants showed reduced binding to EGFR relative to wt, while the 

double mutant exhibited an even further reduction (37%) compared to wt (Panel B bottom, 

bar 1 vs. 4, p=0.00048). These results indicate that two c-Src-dependent phosphorylation 

sites are important for formation of the CHKA-EGFR complex.

To address whether c-Src-mediated phosphorylation of CHKA2 affected its activity, the in 

vitro choline kinase activity of wt and mutant, ectopically-expressed CHKA2 was assayed in 

extracts of 293T cells in the presence or absence of co-expressed full-length EGFR. Figure 

4C shows no difference in activity of the various forms of CHKA2 in the absence of 

overexpressed EGFR. However, in the presence of co-transfected EGFR, the activity of wt 

CHKA2 was increased 2.5 fold (p=0.0261). Y197F and Y333F single mutants and the 

Y197/333F double mutant showed reduced activity in the presence of EGFR, with the 

greatest reductions seen with the Y333F and Y197F/Y333F variants (p=0.0249 and 0.0225, 

respectively). As a control, an inactivating mutation in the Brenner's motif (Liao et al 2006), 

D306A of the human clone, completely eliminated CHKA2 activity.
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Further characterization of the Y197/333F double mutant revealed that it failed to support 

the enhanced EGF-induced DNA synthesis seen with overexpressed wt CHKA2, which was 

2.2 fold above the EGF-treated and estrogen-starved controls in MCF-7 cells (Fig. 5, 

compare bar 1 with 3). Wild-type CHKA2 enhanced basal DNA synthesis 1.7 fold above 

control (compare bars 2 and 4, p=0.0050), indicating that overexpression of CHKA2 alone 

had a stimulatory effect on cell cycle progression. A similar level of DNA synthesis was 

maintained by the Y197/333F double mutant and the catalytically inactive D306A mutant, 

suggesting that CHKA2 has a small but positive effect on DNA synthesis that is independent 

of its tyrosine phosphorylation or catalytic activity (Compare bar 2 with bars 6 and 8). The 

D306A mutant, like the double Y197/333F mutant, failed to support an EGF-dependent 

increase in DNA synthesis (compare bar 1 with bars 5 and 7), suggesting that the biological 

activity of the Y197/333F mutant is similar to that of the catalytically inactive mutant. 

Taken together, these studies indicate that c-Src-dependent phosphorylation of CHKA2 is 

critical for EGFR-dependent activation of CHKA2.

CHKA2 total cellular activity and protein levels are regulated by EGFR and c-Src

To determine the relative contributions of EGFR and c-Src to the activity of wt CHKA2, 

extracts of MCF-7 cells overexpressing full-length wt EGFR and/or c-Src were assayed for 

CHKA2 activity. Figure 6A shows that when either EGFR or c-Src was co-transfected with 

CHKA2, in vitro choline kinase activity was increased 1.68-fold or 1.40-fold, respectively, 

compared to control cells transfected with CHKA2 alone (lanes 3 & 6 vs. 2), while co-

overexpression of both EGFR and c-Src significantly increased this level to 2.45 fold (lane 8 

vs. 2). Co-overexpression of EGFR with kinase-defective c-Src instead of wt c-Src reduced 

the CHKA2 activity to that seen with the CHKA2 alone control (1.10-fold, lane 9 vs. 2), 

suggesting that c-Src activity was required for EGFR-dependent activation of CHKA2. In 

addition, kinase-negative (K−) c-Src significantly reduced CHKA activity in the absence of 

EGFR (lane 7 vs. 2), but K− EGFR alone had no effect on CHKA activity (lane 4), 

suggesting that the endogenous kinase activity of c-Src but not of EGFR is critical for 

regulating CHKA activity. It is also noteworthy that co-expression of K− EGFR with wt c-

Src fully enhanced CHKA activity (lane 10 vs. 8), suggesting that EGFR protein but not 

activity is required for activation of CHKA by EGFR and c-Src. The Y845F mutant of the 

EGFR had nearly identical effects on CHKA as wt EGFR (lanes 5 vs. 3, 11 vs. 8), indicating 

that phosphorylation of this site is dispensable for the effects of EGFR on CHKA. Under the 

conditions of this experiment, we found negligible effect of EGF stimulation on CHKA2 in 

vitro enzyme activity (data not shown). Interestingly, protein levels of transfected CHKA2, 

as measured by immunoblotting with a flag monoclonal antibody, correlated well with total 

choline kinase activity (Panels A and B), and the specific activities of CHKA2 from each 

transfection group (Panel C) were found to be quite similar, varying between 0.85 and 1.33. 

Comparable results were also seen in 293T cells (data not shown). These results suggest that 

total choline kinase activity is cooperatively enhanced by EGFR and c-Src co-

overexpression primarily through an increase in total CHKA2 protein levels. Thus, one 

mechanism by which total CHKA2 activity can be increased in cancer cells co-

overexpressing EGFR and c-Src is by c-Src-dependent phosphorylation of the enzyme and 

association with EGFR.
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Discussion

In addition to regulating transcription through STAT5b (Kloth et al 2003) and cancer cell 

bioenergetics through the electron transport enzyme, Cox II (Boerner et al 2004)(Demory et 

al 2009), this study describes a third mechanism by which c-Src can synergize with the 

EGFR to promote tumorigenesis (Maa et al 1995), namely, by increasing CHKA protein 

levels resulting in increased total cellular CHKA activity. High levels of CHKA and 

elevation of phosphocholine and tCho have been found in many cancers, including breast 

cancer (Glunde et al 2006)(Wu and Vance 2010), suggesting that it plays a critical role in 

oncogenesis. tCho can be detected by magnetic resonance spectroscopy, a powerful non-

invasive diagnostic method for breast and other cancers (Glunde et al 2006). Among the 

tCho compounds, high-resolution NMR studies revealed that the level of phosphocholine, 

the product of choline kinase, is most closely correlated with tumorigenesis (Glunde et al 

2006)(Morse et al 2009).

How phosphocholine contributes to tumorigenesis is not clear at this point, but it could be 

due to its role as an essential phospholipid in membrane biogenesis, or alternatively, it has 

been speculated that phosphocholine could serve as a second messenger, regulating cell 

cycle progression (Cuadrado et al 1993). Indeed, shRNA-mediated depletion or 

pharmacological inhibition of CHKA reduces MDA-MB-231 breast cancer cell proliferation 

in vitro and tumor size in xenograft models (Ramirez de Molina et al 2004)(Krishnamachary 

et al 2009)(Chua et al 2009) providing evidence for a crucial role in tumorigenesis. It is 

noteworthy that MDA-MB-231 cells express high levels of EGFR and c-Src (Belsches-

Jablonski et al 2001), thus serving as one example where EGFR/c-Src-mediated 

tumorigenesis can be suppressed by choline kinase inhibition. Several reports(Chua et al 

2009)(Yalcin et al 2010) also show that inhibition of choline kinase attenuates PI3K/AKT 

activation, a major component of survival signaling, thus providing another explanation for 

the reduction in cell proliferation we observed (Fig. 3).

Cellular phosphocholine levels are enhanced by other factors (such as insulin, PDGF, 

heregulin and bFGF) in addition to EGF (Cuadrado et al 1993)(Uchida 1996)(Ramirez de 

Molina et al 2004). Interestingly, signaling downstream of these receptors has also been 

linked to c-Src (Biscardi et al 1999b), raising the possibility that CHKA may be regulated by 

these growth factor receptors in a similar fashion as EGFR and c-Src. It has been shown that 

heregulin, a ligand of Her3/ErbB3, enhances phosphocholine production and DNA synthesis 

in MCF-7 cells. Conversely, a choline kinase inhibitor abolishes both the basal and 

heregulinstimlated DNA synthesis in these cells (Ramirez de Molina et al 2004). Our 

laboratory has also found that siRNA knockdown of CHKA reduced heregulin-dependent 

cell growth of MCF-7 cells, and furthermore, Her2/ErbB2 was co-immunoprecipitated with 

CHKA (T. Miyake and S.J. Parsons, unpublished data), suggesting that CHKA could 

complex with and serve as a downstream mediator of ErbB2/3 signaling. c-Src has also been 

shown to regulate ErbB2/3 complex formation and subsequent signaling (Ishizawar et al 

2007), raising the question of the involvement of c-Src in phosphocholine production 

following heregulin treatment.

Miyake and Parsons Page 7

Oncogene. Author manuscript; available in PMC 2012 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our results demonstrate that complex formation between EGFR and CHKA occurs in a c-

Src dependent manner, which results in enhanced protein level and total activity of CHKA. 

Complex formation could recruit CHKA to the membrane (SFig.1), and/or affect 

conformations or activities of EGFR, c-Src and/or CHKA, which in turn could change their 

downstream signaling. c-Src-mediated phosphorylation of CHKA2 did not require the 

EGFR kinase domain (Fig. 1A, IP:CHKA, lane 5), but CHKA phosphorylation was 

enhanced by co-overexpression of full length EGFR and c-Src (Fig. 4B, α-pY, blot lane 1 

vs. 3). Also, the Y197/333F mutant of CHKA reduced, but still retained association with 

EGFR. These results suggest that complex formation of EGFR and CHKA enhances the c-

Src-mediated phosphorylation of CHKA and that association of EGFR and CHKA may be 

regulated by other factor(s) besides phosphorylation of Y197 and Y333. Note that the 

possibility that c-Src-mediated phosphorylation of CHKA is not direct but carried out by 

another tyrosine kinase activated by c-Src cannot be ruled out at this point. The exact nature 

of the EGFR/CHKA complex is also not clear. One key question is whether the binding 

between EGFR and CHKA is direct. Currently, we cannot exclude the possibility that other 

factors regulated by c-Src are required for a stable interaction between EGFR and CHKA. 

Such factors, in addition to the catalytic activity of c-Src itself could be potential therapeutic 

targets for inhibiting formation and function of the EGFR-CHKA2 complex.

The role of c-Src in the CHKA-EGFR complex formation is crucial, since dominant 

negative c-Src can completely abolish this association. Our study revealed two c-Src-

dependent phosphorylation sites (Y197 and Y333) on CHKA2 that are important for 

efficient complex formation, EGFR-dependent increase of CHKA2 protein levels and 

enhancement of EGF-dependent cell growth upon CHKA2 overexpression (Figs. 3, 4, and 

5). Mutation of each of the single phosphorylation sites reduced complex formation between 

CHKA and EGFR, while the combination was even more effective, suggesting that both 

sites are important for complex formation and its subsequent consequences. Since the Y197 

site is located proximal to the dimer interface and Y333 is within the choline kinase motif, 

phosphorylation of these sites could also regulate dimerization of the enzyme and/or enzyme 

activity, respectively.

Since EGF stimulation induces c-Src binding to the EGFR and activation (Stover et al 1995)

(Mao et al 1997), it is likely that in normal cells the binding of EGF ligand activates EGFR 

and c-Src (Ishizawar and Parsons 2004), which in turn enhances the association of EGFR 

with and activation and/or increasing protein levels of CHKA2. Figure 2B–D supports this 

hypothesis, since greater amounts of endogenous EGFR were found in association with 

endogenous CHKA following EGF stimulation, although basal association between the two 

molecules was also observed. Our transient transfection experiment may mimic the 

condition of some of the tumor cells in the sense that CHKA protein levels and total activity 

are basally increased by co-overexpression of EGFR and c-Src.

In summary, this study describes a new mechanism of biological synergy between EGFR 

and c-Src, namely regulation of total cellular CHKA activity through increasing protein 

levels, which in turn enhances lipid metabolism or phosphocholine–mediated signaling. 

Identification of CHKA as a downstream mediator of EGFR/c-Src signaling suggests that 

CHKA may be an effective target of therapeutic intervention, especially in tumors co-
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overexpressing EGFR and c-Src. Indeed, the combination of molecules raises the possibility 

of targeting all three enzymes in the complex, since they function cooperatively in 

regulating pathways critical to cell proliferation. Additionally, identification of other 

molecules in the complex is likely to lead not only to a greater understanding of the 

mechanisms of CHKA regulation by EGFR complex formation and c-Src dependent 

phosphorylation, but may also reveal new therapeutic targets for breast and other cancer 

types that overexpress EGFR, c-Src and/or choline kinase.

Materials and Methods

Molecular biology

Two hybrid screening was performed using MATCHMAKER GAL4 Two-Hybrid System 3 

from Clontech (Palo Alto, CA) according to the manufacturer's instructions. The coding 

region of EGFR kinase domain (aa 672–960) was cloned into pGBK-T7 and used as a bait-

expressing plasmid. Human mammary gland MATACHMAKER library was purchased 

from Clontech. Plasmids containing full length CHKA2 cDNA were obtained from 

Invitrogen (Carlsbad, CA), and the coding sequences of each were confirmed. Full length 

CHKA2 was then amplified by Platinum Pfx DNA polymerase (Invitrogen) and cloned into 

a pCMV-flag vector in which the HA-tag sequence of pCMV-HA (Clontech) was replaced 

with the flag-tag sequence. Y197F, Y333F and D306A mutations in CHKA2 were 

introduced by PCR using the method described in Ho et al. (Ho et al 1989). PCR-amplified 

regions of human EGFR [EGFR kinase domain (aa 672–960), C-terminal region (aa 952–

1186) and cytosolic region (aa 672–1186)] were cloned into a pCMV-myc vector 

(Clontech), and sequences were confirmed. Expression plasmids for full length EGFR and 

wt and kinase defective c-Src were described previously (Boerner et al 2004).

Cell culture and transfection

293T, MCF-7 and MDA-MB-231 cell lines were obtained from American Type Culture 

Collection (Manassas, VA) and cultured in DMEM, Penicillin/Streptomycin and 10% FBS 

(Invitrogen) at 37°C in a humidified environment. MCF-10A cells were cultured as 

previously described (Debnath et al 2003). For plasmid transfection of 293T and MCF-7 

cells, Lipofectamine 2000 (Invitrogen) was used according to the manufacturer's protocol. 

When the presence or absence of an encoding transfected cDNA was tested, the control 

transfection was carried out with the corresponding empty vector. Dasatinib and 

Gefitinib(LC laboratories, Woburn, MA), as well as PP2 (EMD, Rockland, MA) were used 

at the indicated concentrations.

Antibody production and purification

Rabbit anti-human CHKA2 antibody was raised by Covance (Denver, PA). A peptide 

containing the sequence of CHKA2 aa 265–280 was conjugated with KLH and injected 

subcutaneously with adjuvant. Antisera were cleared of antibodies cross-reacting with 

carrier and non-specific peptides, then further purified with SulfoLink Immobilization Kit 

from Thermo Fisher Scientific (Rockford, IL) conjugated with the immunizing peptide.
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Immunoblotting and immunoprecipitation

Cell lysates were prepared in NP40 buffer (50mM HEPES pH7.4, 1% NP-40, 150mM 

NaCl). Lysates used to immunoprecipitate full-length EGFR were prepared in CHAPS 

buffer (50mM HEPES pH7.4, 0.65% CHAPS, 150mM NaCl). Both buffers contained 2mM 

EDTA, 1mM sodium orthovanadate, and Protease Inhibitor Complete from Roche Applied 

Science (Indianapolis, IN). Protein concentration was determined by the BCA assay 

(Thermo Fisher Scientific). For immunoprecipitation, 100 or 500μg protein lysate was 

incubated with either flag-M2-antibody-conjugated agarose (Sigma-Aldrich, St.Louis, MO), 

mouse-anti-myc (Cell Signaling Technology, Danvers, MA), EGFR mouse monoclonal 

antibody 108 (Wright et al 1996), rabbit anti-CHKA, or appropriate species control IgG 

(Jackson ImmunoResearch, West Grove, PA) overnight at 4°C. For non-conjugated 

antibodies, Protein A agarose (Millipore, Billerica, MA) was added and incubated for one 

hour. Agarose beads were then washed four times with the cognate lysis buffer, and 

immunoprecipitated proteins were extracted with hot 2× sample buffer. Immunoblotting was 

performed using standard methods with the following antibodies: rabbit anti-myc-tag, 

EGFR, and c-Src (Cell Signaling), rabbit anti-flag-tag (Sigma-Aldrich), GAPDH 

(Millipore), and HRP-conjugated pY99, goat anti-rabbit IgG (Santa Cruz Biotechnology, 

Santa Cruz, CA), sheep anti-mouse IgG (GE Healthcare, Piscataway, NJ) and native IgG 

detection reagent (HRP) (Thermo Fisher Scientific). Phospho-EGFR and phospho-Src 

antibodies were described previously (Boerner et al 2004).

CHKA siRNA knockdown and cell proliferation assays

On-Target plus SMART pool CHKA2 siRNA or Non-targeting pool for siRNA control 

(Thermo Fisher Scientific) was transfected into indicated cells using Lipofectamine 

RNAiMax (Invitrogen) according to manufacturer's directions. Single siRNAs and luciferase 

siRNA were also tested to ensure specificity (SFig. 4). After transfection MCF-10A cells 

were incubated in EGF-depleted medium overnight, then stimulated with or without 5ng/mL 

EGF. Cell growth was monitored by counting trypan blue negative cells, thus representing 

only live cells. MCF-7 cells were incubated in full growth media 24 hrs following 

transfection, starved of serum in DMEM+0.1% BSA overnight, and stimulated with 10 

ng/mL EGF for the indicated times. Cell growth was monitored by the alamarBlue assay 

(Invitrogen).

To examine the effect of transfected CHKA2 on MCF-7 cell DNA synthesis, the Click-iT 

EdU Imaging assay (Invitrogen) was carried out. Expression plasmids encoding various 

forms of flag-tagged-CHKA2, or flag-tagged GFP were transfected into MCF-7 cells. The 

day after transfection, cells were cultured in PRF medium (Phenol Red-Free DMEM + 5% 

charcoal-stripped FBS) for 24 hrs and then incubated in fresh PRF medium with or without 

50 ng/mL EGF for 15 hrs. Ten μM EdU was added and incubated for an additional 9 hrs. 

Cells were fixed with Buffered Formalde-Fresh (Thermo Fisher Scientific), stained with 

Click-iT EdU imaging reagents, mouse anti-flag antibody, and AlexaFluor-conjugated anti-

mouse antibody (Invitrogen) and scored by immunofluorescence microscopy for anti-flag 

positive cells that were EdU positive.
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In vitro choline kinase assay

Cell lysates were prepared one day after transfection of 293T cells with the indicated 

plasmid(s). Transfected MCF-7 cells were cultured for two days in PRF medium before cell 

lysates were prepared. In both cases, protein concentration was measured by the BCA assay, 

and samples used for further assay contained equal amounts of protein lysate. In vitro 

choline kinase activity was measured as described previously (Ishidate and Nakazawa 1992) 

with minor modifications. Aliquots of cell lysate were incubated in the reaction buffer 

containing 0.1M Tris HCl pH 8.0, 12 mM MgCl2, 10 mM ATP, [methyl-14C]-Choline 

chloride 0.25 mM (MP Biomedicals, Solon, OH), 1% NP-40 for 15 min at 37°C. 

Phosphocholine was isolated using AG 1-x8 Resin (Bio-Rad) as described in (Ishidate and 

Nakazawa 1992), and radioactivity was measured by scintillation counting. An appropriate 

lysate concentration for optimal linear activity was predetermined using extract expressing 

flag-CHKA2. Note that endogenous choline kinase activity was less than 1% of transfected 

choline kinase activity.

Protein purification and mass spectrometry identification of CHKA2 tyrosine 
phosphorylation

Flag-tagged CHKA2 constructs were transfected into 293T cells along with wt c-Src. Flag-

tagged CHKA2 was purified following the method described in Grigera et al.(Grigera et al 

2005). The sample was reduced with DDT, alkylated with iodoacetamide, and digested with 

~0.5ug Arg-C (25%) and ~0.5ug Glu-C (25%) overnight at room temperature. After 

digestion, each sample was acidified to 5% with acetic acid, and 5% of each sample was 

loaded for LC-MS mass spectrometry analysis. The data were analyzed by the Sequest 

search algorithm against the CHKA2 protein sequence.

Statistical Analysis

Statistical differences between groups were determined by Student's t test. Values p <0.05 

were taken as significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. CHKA2 co-immunoprecipitates with EGFR kinase domain in a c-Src activity 
dependent manner in 293T cells
A. Plasmids encoding flag-tagged CHKA2 and myc-tagged EGFR kinase domain (EGFR-K, 

aa 672–960) were co-transfected with those encoding wt (K+) or kinase-defective (K−) c-

Src into 293T cells. Where indicated, the amount of total DNA for transfection was adjusted 

with the corresponding empty vectors (−). Lysates were examined for levels of specific 

proteins or used for co-immunoprecipitation as described in Materials and Methods. 

Western blotting of whole cell lysates (Lysate) is shown in the left panel and of CHKA2 and 

EGFR immunoprecipitates in the middle and right panels, respectively. The same amount of 

mouse IgG was used for negative control (CTRL) immunoprecipitation as for CHKA2 (lane 

10–12). Immunprecipitated proteins were detected by Western blotting with the indicated 

antibodies. B. Plasmids encoding flag-tagged CHKA2 and various myc-tagged domains of 

the cytosolic region of EGFR (diagram, left) were co-transfected into 293T cells with those 

encoding wild type (K+) or kinase-defective (K−) c-Src and analyzed as in Panel A. 

Constructs containing the kinase domain of EGFR associated with CHKA2 in a c-Src-

activity dependent manner.
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Figure 2. CHKA2 co-immunoprecipitates with exogenous or endogenous full length EGFR
A. Plasmids encoding full length EGFR and flag-tagged CHKA2 (f-CHKA2) were 

cotransfected into 293T cells along those encoding K+ or K− c-Src and analyzed as in Figure 

1A, except that mab108 was used instead of myc Ab for immunoprecipitation of EGFR. B–
D. Indicated cells were serum starved overnight and stimulated with 50 (B), 10 (C) or 5 

ng/mL (D) EGF for the indicated times. CHKA was immunoprecipitated with rabbit anti-

CHKA antibody and rabbit IgG was used as a negative control (crtl IgG). Immunoblotting 

was carried out as described in Materials and Methods.
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Figure 3. Silencing of endogenous CHKA reduces EGF-stimulated growth of MCF-7 and 
MCF-10A cells
Cells were transfected with control (siCTRL) or CHKA (siCHKA) siRNA and treated as 

described in Materials and Methods. A. After starvation, MCF-7 cells were incubated with 

or without 10 ng/mL EGF, and cell viability was measured by the alamarBlue assay (n=3). 

B. Growth of MCF-10A cells in response to 5 ng/mL EGF was monitored by cell counting 

(n=3). Similar results were observed using the MTS assay (data not shown). Statistical 

significance between asterisk marked treatment and other treatments was determined by 

Student's t test. *: p < 0.05, **: p <0.01. The results are expressed as the mean ± SEM for 

three experiments. C, D. The same siRNA transfected samples in A and B were harvested at 

different time points of EGF stimulation and Western blotted to assess levels of CHKA 

along with control GAPDH. C: MCF-7. D: MCF-10A.
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Figure 4. c-Src-dependent phosphorylation of tyrosines 197 and 333 in CHKA2
A. Schematic of CHKA2 structure indicating positions of Y197 and Y333, two c-Src-

dependent phosphorylation sites, as well as D306, a catalytically critical residue. A: ATP 

binding loop; B: Brenner's motif (conserved in many phosphotransferases); C: choline 

kinase motif; D: dimer interface; L: linker (Malito et al 2006). B. Wild-type and mutant 

forms of flag-CHKA2 mutated at c-Src phosphorylation sites were exogenously expressed 

along with EGFR and K+ or K− c-Src in 293T cells. Flag-CHKA2 immunoprecipitate was 

western blotted with the indicated antibodies. Graph: Mutant forms of CHKA2 showed 

reduced binding to EGFR. Quantification of binding measured by the amount of EGFR co-

immunoprecipitated with anti-flag antibody is shown in the bottom graph. The value of wt is 

set at 1. The results are expressed as the mean ± SEM for four experiments. Asterisk 

indicates statistical significance (*: p < 0.05, **: p <0.01) to wt. C. Relative in vitro choline 

kinase activity of 293T lysates expressing exogenous wt or mutant forms of CHKA with or 

without exogenously expressed full length EGFR. Black and grey bars indicate CHKA alone 

or in combination with EGFR, respectively. D306A is a catalytically inactive mutant of 

CHKA (Liao et al 2006). Wild-type activity without EGFR overexpression is set at 1. The 

results are expressed as the mean ± SEM for three experiments. Asterisk-marked bar has 

statistical significance (p < 0.05) with all samples except the Y197F mutant with EGFR 

cotransfected.
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Figure 5. Overexpression of wt CHKA2 enhances EGF-dependent and -independent MCF-7 cell 
proliferation, while CHKA2-Y197/333F abolishes the EGF-dependent enhancement
MCF-7 cells transfected with plasmids encoding wt or mutant forms of flag-tagged CHKA2, 

were estrogen-deprived and incubated with or without 50 ng/mL EGF for 15 hrs. DNA 

synthesis was measured by EdU incorporation and quantified by immunofluorescence 

microscopy as percent flag-positive cells that were positive for EdU incorporation as 

described in Materials and Methods. The asterisk indicates statistical significance (p< 0.03) 

as compared to all other bars. The results are expressed as the mean ± SEM for three 

experiments. Bar 2 (#) is statistically significantly different (p < 0.05) from all other 

conditions.
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Figure 6. Choline kinase activity and protein level are enhanced by co-overexpression of EGFR 
and/or c-Src
Flag-CHKA2 plasmid was co-transfected with plasmids expressing full-length wt (+), 

K721A (K−) or Y845F (F) variants of EGFR and/or wt c-Src or kinase defective c-Src into 

MCF-7 cells, and CHKA activity and protein level were assayed. The results are expressed 

as the mean ± SEM for three experiments. Statistical significance between the CHKA2 

alone (bar 2) and other groups was determined by Student's t test, *: p < 0.05, **: p < 0.01. 

A. In vitro choline kinase activity was measured from equal amounts of sample lysate as 

described in Materials and Methods. The value of the CHKA2 alone sample was set at 1. 

Bar 8 is statistically significantly different (#: p <0.05) from all other treatments except bars 

10 and 11. B. Relative flag-CHKA2 protein levels were measured by Western blotting using 

anti-flag monoclonal antibody and quantified by densitometric analysis. GAPDH served as a 

loading control. Examples of Western blotting are shown below the graph. C. Relative 

specific activities of flag-CHKA2 in the various samples were calculated by dividing the 

relative activity by the relative protein amount.
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