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The importance of astrocytes, one part of the glial system, for information processing in the brain has recently been demonstrated.
Regarding information processing in multilayer connectionist systems, it has been shown that systems which include artificial
neurons and astrocytes (Artificial Neuron-Glia Networks) have well-known advantages over identical systems including only
artificial neurons. Since the actual impact of astrocytes in neural network function is unknown, we have investigated, using
computational models, different astrocyte-neuron interactions for information processing; different neuron-glia algorithms have
been implemented for training and validation of multilayer Artificial Neuron-Glia Networks oriented toward classification
problem resolution. The results of the tests performed suggest that all the algorithms modelling astrocyte-induced synaptic
potentiation improved artificial neural network performance, but their efficacy depended on the complexity of the problem.

1. Introduction

The behavior of the nervous system (NS) remains a
mystery in many respects. The details of how the brain
performs certain information processing tasks, such as
classification, pattern recognition, and concept abstraction,
are still unknown. Although it has long been thought that
neurons were the only cells involved in complex cognitive
processes, this thinking has changed. Recent discoveries show
the importance of particular glial cells, called astrocytes,
for information processing in the brain [1–8]. Abundant
evidence suggests the existence of bidirectional communi-
cation between astrocytes and neurons and an important
active role for the astrocytes in the physiology of the NS
[1, 3–5]. This evidence has led to the proposal of a new
concept in synaptic physiology, the tripartite synapse, which
consists of three functional elements: the presynaptic and
postsynaptic elements, and the surrounding astrocytes [2].
The communication between these three elements has highly
complex characteristics, which seem to reflect more reliably
the complexity of the information processing between
elements of the NS. In order to understand the motives

of this reciprocal signalling, we must know the differences
and similarities that exist between their properties. Only
a decade ago, it would have been absurd to suggest that
these two cell types have very similar functions; now we
realise that the similarities are striking from the perspective
of chemical signalling. Both cell types receive chemical inputs
that have an impact on their ionotropic and metabotropic
receptors. Following this integration, both cell types send
signals to their neighbours through the release of chemical
transmitters. Both neuron-to-neuron signalling and neuron-
to-astrocyte signalling show plastic properties that depend
on the particular activity [1]. The main difference between
astrocytes and neurons is that many neurons extend their
axons over large distances and conduct action potentials
of short duration at high speed, whereas astrocytes do not
exhibit any electric excitability but conduct calcium spikes
of long duration (tens of seconds) over short distances and
at low speed. The fast signalling, and input/output functions
in the central NS that require speed seem to belong to the
neural domain. But what happens with slower events, such
as induction of memories and other abstract processes, such
as thought processes? Does signalling between astrocytes
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contribute to their control? As long as there are no answers
to these questions, research must continue; the present work
offers new ways to advance through the use of Artificial
Intelligence (AI) techniques.

This work tries to add some new knowledge about the
interaction of neurons and astrocytes regarding information
processing, in both the brain and in computer AI systems.
Hence, this is a multidisciplinary study. It tries to benefit
both Neuroscience, by helping to understand the neuron-glia
interaction, and AI, creating new computational methods
for processing information. Including artificial elements
that attempt to imitate astrocytes’ behavior in Artificial
Neural Networks (ANNs) has proven to present advantages
in classification problems [9]. This inclusion gave rise
to the so-called Artificial Neuron-Glia Networks (ANGNs)
[9, 10]. In our previous work we have investigated the
consequences of including artificial astrocytes, which mimic
biologically defined properties involved in astrocyte-neuron
communication, on artificial neural network performance.
Using connectionist systems and evolutionary algorithms,
we have compared the performance of ANN and ANGN
in solving classification problems. We have shown that the
degree of success of ANGN was superior to that of ANN.
Analysis of the performance of ANN with different numbers
of neurons or different architectures indicated that the effects
of ANGN cannot be accounted for by an increased number of
network elements but rather are specifically due to astrocytes.
Furthermore, the relative efficacy of ANGN versus ANN
increased as the complexity of the network increased [9].
It is important to note that our AI computational model
does not account for the primary intrinsic physiological
property of astrocytes, intercellular calcium waves in the
astroglial network, such as in the work of Ikuta et al. [11, 12].
Instead of building an astroglial network with intercellular
waves parallel to the neuronal network, and then analyzing
their conjoint operation, we added single astrocytes to single
neurons, allowing the astrocyte to increase the strength of the
connections of the neuron with the next neuronal layer (see
Section 2). At present, we are also modelling other types of
astrocytic influence.

The neuron-astrocyte interaction in the ANGN imple-
mented in our previous work constituted what we have
called a neuron-glia algorithm. That first algorithm, which
we have named Attenuated effect of astrocyte (see Section 3),
tried to imitate a behavior observed between neurons
and astrocytes in the hippocampus [6]. However, several
mechanisms and physiological consequences of astrocyte-
neuron communication occur in the brain. Under what
conditions one specific modulatory effect takes place in a
particular neural network remains unknown [8]. Therefore,
in the present work we have researched whether other forms
of interaction may help us understand what happens in the
brain, and which may prove to be more or equally efficient in
information processing in computers. We have modeled new
and different neuron-astrocyte interactions, analyzing the
results of Neuroscience experiments carried out in biological
nervous systems [4–8]. This has led to the implementation of
different neuron-glia algorithms for training and validation
of feed-forward multilayer ANGN used in resolution of
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Figure 1: Artificial Neural Network structure.
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Figure 2: Structure of an artificial neuron.

classification problems. For simplicity, our work focused
on modelling astrocyte-induced synaptic potentiation, as in
our previous study [9]. The results obtained using these
new algorithms allowed comparisons between them and the
observation of neuron-glia interactions that, so far, obtain
the best results for each problem.

This paper is organised into the following sections.
Section 2 introduces the ANGN and explains its overall
behavior, and its differences with multilayer networks with-
out artificial astrocytes. Section 3 details the implementation
of neuron-glia algorithms created for the study of neuron-
astrocyte interaction. Section 4 explains the simulations
performed applying the created algorithms to two problems,
simulation of a multiplexor device and iris flower classification,
and shows the results obtained from these simulations.
Finally, Section 5 summarizes the discussion and conclusions
of this study and explains the work that is being developed as
a continuation of this research.

2. Artificial Neuron-Glia Networks

ANNs are interconnected neuron models that simulate
the behavior of biological neural networks [13, 14] (see
Figure 1). The neuron is the basic information-processing
unit in these networks (see Figure 2).

The connectionist branch of AI carries out the study
of ANN. Researchers in this area have designed and built
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different types of ANN; these systems are different in
their topology, dynamics, and behavior of their constituent
elements separately and together (the system as a whole).
Many advances have been made in those aspects, but there
are many limitations in the areas of processing speed and
computational complexity of the connectionist systems.

The connection between two neurons is a directional
one. Hence, one neuron a is the source of the connection and
the other b is the destination neuron. A value is associated
with the connection. This value is known as weight and it
determines the influence of the connection in the activation
of the destination neuron.

A neuron j, is characterized by n inputs, with signals x1

to xn and weights w1 to wn associated with the inputs.
The signals may come from other neurons or may be the

input signals of the network. The output of the neuron j is
given by the application of the transfer function f : R →
R [15] to the sum of the inputs adjusted by its associated
weight:

yj(t) = f

⎛
⎝

n∑
i=1

wixi

⎞
⎠. (1)

An ANGN extends the ANN architecture by including a new
kind of processing element, the artificial astrocyte [9, 10, 16–
18] (see Figure 3).

An artificial astrocyte is associated with a neuron and
controls its activity (see Figure 4). The astrocyte modifies
the weight of the connections it is associated with (input
connections, output connections, or both), depending on the
activity of the neuron. A range of values is also associated
with a weight, known as a weight limit (wM). The astrocyte
controls the activity of the j neuron by using a counter. That
counter records the times that the neuron fires.

Due to the lack of knowledge regarding the specific
characteristics of the modifications that astrocytes make in
neuronal connections, we implemented different neuron-glia
algorithms (see Section 3) to simulate the behavior which
astrocytes of the brain are presumed to have, considering
the observations made on the nervous systems of living
organisms [1–4]. Glutamate released in the extracellular
space by an astrocyte or a presynaptic neuron can affect
another astrocyte, another presynaptic neuron, or a postsy-
naptic neuron. If the glutamate that reaches a postsynaptic
neuron proceeds directly from a presynaptic neuron, the
action potential (AP) takes place more rapidly and ends
more or less quickly. If there has also been a release of
glutamate by an astrocyte that was activated by the glutamate
of a presynaptic neuron, more AP will take place [1]. The
activation of astrocytes is a slow process, if we compare it
with neural activity [4]. The same conclusion can be drawn
from their effect on the synapse between two neurons, whose
neurotransmitters activated the astrocyte, and which is one
thousand times slower than the propagation of the impulse
by the neurons. This slowness has led to the presentation to
the ANGN of each training pattern during more than one
cycle or iteration. If it imitates this slowness, the ANGN will
need k cycles or iterations to process each input pattern (see
Figure 4).
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Figure 3: Artificial Neuron-glia network structure.
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Figure 4: Astrocyte representation.

We must also consider that the contribution of the
astrocytes to the weights of the ANGN connections takes
place according to a time factor, given the fact that they
act slowly and their responses are non-linear. It would be
interesting to know how astrocytes affect the connectionist
system, considering their influence on the synapses according
to the activities of the neurons over the course of time.
The more intense the activity of the neurons, the larger the
influence of the astrocyte on a connection.

The behavior of an astrocyte is determinate by the
parameters k ∈ N \ {0}, μ ∈ [1, k] and a, b ∈ [0, 1]. Each
instance or input pattern that is used for training, validating
or testing the artificial net is processed k times (iterations).
The astrocyte registers the activity of the neuron during the
k iterations, applying a function u : R → Z over the output
of the neuron yj(t), where u indicates if the neuron has fired
u(x) = 1 or not u(x) = −1:

u(x) =
⎧⎨
⎩
−1, x ≤ 0,

1, x > 0.
(2)

Hence the astrocyte has a register of the neuron’s activity with
a temporal window of k instants of time (an iteration lasts
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one instant of time). Observing this activity, the astrocyte
will modify the weight of its associated neuronal connections
when the counter of the activity of the neurons reaches the
value μ. Figure 4 shows how the input neuronal connections
are modified. An astrocyte may also modify output neuronal
connections or both

wi(t + Δt) = wi(t) + Δwi(t), (3)

where

Δwi(t) = |wi(t)| z(t), (4)

and z : N \ {0} → R is a function defined as

z(t) =
⎧⎨
⎩
a, r j(t) = μ,

−b, r j(t) = −μ,
(5)

with r j : N \ {0} → [−μ,μ] being the function that returns
the number of times a neuron has fired. If the neuron
was active μ times, the weights of the connections will be
increased by a percentage a, while they will be decreased
by a percentage b if the neuron remained inactive during μ
iterations.

3. Neuron-Glia Algorithms

The six algorithms implemented were different in two
aspects: the specific implementation they make of the r j
function, and whether or not they respect the weight limit
when the neuronal connection is being modified. The dif-
ferent implementations of the r j function of each algorithm
are explained in its corresponding subsection. Different
approaches regarding the modification of the connections
weight are also explained.

3.1. Consecutive Activations, Weight Limited. The astrocyte
respects the weight limit of the connections:

wi(t+ � t) = min
{
wi(t)+ � wji(t),wMi

}
. (6)

This algorithm contemplates only consecutive neuron activa-
tions; if the neuron reaches the activity or inactivity level that
makes the astrocyte act, the activity counter is restarted. The
neuronal activity level, following these restrictions, is given
by the following function:

rj(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u
(
yj(t)

)
+r j(t − 1), t >0, u

(
yj(t)

)
=u
(
yj(t−1)

)
,

r j(t − 1) ∈ (−μ,μ
)
,

u
(
yj(t)

)
, in other case.

(7)

3.2. Consecutive Activations, Weight Unlimited. The behavior
of this algorithm is the same as the previous one, except that
in this case the astrocyte will not respect the limit weight of
the connections; hence they can reach any value:

wi(t + Δt) = wi(t) + Δwi(t). (8)

3.3. Nonconsecutive Activations, Weight Limited. The astro-
cyte respects the weight limit of the connections

wi(t + Δt) = min
{
wi(t) + Δwji(t),wMi

}
. (9)

In this algorithm the neuron activations need not be
consecutive. If the neuron reaches the activity or inactivity
level that makes the astrocyte act, the activity counter is
restarted. The neuron activity level, following these restric-
tions, is given by the following function:

r j(t) =
⎧⎪⎨
⎪⎩
u
(
yj(t)

)
+ r j(t − 1), t > 0, r j(t − 1) ∈ (−μ,μ

)
,

u
(
yj(t)

)
, in other case,

(10)

Having the activity of the neuron not required to be
consecutive gives rise to this result: if an astrocyte increments
the weight of a connection of a neuron, it indicates that the
neuron fired μ iterations more than it remained inactive. If an
astrocyte decrements the weight of a connection to a neuron,
it indicates that the neuron fired μ iterations less than it
remained inactive.

3.4. Nonconsecutive Activations, Weight Unlimited. The
behavior of this algorithm is the same as the previous one,
except that in this case the astrocyte will not respect the limit
weight of the connections; hence they can reach any value:

wi(t + Δt) = wi(t) + Δwi(t). (11)

3.5. Attenuated Effect of Astrocyte. In this algorithm, the
astrocyte will not respect the limit weight of the connections:

wi(t + Δt) = wi(t) + Δwi(t), (12)

and the activity of the neuron need not be consecutive

r j(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u
(
yj(t)

)
+ r j(t − 1), t > 0, r j(t − 1) ∈ (−μ,μ

)
,

r j(t − 1), t > 0, r j(t − 1) ∈ {−μ,μ
}

,

u
(
yj(t)

)
, in other case.

(13)

The major difference with the previous algorithms stems
from the management of the activity counter of the neuron:
when the neuron reaches the activity level {−μ,μ} that makes
the astrocyte modify its neuronal connections, the activity
counter is not set to zero (it retains the value). This behavior
has a noticeable consequence in the modification of the
connections weight: when the point at which an astrocyte
modifies the weight of the connections is reached in a given
iteration and the neuron fires again in the next iteration, the
astrocyte will increase the connections weight of the neuron
again. The behavior when the neuron remains inactive is
similar, with the outcome being the weight is decreased.

In the previous algorithms, having the activation counter
be set to zero, the counter needed to reach the value {−μ,μ}
again for the astrocyte to act (thus a minimum of μ iterations
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of neuronal activity/inactivity are required). This behavior
implies an extra reinforcement on those neurons that fire
the most, it also makes the astrocytic effect last longer, and
disappear only gradually over time.

3.6. Global Processing Effect. In the previous algorithms, each
instance was processed a certain number of iterations to try
to simulate the delay in glial system functioning (an order of
magnitude of seconds) with respect to neuronal functioning
(an order of magnitude of milliseconds) (see Figure 5) [19,
20].

This algorithm named Global processing effect was created
under the assumption that the way the brain works is
different than the way it was being simulated. Instead of
processing each instance during k iterations, this algorithm
considers the instances as a whole, and the net processes the
whole set of instances during k iterations (see Figure 6). For
example, this algorithm considers the following: when visual
information (i.e., a scene) is being processed by the brain, it
obtains a sequence of images and this sequence is processed
as a whole. Common characteristics are extracted from these
images to give the scene meaning. The previous algorithms
would consider each image independently and would try to
extract characteristics from each one separately.

The way this new algorithm modifies the weights of
the connections is different from the previous algorithms.
with where n is the number of instances (for training/
validating/testing), this algorithm evaluates the n instances
during k iterations. The weights are modified using

wi(t + Δt) = wi(t) Δwi(t), (14)

where

Δwi(t) =
n + sgn

(
wji(t)

)
s

n
, (15)

With s being the number of times the neuron was active
during k iterations. With this behavior, the modification of
connections weight of the neuron is directly proportional to
the neuron’s activity.

4. Results

To evaluate the functioning of the neuron-glia algorithms,
ANGN using our different algorithms was compared with
ANN (without artificial astrocytes) trained only by using
Genetic Algorithms (GAs). The ANGN training method
is a hybrid one. It is composed of two learning phases:
an unsupervised learning phase (where a selected neuron-
glia algorithm is used) and a supervised learning phase
(where GAs are applied using the MSE calculated in the
unsupervised phase) [9, 10, 16]. The networks to be com-
pared (seven networks: ANGN with 6 different unsupervised
algorithms and the ANN—see Table 1) were trained to
solve two classification problems of increasing complexity.
The problems were taken from the UCI Machine Learning
Repository [21]: the simulation of a multiplexed device
problem and the Iris Flower problem.

Table 1: Methods name summary.

Method Name

1 Consecutive, weight limited

2 Consecutive, weight unlimited

3 Not consecutive, weight limited

4 Not consecutive, weight unlimited

5 Attenuated effect of astrocyte

6 Global processing effect

7 ANN

The network architecture chosen for each problem was
selected based on good results achieved in previous work
by Rabuñal et al. [22, 23]. Anyway, what matters is not to
have the best architecture. The important issue is to have
the same architecture in all the networks to be compared, in
order to test effects caused only by the inclusion of artificial
astrocytes. Anyway, we had shown in our previous work [9]
that by increasing the number of neurons and layers, the
effect of artificial astrocytes becomes even more beneficial.

Regarding the parameters of neuron-glia algorithms in
ANGN, four different combinations of iterations k (4, 6, or 8)
and activations μ (2 or 3) were considered for each algorithm,
in particular (4-2, 6-2, 6-3 y 8-3); after doing preliminary
tests [16], the combinations that obtained the best results
were selected. The same parameters (k, μ, a, and b) were
used for all the artificial astrocytes in each simulation. Each
simulation also used a 25% weight increment (a) and a 50%
weight decrement (b). This decision was based on the good
results obtained in previous work [16]. Biological knowledge
supports this choice, because a lower increment than a
decrement, when there is no constant activity, reinforces the
connections of those neurons that show a constant activity
[24].

Regarding the GA parameters, they were also chosen
in contemplation of previous work from Rabuñal et al.
[22, 23]. Those parameters were not intended to obtain
the best results in every problem but to use the same
parameters in the connectionist systems to be compared.
A population of 100 individuals was used in the GA. The
individual selection algorithm chosen was “Montecarlo” and
the substitution method was the Darwinian substitution.
Regarding individual breeding, a single crossover point was
used. The crossover rate was set to 90% and the mutation
rate to 10%.

The simulations were performed by means of a tool we
have implemented with Borland DELPHI and Visual C++
languages. The tests were run in an AMD Athlon PC, with
1 GB of RAM and Windows XP OS.

4.1. Simulation of a Multiplexor Device (MUX). We decided
to carry out the first tests over a well-known multilayer
architecture, which solves a simple classification problem:
the simulation of an electronic device called MUltipleXor
(MUX) with four inputs and one output (see Figure 7). For
the resolution of this problem a three-layer network was
used: six neurons in the input layer, four in the hidden layer
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Table 2: MUX mean results.

Method Generation
Training error

(ECM)
Training standard

deviation (%)
Validation accuracy

(%)
Validation standard

deviation
Time

1 222 0,132 0,056 86,25 8,75 0:00:21

2 282,1 0,091 0,027 81,25 10,08 0:00:38

3 345,2 0,125 0,059 86,25 8,75 0:00:29

4 355,6 0,083 0,021 81,25 10,08 0:00:45

5 681,3 0,108 0,060 86,25 10,38 0:01:08

6 563,6 0,096 0,057 76,25 3,75 0:00:33

7 521,8 0,101 0,051 62,5 9,68 0:00:07

Input selector

S1 S2

I1

I2

I3

I4

O1MUX

Figure 7: MUX device.

and one neuron in the output layer. The activation function
used for all the neurons in the network was a threshold
function with a threshold value θ = 0.5. The output values
of this problem are boolean. The limit weight for all the
neurons was set to one. The 64 instances available for this
problem were divided into two sets: 58 instances for training,
and six instances where different classes were selected for
the purpose of checking the generalization capacity. All
simulations were executed over 4000 generations.

All implemented neuron-glia algorithms were tested with
the MUX problem (see Table 1).

Each algorithm was executed using ten different pop-
ulations of connection weights. For each population and
algorithm the best values (those with higher validation
accuracy) were chosen from among the aforementioned four
μ and k combinations used. Table 2 shows the mean values
for each algorithm. These results show that in all cases but
two, ANGN achieved a lower training error, and in all cases
a higher validation accuracy was achieved by ANGN with
respect to ANN results.

The number of times each algorithm achieved the
best results for each measurement was analyzed (fewer
generations, lower training error, higher validation accuracy,
or less time). Table 3 shows that ANGN achieved the best
results more frequently, considering the validation accuracy,
despite taking more time to achieve it.

4.2. Iris Flowers Classification (Iris). We wanted to prove our
algorithms with a problem related to a much more complex

Table 3: MUX results summary.

Method Generation
Training

error
Validation
accuracy

Time Total

1 3 1 3 1 8

2 2 3 3 1 9

3 3 1 3 1 8

4 2 3 3 1 9

5 1 3 4 0 8

6 0 4 0 3 7

7 3 3 0 6 12

domain than MUX, a problem to test the algorithms where
the ANGN is dealing with multiple classification tasks. In
contrast to the MUX problem, the IRIS flower problem
uses continuous input values, different activation functions
in artificial neurons of different layers, and twice as many
training patterns. It consists in identifying a plant’s species:
Iris setosa, Iris versicolor, or Iris virginica. This case has
150 examples with four continuous inputs which stand for
four features about the flower’s shape. The four input values
represent measurements in millimetres of petal width, petal
length, sepal width, and sepal length. The learning patterns
have been found to have four inputs and three outputs.
The three outputs are Boolean ones, representing each Iris
species. By doing it in this manner (three boolean outputs
instead of a multiple one), additional information can be
provided about whether the system’s outputs are reliable or
not. That is, due to the outputs’ intrinsic features, only one
of them must possess the true value, standing for the type
of flower it has classified, while the rest have a false value.
Therefore, if two or more outputs have true values, or if all
of them are false, we may conclude that the value classified
by the system is an error and the system cannot classify that
case. The values corresponding to the four input variables
have been normalized in the interval (0–1) so that they are
dealt with by the ANGN.

For the resolution of this problem a three-layer network
was used: four neurons in the input layer, five in the hidden
layer, and three neurons in the output layer (one neuron per
iris class). The activation function used for all the neurons in
the network was a hyperbolic tangent, except for the output
layer neurons, where a threshold function with a threshold
value θ = 0.5 was used. The limit weight for all the neurons
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Table 4: Iris methods summary.

Method Name

1 Not consecutive, weight unlimited

2 Attenuated Effect of Astrocyte

3 Attenuated Effect of Astrocyte 2

4 ANN

was set to 1. The 150 instances available for this problem were
divided into two sets: 2/3 for training and 1/3 for validation;
the training set is composed of 1/3 of instances of each class.
All simulations were executed over 2000 generations.

Although, as mentioned previously, what matters is
having the same architecture, we have established this archi-
tecture and these parameters, which were obtained by our
research group in previous work [22, 23]. By using ANN
with these features, and training exclusively by means of GA,
Rabuñal et al. [22, 23] reached an adjustment better than the
previous best example of work for solving the IRIS flower
with ANN, in which Martı̀nez and Goddard [25] used BP
for the training and a hidden neuron more than Rabuñal et
al. These good results demonstrated the efficacy of GA for
simplifying and solving this problem. We compared our new
ANGN with ANN trained exclusively by means of GA.

The algorithm named Attenuated Effect of Astrocyte was
chosen because it achieved the best results in the MUX
problem (good mean validation accuracy, and the best
results achieved more often). With the aim of adding some
variability to the results, two configurations of this algorithm
were used: one with k ∈ [4, 6, 8] and μ ∈ [2, 3], and
another with k ∈ [3, 5, 7] and μ ∈ [2, 3]. The latter is called
Attenuated Effect of Astrocyte 2 in Table 4.

Another algorithm was chosen from the remaining ones
to test its behavior against a more complex problem. The
less restrictive algorithm was chosen (in terms of both
activations of neurons and restrictions on modifications
of weights of connections): “Not consecutive activations,
weight unlimited”.

As with the MUX problem, each algorithm was executed
using ten different populations of weights. For each pop-
ulation and algorithm the best values (those with higher
validation accuracy) were chosen among the four μ and
k combinations used. Table 5 shows the mean values for
each algorithm. These results show that in all cases but
two, ANGN achieved a lower training error, and in all cases
a higher validation accuracy was achieved by ANGN with
respect to results with ANN.

Regarding the number of times each algorithm obtained
the best results, Table 6 shows that ANGN achieved the
best results more times, considering the validation accuracy,
despite taking more time to achieve it.

5. Discussion and Conclusions

All the implemented algorithms have tried to emulate, in
the ANGN, the potentiation of synaptic connections that
take place in the brain caused by astrocytes, due to high

synaptic activity. The first five algorithms emulate astrocytic
behavior in a similar way, just changing the restrictions on
the weights changes and the consecutive or not consecutive
nature of synaptic activity. Unlike in the first five algorithms,
the sixth algorithm operates in a fairly different manner:
it considers global information processing rather than an
individual instance.

ANGN implemented using these six algorithms (thus
including artificial astrocytes that simulate the potentiation
of the connections and penalize the lack of activity) improved
the ANN that did not include artificial astrocytes. It is
worth noticing the difference in efficacy between the first five
algorithms and the sixth, which achieved the worst results.

It was also observed that the Not consecutive, weight
unlimited algorithm did not achieve the best results in the
simpler problem (MUX) but did achieve the best results
in the more complex problem (Iris) with a more complex
net architecture. This suggests that the net (and problem)
complexity influences the behavior of an algorithm, ren-
dering an algorithm more appropriate for one problem or
another depending on the problem’s complexity. This allows
the conclusion that a specific behavior of astrocytes is better
suited to some problems rather than to others, depending on
the problem’s complexity and characteristics. This behavior
agrees with the biological behavior of astrocytes in the
brain. Sometimes they have more influence than at others.
Moreover, it has been observed that the number of astrocytes
is higher in more complex brain areas, and they have more
influence in them. The highest ratio of glia-to-neurons is
found at the top of the phylogenetic tree, in the human brain;
this leaves us with the question as to whether astrocytes are
key regulatory elements of higher cortical functions [3].

In any case, to prove the hypothesis obtained, more
tests are being performed with the Iris problem and with
other problems (starting from the preliminary test and
the algorithms developed in this work). Therefore, the
development of models of astrocyte-neuron interaction that
incorporate the richness of biological interactions, for exam-
ple, astrocyte-induced synaptic depression, or depression
and potentiation altogether, is being undertaken to test
whether they provide similar, or even better, results in neural
network performances.

This work attempts to assist both AI and Neuroscience.
the former by creating a new kind of information processing
element for neural networks, the latter by contributing ideas
that hope to, somehow, guide investigations in Neuroscience
toward understanding the behavior of astrocytes in the
nervous systems of living organisms. All the algorithms
presented could attempt to be translated in a laboratory for
Neuroscience. They may mimic physiological dynamics that
occur in the brain.

Understanding the importance of astrocytes in brain
function, and learning how communication occurs between
neuronal networks and astrocyte networks at a microscopic
level, is crucial for the understanding of the synergic behavior
of cerebral regions. It is known that astrocytes are not present
in the same proportion in all brain regions, which may
influence the existence of different modes of interaction
between one and other areas. The behavior of astrocytes in
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Table 5: Iris mean results.

Method Generation
Training error

(ECM)
Training standard

deviation
Validation accuracy

(%)
Validation standard

deviation
Time

1 693,9 0,065 0,023 78,2 5,76 0:03:17

2 486,8 0,151 0,079 72,4 5,64 0:02:44

3 868,6 0,155 0,098 70,2 8,17 0:04:30

4 166,6 0,371 0,051 56 4,29 0:00:09

Table 6: Iris results summary.

Method Generation Training error Validation accuracy Time Total

1 0 8 7 0 15

2 0 0 2 0 2

3 1 2 2 1 6

4 9 0 0 9 18

some regions is just beginning to be analyzed, in which its
effects on information processing have never been studied,
such as cerebral cortex. Computational models to study
brain circuitry connectivity at a microscopic level will allow
an understanding of what happens at a macroscopic level.
Moreover, given the efficacy of ANGN in processing informa-
tion, they could provide a double benefit to this area of study.
Since they can be used to classify and recognize patterns,
ANGN will be tested in the near future as a data analysis tool
for helping to detect any characteristic or neurological disor-
der in brain signals acquired in different modalities, such as
electroencephalography, and magnetoencephalography.
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