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Abstract

Background: Autism is a common heritable neurodevelopmental disorder with complex etiology. Several genome-wide
linkage and association scans have been carried out to identify regions harboring genes related to autism or autism
spectrum disorders, with mixed results. Given the overlap in autism features with genetic abnormalities known to be
associated with imprinting, one possible reason for lack of consistency would be the influence of parent-of-origin effects
that may mask the ability to detect linkage and association.

Methods and Findings: We have performed a genome-wide linkage scan that accounts for potential parent-of-origin
effects using 16,311 SNPs among families from the Autism Genetic Resource Exchange (AGRE) and the National Institute of
Mental Health (NIMH) autism repository. We report parametric (GH, Genehunter) and allele-sharing linkage (Aspex) results
using a broad spectrum disorder case definition. Paternal-origin genome-wide statistically significant linkage was observed
on chromosomes 4 (LODGH = 3.79, empirical p,0.005 and LODAspex = 2.96, p = 0.008), 15 (LODGH = 3.09, empirical p,0.005
and LODAspex = 3.62, empirical p = 0.003) and 20 (LODGH = 3.36, empirical p,0.005 and LODAspex = 3.38, empirical p = 0.006).

Conclusions: These regions may harbor imprinted sites associated with the development of autism and offer fruitful
domains for molecular investigation into the role of epigenetic mechanisms in autism.
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Introduction

Autism is a neurodevelopmental disorder that is manifested in

early childhood and is characterized by impairments in reciprocal

social interactions and language, and a restricted range of

behaviors and interests. Autism is considered a spectrum disorder

(ASD) with heterogeneity in symptom presentation. Inheritance

clearly plays a major role in susceptibility to autism

[1,2,3,4,5](OMIM %209850), yet efforts to identify susceptibility

genes have been complicated by the apparent heterogeneous and

complex etiology of this disorder. While some important genetic

discoveries have been made (reviewed in [6]), much of the

heritable variation in autism remains unexplained.

Epigenetic factors, which are often heritable, yet not part of the

DNA sequence, are one element which may contribute to this

etiologic complexity. Imprinting is an epigenetic modification that

is parental origin specific, leading to preferential expression of a

specific parental allele in somatic cells of the offspring [7].

Mechanisms such as DNA methylation, RNA-associated silencing

and histone modification cause relative silencing of a specific

parental allele. The vital role of imprinted genes in mammalian

prenatal growth and development is shown most clearly by the

abnormal development and early demise of embryos that inherit

two copies of either a maternal or paternal genome, rather than

the usual one of each [8]. In addition, the fact that many known

imprinted genes are expressed in the brain (reviewed in [8])

suggests that such genes could play a role in autism, which is

believed to have underpinnings in neuroanatomic differences that

arise prenatally [9,10]. The genetic disorders Prader-Willi and

Angelman syndromes, which result from defects in imprinting or

the loss of expression of imprinted genes in the chromosomal

region 15q11-q13 [11] are associated with autistic features and
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diagnoses [12,13,14,15,16], and maternally transmitted abnor-

malities of chromosome 15 have been detected in autistic patients

[12,17,18].

If imprinting plays a role in the heritable etiology of ASD, the

power of linkage analyses to identify susceptibility loci may be

improved by accounting for allelic parent-of-origin. This has been

observed for specific autism-implicated genomic regions such as

7q, where both paternal and maternal allele sharing have been

observed to account for the linkage to an autism locus in this

region [19]–[20]. In a follow-up of previous linkage findings, Liu

et al. reported partitioning of IBD sharing per parent on

chromosomes 5, 16, 18 and 19, with both maternal and paternal

peaks observed on chromosomes 5 and 19, suggesting the presence

of multiple loci with parent-of-origin effects [21]. Arking et al.

identified linkage and association with the CNTNAP2 gene

(contactin-associated protein-like 2) using genome-wide SNP

analyses [22]. Further characterization of this signal showed

maternal-specific parent-of-origin effects among heterozygotes.

To date, however, no genome-scale parent-of-origin-specific

linkage analysis has been reported for ASD. Here we apply parent-

of-origin linkage analysis to the genome-wide SNP data recently

reported by Weiss et al. in a common set of multiplex autism

families [23].

Methods

Subjects
The samples used here were previously described by Weiss et al.

[23]. Nine hundred ninety three (993) families (896 affected sibling

pairs) from the AGRE (Autism Genetic Resource Exchange)

sample and 223 families (174 affected sibling pairs) from the

NIMH (National Institute of Mental Health) Autism Genetics

Initiative were included. AGRE families with a child diagnosed

with an Autism Spectrum Disorder (ASD) based on evaluation by

the Autism Diagnostic Interview-Revised (ADI-R) [24] were

recruited from across the US. Further information on participant

recruitment and study procedures has been described elsewhere

[25] and is available on the program website (www.agre.org).

From AGRE, we considered children with autism, ‘‘not quite

autism (NQA),’’ or ‘‘broad spectrum’’ as affected family members

to encompass those with related disorders such as Aspergers

syndrome and PDD-NOS. Information on participant recruitment

and study procedures for the NIMH sample is available on the

program website (www.nimh.nih.gov). We selected NIMH families

with a child diagnosed with an Autism Spectrum Disorder based

on evaluation by the Autism Diagnostic Interview-Revised (ADI-

R) and ADOS instruments. The combined data set, consisting of

1,216 nuclear families, was used for genetic analyses. All families

used in our analyses had at least one genotyped parent; 89.4% had

genotypes for both parents.

All samples used in this study arose from investigations

approved by the appropriate Institutional Review Boards for

institutions where participants were recruited, evaluated, or where

genotype data were generated. Written informed consent was

obtained for all adult study participants; for children under age 18,

both the consent of the parents or guardians and the assent of the

child were obtained. This secondary analysis of de-identified data

was considered to be exempt from IRB review.

Markers
SNP genotyping was previously described [23]. The AGRE

samples were genotyped on Affymetrix 5.0 chips at the Genetic

Analysis Platform of the Broad Institute, using standard protocols.

The NIMH autism samples were genotyped at the Johns Hopkins

Center for Complex Disease on the Affymetrix 500K (Nsp and

Sty) and 5.0 platforms using similar standard protocols. We

selected an extremely high quality set of SNPs for linkage analysis,

including only SNPs genotyped in both data sets with 99.5%

concordance and #1 Mendelian error. Linkage analysis involving

high densities of markers, where clusters of markers are in linkage

disequilibrium (LD), can lead to biased results [26]. To alleviate

these concerns, we analyzed a pruned set of 16,311 highly

polymorphic, high-quality autosomal SNPs that did not contain

any two nearby markers correlated with r2 .0.1, providing a

marker density of 0.25 cM. Genetic distances were taken from the

Affymetrix Genetic Map (www.affymetrix.com/estore/browse/

products.jsp?productId = 131459&categoryId = 35906#1_3)[26].

Linkage analyses and simulations
Parametric and non-parametric parent-of-origin linkage meth-

ods were applied. Parametric linkage analysis was conducted using

GENEHUNTER-IMPRINTING 2.1 (GHI) [27], with 1216

informative families. Using GHI, for each chromosome, we began

with a fully penetrant maternal or paternal model with no

phenocopies. Allele frequencies were estimated using the founders,

and LOD scores under heterogeneity (HLOD) were calculated at

five equally spaced intervals between markers. For each suggestive

linkage result (HLOD$2 for either maternal or paternal models),

additional models were fit allowing for reduced penetrance or

increased phenocopy rates to assess the sensitivity of the linkage

signal to alternative parameters using the following procedure. We

began by reducing the parent-specific penetrance at increments of

0.2 (i.e., penetrances of 1, 0.8, 0.6, 0.4, 0.2) and by increasing

phenocopy rates at similar increments. Empirical p values for these

sensitivity results were estimated similarly to the initial genome-

wide empirical p values (see below), but with the optimized

parametric model applied for all locations.

For non-parametric linkage analysis, maximum likelihood

estimates of allele sharing at each locus were computed using

the ASPEX ‘‘sib_ibd’’ command. The ‘‘sex_split’’ option was

implemented to evaluate evidence for linkage based on maternal

and paternal sharing separately. 1070 affected sibling pairs were

informative (had $1 parental genotype) for these analyses. LOD

scores indicate the log ratio of the likelihood of the marker data at

this position with the MLE estimate of the sibling recurrence risk

ratio, versus the likelihood assuming a sibling risk ratio of 1.

Empirical genome-wide p values were calculated via simulation.

The program Merlin [28,29] was used to generate replicates of

families identical to those in our sample with respect to marker

informativeness, spacing and missing data patterns, and with

affection status preserved but no relationship between simulated

genotypes and affection. Merlin assigned random genomes to

founders according to allele frequencies at each marker, then

passed chromosomes through the pedigree using the relationships

specified in the original pedigree file and recombination fractions

specified by our genetic map. Linkage analyses were then

performed on these unlinked replicates and genome-wide

empirical p values were estimated by extrapolating results for

chromosome 1 to the whole-genome level, assuming chromosome

1 represents 0.1 of the genome. Empirical genome-wide p values

reported here were based on 2,000 replicates.

Results and Discussion

Genome-wide results for maternal and paternal linkage analyses

via both parametric and non-parametric methods are shown in

Figure 1. The highest HLOD and LOD signals on each

chromosome are shown in Table 1. The final models for the
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strongest linkage signals from sensitivity analyses of parametric

models are shown in Table 2. Paternal peaks based on both

parametric and allele-sharing analyses were observed on chromo-

somes 4 (rs6826933:rs17088473, HLOD = 3.79, p,0.005;

LOD = 2.96, p = 0.008; Table 1, Figures 1, 2), 15 (rs11855650:

rs10520676, HLOD = 3.09, p,0.005; LOD = 3.62, p = 0.003;

Table 1, Figures 1, 2) and 20 (rs16999397:rs200888, HLOD = 3.36,

p,0.005; LOD = 3.38, p = 0.006; Table 1, Figures 1, 2). All p

values reported reflect genome-wide testing based on simulation.

Additional paternal peaks with HLODs .2 were observed on

chromosomes 1, 6, 10, and 17 in the parametric analyses, with

empirical genome-wide p values #0.01 (Table 1).

Although significant maternal peaks were observed in both

parametric and allele-sharing methods, no consistency in signal

was seen. A significant maternal peak was observed on

chromosome 14 in parametric analyses (rs923485:rs17177789,

HLOD = 2.38, p = 0.01), although this was not observed in allele-

sharing analysis. Maternal allele sharing peaks were observed on

chromosomes 5, 6, 7, and 9 (Table 1), although these were not

seen in parametric models.

Given the vital role of imprinted genes in development, the fact

that many known imprinted genes are expressed in the brain, and

evidence of overlapping features in autism and imprinting

disorders, we investigated the effect of incorporating allelic

parent-of-origin into an autosomal linkage scan for autism. To

our knowledge, this is the most extensive linkage analysis for

parent-of-origin effects in autism to date. We found the strongest

evidence for parent-of-origin effects on chromosomes 4, 20 and 15,

implicating sites where imprinted loci related to autism may reside.

The section of chromosome 4 located between markers

rs6826933 and rs17088473 showed several significant results in

our analysis and spans the region between 4q12-4q13.2. Recently,

Weiss et al. found an association between one SNP (rs17088254,

p = 8.561026) located on this region and autism using the same

data without regard to parental origin. The strongest candidate

gene in this region is CLOCK, which codes a protein regulating

circadian rhythm and whose involvement in ASD was first

proposed by Wimpory et al. [30]. The most consistent results

reporting abnormal circadian rhythms in ASD concern the

melatonin synthesis pathway. At least five independent groups

detected abnormal melatonin levels in ASD [31,32,33,34]. Several

lines of evidence suggest that melatonin could modulate neuronal

networks by influencing both the strength and the circadian

oscillation of neuronal transmission [35,36].

Analyses of a panel of microsatellite markers in 348 AGRE

families from previously reported linkage analysis[21,37] also

showed paternal allele sharing on chromosome 4 (Figure S1).

However, the peak using the microsatellite panel was 29cM away

from the SNP peak (D4S1591:GATA30B11, LODpat = 2.96,

p = 0.008). The location of this microsatellite peak also showed

linkage in the SNP data, but it was not the highest SNP linkage

peak on chromosome 4.

A region of chromosome 15 (15q23-15q25.3) also shows

paternal linkage. This region was previously implicated using

traditional linkage analysis in these SNP data [23], though it this

was not the strongest linkage signal in that analysis. A genome-

wide assessment of structural abnormalities in 427 unrelated ASD

cases found a microdeletion of 4,289,500bp on 15q23-q24.2

Figure 1. Results of Genome-wide Linkage Analysis. Panel A: Parametric results. Panel B: Allele sharing results. Maternal scores are shown in
red; paternal scores are in blue; no-imprinting scores are shown in gray.
doi:10.1371/journal.pone.0012513.g001
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associated with ASD [38]. This region includes the RASGRF1

gene, a homologue of the imprinted rasgrf1 in mouse [8]. The

protein encoded by this gene is a guanine nucleotide exchange

factor (GEF). Functional analysis has demonstrated that this

protein stimulates the dissociation of GDP from RAS protein.

Studies of the similar gene in mice suggested that the Ras-GEF

activity of this protein in the brain can be activated by Ca2+
influx, muscarinic receptors, and G protein beta-gamma subunit.

Mouse studies also indicated that the Ras-GEF signaling pathway

mediated by this protein may be important for long-term memory.

Others genes in this region with plausible connections to autism

risk include NRG4 (neuregulin 4) and CHRNA3/B4 (cholinergic

receptor, nicotinic). Genes in the neuregulin[39] and cholinergic

families[40] have already been implicated in autism risk. The

15q23-q25.3 region also encompasses the MTHFS (5,10-methe-

nyltetrahydrofolate synthetase) gene which is implicated in DNA

methylation cycle and may be particularly important in an

epigenetic mechanism of autism risk.

We have also reported a strong paternal linkage on chromo-

some 20p, which was previously implicated in the linkage analyses

reported by Weiss et al[23]. In analyses of these data without

consideration of parent-of-origin, this region achieved a LOD

score in excess of 2.0. According our results using the same data

set, this linkage is supported by paternal transmission. Deletions of

Table 1. Highest Linkage Peaks Per Chromosome.

Parametric (GHI) Allele-Sharing (Aspex)

Chr Map (cM) No-imp HLOD Pat. HLOD Mat. HLOD Pval** Map (cM) No-imp LOD Pat. LOD Mat. LOD Pval**

1 156.55 0.66 2.38 0 0.01 168.67 0.76 1.52 20.76 0.17

164.99 2.54 (1A)* 0.01

2 82.90 0.43 0.12 1.00 1.00 15.77 0.85 20.66 1.52 0.21

3 189.11 1.03 0 1.64 0.22 192.74 1.67 20.1 1.79 0.13

4 67.85 2.55 0.01 74.81 2.01 2.96 20.95 0.008

67.85 1.99 3.79 (4A) 0 ,0.005 123.65 3.13 2.45 0.68 0.02

5 182.85 0.49 1.85 0 0.08 205.55 1.82 20.42 2.24 0.05

6 177.24 3.46 2.59 1.01 0.01 188.29 3.87 1.15 2.72 0.02

175.93 2.72 (6A) 0.01

7 20.32 0.55 0 1.79 0.13 156.43 2.99 0.84 2.16 0.06

8 NA ,1 ,1 ,1 NA 120.57 1.952 0.63 1.29 0.31

9 158.19 0.73 0 1.44 0.76 156.77 2.00 20.31 2.32 0.04

10 169.29 0.72 2.69 0 0.01 103.52 2.22 0.36 1.86 0.12

11 111.01 0.77 1.13 0 1.00 114.49 1.40 1.87 20.48 0.08

12 134.99 0.30 0 1.19 1.00 29.46 0.80 1.14 20.34 0.23

13 56.98 0.86 0.02 1.04 1.00 113.79 2.75 2.05 0.71 0.06

14 62.33 0.43 0 2.38 0.01 18.67 0.58 1.15 20.56 0.37

15 79.68 1.78 2.59 0.03 0.01 92.16 3.52 3.62 20.11 0.003

64.61 3.09 (15A) ,0.005

16 121.30 0 1.16 0 1.00 78.81 1.41 1.77 20.35 0.10

17 45.23 2.15 2.03 0.58 0.01 81.45 1.56 2.02 20.46 0.07

18 NA ,1 ,1 ,1 NA 91.97 1.33 1.27 0.06 0.3

19 92.91 0.16 1.27 0 0.92 37.73 2.75 0.99 1.77 0.13

20 3.38 3.04 3.24 0.83 ,0.005 3.20 4.13 3.38 0.75 0.006

0.40 3.36 (20A) ,0.005

21 3.58 0.66 0.28 1.55 0.58 6.12 1.23 0.17 1.06 0.45

22 NA ,1 ,1 ,1 NA 2.25 0.60 20.75 1.35 0.28

*Optimal parametric model for this linkage signal (see Table 2).
**Empirical genome-wide p values based on 5000 simulations.
doi:10.1371/journal.pone.0012513.t001

Table 2. Optimized Parametric Models.

Model P(+/+)* P(d/+) P(+/d) P(d/d)

Primary models paternal 0.001 0.999 0.001 0.999

maternal 0.001 0.001 0.999 0.999

Optimal models** 1A 0.001 0.499 0.001 0.499

4A 0.001 0.399 0.099 0.499

6A 0.001 0.599 0.199 0.799

15A 0.001 0.499 0.001 0.499

20A 0.001 0.799 0.199 0.999

*Paternally inherited allele named first. +: wild-type allele; d: disease allele; P:
penetrance.
**Parameter values for best linkage signal after exploratory sensitivity analysis.
doi:10.1371/journal.pone.0012513.t002
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the 20pter region have been reported in two distinct autism cases

[41,42]. The first patient presented an interstitial deletion in

20p11.22-p11.23 whereas the second, a 3-year-old boy with a

moderate to severe mental retardation and autistic behavior

patterns, carried a deletion at 20pter-p12.2. Moreover, this linked

region encompasses the SNPH (Syntaphiliyn) gene. SNPH

interacts with the synaptic vesicle-associated protein synaptobre-

vin/VAMP and the plasma membrane-associated protein

SNAP25 to form the SNARE complex, which is required for

synaptic vesicle docking and fusion. Expression of this gene

appears to be brain specific.

Other suggestive parent-specific linkage regions are located

throughout the genome (on chromosomes 1, 5, 6, 7, 8, 9, 10, 13,

14, 17 and 21). The paternally linked region on chromosome 1

(1q23-1q24.2) was previously associated with autism. Wassink et al

report a male child with autism having a maternal uniparental

disomy (UPD) of chromosome 1 [43]. Moreover, in a previous

genome wide linkage analysis, Bartlett et al. also found a linkage

between the 1q23-1q24 region and autism using an AGRE sample

[44].

A maternally linked region was observed on chromosome 5,

with the peak at 5p13.1. Recent genome-wide association studies

have reported risk loci for autism at 5p14.1 [45,46]. The

Imprinted Gene Database (www.geneimprint.com) lists four

predicted imprinted genes on chromosome 5; however the regions

do not directly overlap the location detected by our analysis.

The signal found on 6q25.3-6q27 region was previously linked

to autism [23,47,48]. Recently, Glessner et al. found that PARK2

gene located on 6q25.2-6q27 was significantly enriched for CNVs

and observed in the ASD cases only [49]. They identified a

deletion of about 3 kb in PARK2 allele inherited from father.

PARK2 is an ubiquitin-protein ligase, mutations of which cause

autosomal recessive juvenile Parkinson’s disease [50]. Moreover,

several autism cases with subtle interstitial deletions in the q24-q26

region of the long arm of chromosome 6 have been reported [51].

Some imprinted genes have also been described in this 6q region

like the SLC22A (solute carrier family 22) genes.

Two other groups have previously reported parent-of-origin

linkage with autism for closely located loci on chromosome 7; one

was a paternal contribution in the region 7q31.33-7q34 [19], the

other showed a paternally derived locus more proximally located

on 7q22.1-7q22.2 and a maternally derived locus on 7q32.1-

7q32.2 [20]. In our analysis, the strongest chromosome 7 signal

was at 156.43 cM on nearby 7q35 under the maternal model.

While not our strongest parent-of-origin signal, this provides

further support for the presence of a maternally expressed locus in

this region. Indeed, this region encompasses the CNTNAP2 gene, a

member of the neurexin superfamily, that is significantly

associated with autism susceptibility [22,52,53,54], and has shown

maternal transmission of risk [22].

Few previous studies have considered parent-or-origin effects in

autism. Those that have used previous-generation marker sets and

much smaller samples than the results presented here. Two

previous studies observed parent-or-origin linkage on chromosome

7, but with different regions and types of parental sharing [19,20].

We did not reach genome-wide significant evidence for maternal

or paternal transmission on chromosome 7, although a non-

significant maternal linkage is observed in a region overlapping the

Lamb et al report. The regions identified in our analysis were not

covered in previous parent-of-origin analyses, to our knowledge,

with the exception of chromosome 15, where the Lamb et al did

not see paternal sharing, but examined only a small number of

sibling pairs and with few microsatellite markers.

In an attempt to detect loci with possible parent-of-origin

effects, we used multiple statistical approaches, rather than relying

on a single strategy. Consistent evidence of linkage across multiple

methods increases support for a true linkage. However, the

appropriate interpretation of inconsistent results across parametric

and non-parametric analyses is not entirely clear. These may be

due to chance findings in one analysis, or they may be true linkage

that only one method was sufficiently powered to detect. For

example, the chromosome 1 peak was significant only in the

parametric analysis, a method which is more powerful given that

the parameters are correctly specified. While it is unrealistic to

believe that we could actually have specified the ‘‘correct’’

parameters given the complex nature of autism, those selected

may have been sufficiently close. Peaks on chromosomes 6 and 9

were significant in the non-parametric ASPEX analysis; however,

the parametric GHI analysis did not find significant peaks on these

chromosomes, which may be due to selection of ‘‘incorrect’’

parameters for the models run.

These analyses considered as affected all children with an ASD,

as defined by the ADI-R and ADOS in the NIMH sample.

However, in AGRE, we included those with autistic disorder, as

well as those with ‘‘not quite autism’’ and ‘‘broad spectrum’’ to

encompass Asperger’s and PDD-NOS. This may have contributed

to some heterogeneity or misclassification in our data, but was

considered more appropriately inclusive and comparable to the

NIMH ASD families than excluding a larger number of AGRE

families with an ASD other than autistic disorder.

Our results suggest the usefulness of genome-wide analysis with

evaluation of parent-of-origin effects, although future studies are

necessary to determine if these results can be replicated. Given the

potential role for imprinting and other epigenetic mechanisms in

neuropsychiatric disorders such as autism [55], the regions

identified are good candidates for assessment of functional variants

and their relationship to epigenetic marks such as methylation

status on paternal and maternal DNA. These results could provide

completely novel insight into the biology and pathogenesis of a

common neurodevelopmental disorder.

Supporting Information

Figure S1 Parent-of-Origin Linkage Analysis for Microsatellite

Markers in 384 AGRE families. A: Parametric results. Panel B:

Allele sharing results. Maternal scores are shown in red; paternal

scores are in blue.

Found at: doi:10.1371/journal.pone.0012513.s001 (0.68 MB TIF)
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