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Characterization of gene cluster heterogeneity in single-cell
transcriptomic data within and across cancer types
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ABSTRACT
Despite the remarkable progress in probing tumor transcriptomic
heterogeneity by single-cell RNA sequencing (sc-RNAseq) data,
several gaps exist in prior studies. Tumor heterogeneity is frequently
mentioned but not quantified. Clustering analyses typically target
cells rather than genes, and differential levels of transcriptomic
heterogeneity of gene clusters are not characterized. Relations
between gene clusters inferred from multiple datasets remain less
explored. We provided a series of quantitative methods to analyze
cancer sc-RNAseq data. First, we proposed two quantitative
measures to assess intra-tumoral heterogeneity/homogeneity.
Second, we established a hierarchy of gene clusters from sc-
RNAseq data, devised an algorithm to reduce the gene cluster
hierarchy to a compact structure, and characterized the gene clusters
with functional enrichment and heterogeneity. Third, we developed
an algorithm to align the gene cluster hierarchies from multiple
datasets to a small number of meta gene clusters. By applying these
methods to nine cancer sc-RNAseq datasets, we discovered that
cancer cell transcriptomes were more homogeneous within tumors
than the accompanying normal cells. Furthermore, many gene
clusters from the nine datasets were aligned to two large meta
gene clusters, which had high and low heterogeneity and were
enriched with distinct functions. Finally, we found the homogeneous
meta gene cluster retained stronger expression coherence and
associations with survival times in bulk level RNAseq data than the
heterogeneous meta gene cluster, yet the combinatorial expression
patterns of breast cancer subtypes in bulk level data were not
preserved in single-cell data. The inference outcomes derived from
nine cancer sc-RNAseq datasets provide insights about the
contributing factors for transcriptomic heterogeneity of cancer cells
and complex relations between bulk level and single-cell RNAseq
data. They demonstrate the utility of our methods to enable a
comprehensive characterization of co-expressed gene clusters in
a wide range of sc-RNAseq data in cancers and beyond.
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INTRODUCTION
Tumor heterogeneity is intensively investigated due to strong
implications in understanding and tackling cancers such as
reconstructing the evolutionary history of tumor subclones (e.g.
Gerlinger et al., 2012; Wang et al., 2014), predicting the efficacy of
immunotherapy (e.g. Kim et al., 2020; Jang et al., 2020; Lu et al.,
2019; Gurjao et al., 2019), identifying the molecular basis of drug
resistance (e.g. Kim et al., 2015; Suzuki et al., 2015), and adjusting
regimen to cope with it (e.g. Beckman et al., 2012; Akhmetzhanov
et al., 2019). Single-cell sequencing technologies are powerful tools
to unravel tumor heterogeneity. DNA sequencing is the most mature
technology among the single-cell measurements and has been
extensively employed to detect subclonal structures of tumors (e.g.
see a review by Tsoucas and Yuan, 2017). Single-cell RNA
sequencing (abbreviated as sc-RNAseq) was developed later but has
been widely used to investigate both intra-tumoral and inter-tumoral
transcriptomic heterogeneity pertaining to more transient processes.

Sc-RNAseq data has demonstrated diversity and complexity of
cell types (cancer cells, immune cells and stromal cells) within
tumors (Zhao et al., 2018; Darmanis et al., 2017; Nguyen et al.,
2016; Zhang et al., 2020). It has been employed to chart the tumor
immune microenvironment (e.g. Kim et al., 2020, Close et al.,
2020; Jang et al., 2020, and Lu et al., 2019) and the stromal cell
microenvironment (e.g. Lambrechts et al., 2018, Peng et al., 2019),
cluster cancer cells or identify new cell types according to their
expression profiles (e.g. Peng et al., 2019; Zhang et al., 2019; Yue
et al., 2020; Wu et al., 2018; Young et al., 2018; Horning et al.,
2018), acquire dynamic information such as origins, evolution and
development of tumor subclones (e.g. Peired et al., 2020; Praktiknjo
et al., 2020; Kester and van Oudenaarden, 2018; Foerink et al.,
2018; Teschendorff and Enver, 2017; Park et al., 2016; Lei et al.,
2016), presence of cancer stem cells or quantification of cancer
stemness (e.g. Wu et al., 2019; Peixoto et al., 2019, Chen et al.,
2019). Inter-tumoral heterogeneity is often reported from bulk level
sequencing data (e.g. Hoadley et al., 2018). Investigations using
sc-RNAseq data make additional contributions by comparing
the subtype compositions of tumors with distinct pathological
types, clinical traits and treatment responses (e.g. Zheng et al., 2018;
Kashima et al., 2018; Davis et al., 2020) and identifying
differentially expressed genes between distinct groups of tumors
(e.g. Vinogradov and Anatskaya, 2020; Zhu et al., 2018; Li et al.,
2018, Zhang et al., 2018, 2016, Freeman et al., 2016).

Despite the remarkable progress in investigating tumor
heterogeneity with single-cell sequencing technologies, several
gaps exist in the bioinformatics analyses of cancer sc-RNAseq data.
First, the term tumor heterogeneity appears frequently in the
literature of cancer genomics but is not formally defined or
quantified. Second, although clustering analyses have been widely
employed in sc-RNAseq data, most of them target cells rather than
genes. Furthermore, gene clusters are typically characterized by
functional enrichment but not differential levels of transcriptomicReceived 27 January 2022; Accepted 19 May 2022
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heterogeneity. Third, relations between gene clusters inferred from
multiple datasets/cancer types remain less explored. Alignment of
gene clusters across datasets is useful for pan-cancer data analysis
but not well developed.
To fill those gaps, we provided a series of quantitative methods to

cluster genes in cancer sc-RNAseq data, quantify their
heterogeneity, and align the gene clusters across multiple datasets.
They consist of three major components. First, we proposed two
quantitative measures – NSV and pdiff scores – based on correlation
coefficients of expression profiles to assess intra-tumoral
heterogeneity/homogeneity of the whole transcriptomes or gene
clusters. Second, we applied a consensus k-means clustering
algorithm to establish a hierarchy of gene clusters with varying
k’s, devised an algorithm to reduce the gene cluster hierarchy to a
compact structure, and characterized the gene clusters with
functional enrichment and heterogeneity. Third, we developed an
algorithm to align the gene cluster hierarchies frommultiple datasets
and generate a small number of meta gene clusters.
We applied these algorithms to simulated data and nine sc-

RNAseq datasets covering seven cancer types. Both NSV and pdiff
scores recovered known intra-tumoral heterogeneity in simulated
data and outperformed the widely used entropy metric. For each sc-
RNAseq dataset, we discovered that cancer cell transcriptomes were
more homogeneous within tumors than the accompanying normal
cells. Gene clusters in each dataset possessed distinct levels of
heterogeneity and functional enrichment. Many gene clusters across
nine datasets were aligned to two largest meta gene clusters, which
had high and low intra-tumoral heterogeneity and were enriched
with cell cycle/DNA repair and cellular respiration/antigen
processing and presentation, respectively. Finally, we investigated
the relations between the cluster structures derived from single-cell
and bulk level RNAseq data by verifying the gene clusters from one
dataset to another. This rich information justifies the utility of our
sc-RNAseq analysis algorithms.

RESULTS
Two quantitative measures capture intra-tumoral
heterogeneity
We propose a collection of tumors are heterogeneous if cells within
tumors are more dissimilar to cells between tumors. This notion
differs from the classical definition of population diversity (such as
Simpson’s index, Simpson, 1949 or effective number of species,
Chao et al., 2016), which concerns the number of subtypes (species)
and their composition in tumors (communities). We argue our
notion is more adequate for tumor sc-RNAseq data since it can
capture the relational properties of multiple tumors rather than the
population compositions of individual tumors and does not require
subjective demarcation of subtypes based on transcriptomes.
We propose two quantitative measures to assess intra-tumoral

heterogeneity of sc-RNAseq data. The first measure is based on
silhouette values in clustering analysis (Rousseeuw, 1987). Data
points are the expression values of cells over selected genes or the
whole transcriptome, and distances between data points are defined
in a Euclidean space. Euclidean distances are sensitive to the scale
of expression data in each cell. To mitigate this problem we
normalized the expression vector of each cell to a z-score with zero
mean and unit variance, so that and the Euclidean distance between
the two z-score vectors was 2−2ρ, where ρ was the correlation
coefficient between the two expression vectors.
A cluster of data points corresponds to the cells belonging to the

same tumor. Silhouette values quantify the relative strength of intra-
cluster (intra-tumoral) to inter-cluster (inter-tumoral) distances.

More precisely, for a cell with index i, denote xi its normalized
expression vector (z-score), li the index of the tumor it belongs
to, and a(i) the average intra-tumoral distance of cell i:

aðiÞ ¼ 1

Nli � 1

X
j=i;lj¼li

dðxi; xjÞ, where Nli is the number of cells

with tumor label li. Likewise, denote b(i) the minimum average

inter-tumoral distance of cell i: bðiÞ ¼ min
l=li

1

Nl

X
lj¼l

dðxi; xjÞ. The

silhouette value is defined as:

sðiÞ ¼
1� aðiÞ

bðiÞ if aðiÞ , bðiÞ
0 if aðiÞ ¼ bðiÞ
bðiÞ
aðiÞ � 1 if aðiÞ . bðiÞ:

8>>>>><
>>>>>:

ð1Þ

From this definition− 1≤s(i)≤1. s(i)<0 if cell i is more similar to the
cells in another tumor than to the cells in its own tumor (a(i)>b(i)).
Therefore, by our definition a tumor is heterogeneous if it contains a
high proportion of cells with negative silhouette values. For each
tumor (patient) we counted the fraction of cells with negative
silhouette values (NSV). The average NSV fraction over all tumors
therefore indicates the level of intra-tumoral heterogeneity.

The second measure of intra-tumoral heterogeneity is to compare
the distributions of correlation coefficients between cells within and
across tumors. We computed the correlation coefficients of
expression data (over selected genes or the whole transcriptomes)
between all pairs of cells and subdivided them into intra-tumoral
(cell pairs from the same tumors) and inter-tumoral (cell pairs from
distinct tumors) groups. Tumors are less heterogeneous (or more
homogeneous) if intra-tumoral correlation coefficients are generally
higher than inter-tumoral correlation coefficients. Standard
statistical tests quantifying deviation between non-parametric
distributions (such as Kolmogorov-Smirnov and Mann-Whitney
tests) are very sensitive to sample sizes. In our case, intra and inter
tumoral correlation coefficients constitute hundreds or thousands of
cells and thus tens of thousands or millions of pairs. A tiny deviation
between the two distributions with such large sample sizes will yield
a drastically small P-value. To diminish sensitivity to sample sizes,
we proposed an alternative statistical test to quantify deviation
between distributions. Denote pintra and pinter the intra-tumoral and
inter-tumoral correlation coefficient distributions. pintra and pinter
can be viewed as the underlying distributions of two random
variables X and Y, respectively. We quantified the deviation from
pintra to pinterby a measure pdiff≡P(X>(Y+ε))−P(X<(Y−ε)), where ε
is a small number (0.05 in this study). To evaluate pdiff, we generated
a large number ofX and Y instances by rejection sampling from pintra
and pinter and calculated P(X>(Y+ε)) and P(X<(Y−ε)) from sampled
data.

We demonstrated the adequacy of these two indices to capture
intra-tumoral heterogeneity or homogeneity in simulated data. The
toy expression data comprised ten genes and 500 cells sampled from
five populations (100 cells per population). In each population, the
expression vector of each cell was a constant vector plus a zero-
mean, σ2-variance Gaussian noise. The 500 cells were allocated to
five tumors in three cases: case 1 – each tumor contained 100 cells
exclusively from one population, case 2 – each tumor contained
60 cells from one population and ten cells from each of the remaining
four populations, case 3 – each tumor contained 20 cells from each
population. Besides NSV and pdiff scores, we also calculated the
average Shannon’s entropy over tumors for the three cases.
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Table S1 reports the three indices of the three cases with varying
σ’s of the Gaussian noise. Cases 1-3 have increasing levels of intra-
tumoral heterogeneity (or decreasing levels of intra-tumoral
homogeneity). This trend is captured by all three indices at all
noise levels (increasing levels of NSV and entropy and decreasing
levels of pdiff ). However, while the gaps of entropy scores
considerably reduce with increasing noise levels (the gap score
between case 3 and case 1 is 8.00 for σ=0.05 and 1.79 for σ=0.5),
the gaps of NSV and pdiff scores are much more robust (the gap
scores are 0.716 and 0.498 for NSV and 1.009 and 0.499 for pdiff,
respectively). Furthermore, calculating entropy in a high-
dimensional data is generally intractable due to the difficulty of
joint density function estimation, unless simplifying assumptions
are imposed (for instance, we assumed expressions of each gene
were independent).

Transcriptomes of cancer cells possess more intra-tumoral
heterogeneity than the normal cell counterparts
We collected and processed nine datasets of single-cell cancer
transcriptomes whose summary information is listed in Table 1.
Six of those datasets consist of both cancer and normal cells
(primarily immune cells). To better understand the origin of
transcriptomic heterogeneity in cancer cells, we compared intra-
tumoral homogeneity of cancer and normal cells by projecting the
transcriptomic data of individual cells onto a two-dimensional plane
using T-distributed Stochastic Embedding (t-SNE) (van der Maaten
and Hinton, 2008) and visually inspecting their distributions within
and across patients, and computing the NSV and pdiff scores of
cancer and normal cells in each dataset.
Fig. 1 displays the t-SNE plots of cancer and normal cells together

from six datasets and reports their average NSV fractions and pdiff
scores. In all but one dataset (GSE81861 colorectal cancer), cancer
cells (triangles) are widely separated by their tumor (patient)
identities. In contrast, normal cells (crosses) are separated primarily
by their types but are intermingled between tumors. Visual
inspection is compatible with the two quantitative measures as
cancer cells by and large have lower average NSV fractions and
higher pdiff scores than the normal cell counterparts.
High levels of intra-tumoral heterogeneity in normal cells are

primarily confounded by the diverse cell types captured in the data.
To account for this confounder, we visualized the t-SNE plots and
reported the average NSV fractions and pdiff scores of individual
cell types separately (Figs S1–S6). For instance, in GSE75688
breast cancer data cancer cells have larger pdiff (0.8048) and
smaller NSV (0.0180) than normal cells aggregated (0.5636 and
0.3546, respectively, Fig. 1A). Intra-tumoral heterogeneity in
normal cells reduces considerably after stratification by cell types,
but still exceeds intra-tumoral heterogeneity in cancer cells.

In GSE75688 data, cancer cells still have larger pdiff and
smaller NSV than those in each of the four normal cell types
separately (Fig. S1). Therefore, transcriptomes of cancer cells are
more homogeneous within tumors than each type of normal cells.

Gene clusters emerged from distinct cancer types exhibit
differential levels of intra-tumoral heterogeneity and
functional enrichment
Transcriptomic homogeneity of cancer cells displayed in Fig. 1 and
Figs S1–S6 is attributed to the expression data of many genes. To
deconstruct transcriptomic heterogeneity, we clustered genes
according to their cancer cell expressions in each dataset, assessed
intra-tumoral heterogeneity and functional enrichment of each gene
cluster, and examined relations between enriched functions and
heterogeneity.

We clustered genes using a consensus k-means clustering
(Wilkerson and Hayes, 2010). The number of clusters (k) is a free
parameter and often determined by context-specific means. As an
illustrative example we first set k=7 and examined several features
associated with each gene cluster – intra-tumoral homogeneity
( pdiff ) and density (fraction of non-dropout entries in the data), false
discovery rate (FDR) adjusted enrichment P-values (Benjamini and
Hochberg, 1995) of 5745 gene sets (Subramanian et al., 2005), and
enrichment P-values of marker gene groups reported in the papers
of the six datasets. Later we varied k from 1 to 12 and represented
clustering outcomes as a hierarchy.

The gene set enrichment P-values and summary information of
the examined features are reported in Tables S2A and S2B,
respectively. The enriched gene sets are either universally and
highly enriched in the majority of datasets (type 1, P-values ≤ 10−6

in at least six datasets), or moderately enriched in specific datasets
(type 2, P-values ≤ 10−3 in one or two datasets). Type 1 gene sets
comprise roughly four large functional categories: ribosome,
respiration, RNA splicing and cell cycle. Cell cycle and RNA
splicing gene sets are co-enriched in the same clusters of some
datasets, while other functional categories are enriched in separate
clusters of most datasets. The pdiff (homogeneity) scores of the
gene clusters harboring these functional categories generally follow
an order of ribosome>respiration>RNA splicing>cell cycle. Type 2
gene sets are mostly related to the functions pertaining to the tissues
of origins for the cancer types, such as pigmentation in melanoma
datasets, neuron projection and differentiation in brain tumor
datasets, hematopoiesis and leukocyte differentiation in CML
dataset. Most marker gene groups are co-enriched with some gene
sets in the same clusters. Instances include HER2+ markers
and interferon gamma response in GSE75688 breast cancer data
(cluster 2), and SOM D markers and epithelial-mesenchymal
transition in GSE81383 melanoma data (cluster 3).

Table 1. Summary information of the nine sc-RNAseq datasets in the present study

Cancer type ID # patients # cancer cells # normal cells # valid genes Reference TCGA

Breast cancer GSE75688 11 317 198 8318 Chung et al., 2017 BRCA
Melanoma GSE72056 19 1174 2772 8119 Tirosh et al., 2016a SKCM
Melanoma GSE81383 3 307 0 8097 Gerber et al., 2017 SKCM
Astrocytoma GSE89567 10 4644 1289 8816 Venteicher et al., 2017 GBM, LGG
Oligodendroglioma GSE70630 6 4044 280 7275 Tirosh et al., 2016b GBM, LGG
Head and neck squamous
cell carcinoma

GSE103322 18 2215 3345 8109 Puram et al., 2017 HNSC

Non-small cell lung cancer E-MTAB-6149 5 3524 0 3455 Lambrechts et al., 2018 LUAD, LUSC
Chronic myeloid leukemia GSE76312 20 1031 0 6696 Giustacchini et al., 2017
Colorectal cancer GSE81861 11 272 208 4683 Li et al., 2017 COAD

The bulk level TCGA data of the corresponding cancer types are also listed.
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Fig. 1. t-SNE plots of transcriptomes of normal and cancer cells in six sc-RNAseq datasets. Triangles and crosses denote cancer and normal cells
respectively. Cells from distinct tumors (patients) are colored differently. The two heterogeneity scores – average NSV fractions and pdiff – of all cells, normal
and cancer cells of each dataset are reported.
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The pdiff scores and densities of gene clusters are moderately
correlated (correlation coefficient 0.539). Clusters with low
densities tend to have low pdiff scores and are enriched with cell
cycle, and clusters with high densities tend to have high pdiff scores
and are enriched with ribosome.
To ensure the features of intra-tumoral heterogeneity, density and

functional enrichment are robust against the number of clusters, we
varied k from 1 to 12, reported stable clusters for each k, and devised
a compact representation for the clustering outcomes. Clusters
between consecutive levels (k’s) possess overlap relations. A cluster
at level k+1 may be split from one cluster at level k or joined by
subsets of genes from multiple clusters at level k. We define an
inheritance relation between clusters at consecutive levels. Cluster cj
at level k+1 inherits cluster ci at level k if their overlap size ≥ 15% of
the size of cj. The resulting clusters and their inheritance relations
constitute a hierarchy or directed acyclic graph. This hierarchy
differs from the dendrogram obtained from hierarchical clustering as
one cluster may possess multiple parents (if it is joined with multiple
clusters at the higher level) or multiple children (if it splits into
multiple clusters at the lower level). A full hierarchy is not a
compact representation since it may consist of clusters that remain
highly overlapped over a range of k’s. We term these clusters a
stump as they constitute a single branch (one child for each parent)
over multiple levels in the hierarchy. To reduce the full hierarchy
into a compact representation, we developed an algorithm to detect
all stumps and collapse each stump into a node. In brief, it identifies
the maximal paths where all the non-terminal nodes have single
parents and children (stumps), collapses stumps into nodes, and
reassigns parents and children of the reduced nodes. A detailed
description of cluster hierarchy reduction algorithm is reported in
the Materials and Methods.
The inheritance relations of clusters in the hierarchy also make

their functional enrichment outcomes correlated. For instance, if
cluster c1 splits to clusters c2 and c3, c1 and c2 are both significantly
enriched with a GO term g but c3 is not, then it is inadequate to
assign function g to c1 since members of g are likely concentrated in
one sublineage c2 of c1. In contrast, if g is enriched in all three
clusters, then it is adequate to assign g to c1 since members of g are
likely distributed in both sublineages of c1. A functional category is
defined as uniquely enriched in a gene cluster if its enrichment
cannot be attributed to the enrichment concentrated in any
substructure of the gene cluster. We proposed an algorithm to
infer uniquely enriched gene clusters of a functional category. In
brief, it identifies the maximal path in the hierarchy encompassing
the top-ranking gene clusters in terms of enrichment P-values. The
bottom node along this path is reported as the uniquely enriched
gene cluster. A detailed description of this algorithm is reported in
the Materials and Methods.
We reported the following clustering analysis outcomes:

(1) summaries of clustering characteristics of all datasets together
(Table 2), (2) summaries of the reduced cluster hierarchies, their
intra-tumoral homogeneity scores (pdiff’s) and densities, enrichment
significance with previously reported marker gene groups, and
selected GO terms which are uniquely enriched in each cluster
(Fig. 2 and Figs S7–S10), (3) the full gene cluster hierarchies
(Fig. S11), (4) the sc-RNAseq expression profiles with genes sorted
by clusters and cells sorted by tumor identities (Figs S12-–S14),
(5) the full and reduced gene cluster memberships (Tables S3–S4),
and the mappings from full gene clusters to reduced gene clusters
(Table S5), (6) enrichment − log10(FDR-adjusted P-values) of GO
terms in full and reduced gene clusters (Tables S6–S7), (7) uniquely
enriched GO terms and their− log10(FDR-adjusted P-values) in full

gene clusters (Table S8), (8) enrichment P-values of marker gene
sets in full and reduced gene clusters (Tables S9A,B), (9) NSV and
pdiff scores and densities of all full gene clusters (Table S10).

The diverse cancer types examined in our analysis exhibit
strikingly similar characteristics in terms of the functional
enrichment and homogeneities of gene clusters. A major split at
k=2 generates a relatively large lineage containing dense and sparse
clusters and a relatively small lineage containing dense clusters. The
dense cluster lineage typically possesses higher intra-tumoral
homogeneity (higher pdiff scores and lower NSV scores) and
enrichment with abundant functional categories such as cellular
respiration, ribosome, cell junction, mitochondrion, antigen
processing and presentation, and protein localization. The mixed
cluster lineage often further splits into dense and sparse sublineages.
The sparse cluster sublineage typically possesses lower intra-
tumoral homogeneity and enrichment with scattered functional
categories including cell cycle, DNA replication, and chromatin
modification.

We illustrate the gene cluster characteristics with an example of
the GSE75688 breast cancer data (first row of Table 2 and Fig. 2).
At k=2 there is a large cluster (cluster 2) with mixed dense and
sparse entries and a small cluster (cluster 3) with dense entries
(Table S10). Cluster 2 further splits into a large sparse (4) and a
small dense (5) cluster. Cluster 3 remains a lineage of small clusters.
The lineages emerged from multiple clusters (starting with clusters
9 and 44, respectively) are uniquely enriched with GO terms such as
hydrogen transport and mitochondrial membrane (cluster 14), cell
junction and ribosomes (cluster 21) for the former (starting with
cluster 9) and respiration and immune response (cluster 74) for the
latter (starting with cluster 44). They also possess high levels of
intra-tumoral homogeneity than other lineages. In contrast, the
lineage along the sparse clusters (2-4-7 and its downstream) is
uniquely enriched with chromatin modification (cluster 2) and cell
cycle processes (cluster 37) and possess low levels of intra-tumoral
homogeneity. The marker genes of the three breast cancer subtypes
are enriched along three lineages inherited from the mixed cluster
2. ER+ genes are moderately enriched in the cluster lineage 19-26-
33-42-77. HER2+ genes are moderately enriched in the cluster
lineage 12-17-38-57. TNBC genes are moderately enriched in the
cluster lineage 8-13-25-32-41-50. Both ER+ and HER2+ genes
inherit from the sparse cluster 4, and TNBC genes inherit from the
dense cluster 5.

Pan-cancer comparison reveals consensus and specific
gene clusters with differential levels of intra-tumoral
homogeneity
Co-expression patterns of genes can be shared among multiple
cancer types or idiosyncratic to specific cancer types. To integrate
the clustering outcomes from multiple datasets, we developed an
algorithm to group gene clusters into meta gene clusters that
respected the hierarchical structures of individual datasets. In brief,
the algorithm consists of three major parts. First, it matches paths in
the hierarchies between two datasets if the clusters along the two
paths considerably/moderately overlap. Paths in the hierarchy of a
dataset are further merged into subgraphs if their member clusters
considerably/moderately overlap and their matched paths in another
dataset also considerably/moderately overlap. Second, for each
dataset it constructs the membership matrix of the subgraphs over
the edges in the hierarchy, applies non-negative matrix factorization
multiple times to decompose those subgraphs into combinations of
smaller components, and merges highly overlapped components
across datasets into meta gene clusters. Third, it selects the
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consensus meta gene clusters over multiple trials. Detailed
procedures are described in the Materials and Methods.

We generated four meta gene clusters from the gene clusters of
nine datasets. Table S11 reports the meta gene cluster memberships
of gene clusters. Fig. 2A and Figs S7A–S10A also display the meta
gene cluster memberships by the circumference colors of the nodes
in the hierarchies. Fig. S16A visualizes the overlap ratios between
reduced gene clusters sorted by meta gene cluster memberships.
Members of the same meta gene clusters are typically more
overlapped than those between distinct meta gene clusters.

Meta gene cluster 4 is the largest and comprises primary lineages
of large mixed clusters (brown nodes in Fig. 2A and
Figs S7A–S10A). Meta gene cluster 3 is the second largest and
comprised primary lineages of dense clusters (green nodes). Meta
gene clusters 2 (red nodes) and 1 (blue nodes) are considerably
smaller than meta gene clusters 3–4.

We characterized meta gene clusters with enriched GO terms and
intra-tumoral heterogeneity scores. We selected 775 GO terms which
were enriched (FDR-adjusted P-values ≤ 10−3) in at least two
datasets for at least one meta gene cluster. For each combination of
meta gene cluster, dataset and GO term, we calculated the enrichment
score by taking the geometric mean of enrichment P-values over the
valid member clusters of the meta gene cluster (see the Materials and
Methods). Fig. 3 and Table S12 show the enrichment scores for
selected and sorted GO terms in each meta gene cluster and dataset.
Sorted GO terms 1-121 are significantly enriched inmeta gene cluster
3 and comprise functions pertaining to cellular respiration, antigen
processing and presentation, immune responses, proton transport, and
electron transport. Sorted GO terms 122-457 are significantly
enriched in meta gene cluster 4 and comprise functions pertaining
to cell cycle, chromosome organization, chromatin modification,
DNA repair, and Golgi apparatus.

We also evaluated the intra-tumoral homogeneity scores of meta
gene clusters. Since the pdiff scores have distinct scales among
different datasets, it may not be adequate to directly average the pdiff
scores over the member clusters. Rather, for each dataset we
calculated the ranks of reduced clusters in terms of their pdiff scores
and reported the average ranks of each meta gene cluster in Table 3.
The order of meta gene clusters in terms of average intra-tumoral
homogeneity ranks is 1, 3, 2 and 4. This order makes good sense
since meta gene clusters 1 and 3 comprise relatively small and large
dense cluster lineages, while meta gene clusters 2 and 4 comprise
relatively small and large lineages of mixed clusters.

There are 97 orphan clusters that are not assigned to any meta
gene clusters. For each dataset and GO term, we counted the number
of orphan clusters with significant enrichment (FDR-adjusted P-
value ≤ 10−6) and reported the outcomes in Table S13. Intriguingly,
many enriched GO terms for those orphan clusters are related to the
gene functions specific to the tissues of origins of the corresponding
cancer types. Some enriched gene functions of the orphan clusters
include cell junction and adhesion in GSE103322 head and neck
squamous cell carcinoma data, immune responses in GSE76312
chronic myeloid leukemia data, pigmentation granule, DNA
damage repair, and cell proliferation in GSE81383 melanoma
data, and neuron development and projection in GSE70630
oligodendroglioma data.

The expression patterns from bulk level and single-cell data
exhibit complex relations
Although single-cell cancer transcriptomic data are increasingly
prevalent, bulk level expression data are still indispensable as they
are much less expensive and can cover many more patients. AT
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critical question for combining bulk level and single-cell data is
whether information derived from one type of data can be
transferred to another. We addressed this question by
investigating the relations of their expression patterns in both
directions. First, we verified whether the combinatorial expression
patterns of breast cancer subtypes in the bulk level data were
preserved in sc-RNAseq data. Second, we checked whether the
meta gene clusters derived from sc-RNAseq data retained coherent
expressions and associations with survival times in bulk level data.
Four breast cancer subtypes are demarcated by the combinatorial

expression patterns of 50 genes (PAM50): Basal, Her2, Luminal A
and Luminal B (Parker et al., 2009). Some PAM50 genes are no
longer informative about subtype delineation in single-cell data due
to their sparsity of valid entries. We extended PAM50 genes into a
list of 127 genes (see the Materials and Methods) and used them to
classify breast cancer subtypes in the single-cell data. The
expression patterns of the extended PAM50 genes in a bulk level
breast cancer transcriptomic data (METABRIC, Curtis et al., 2012)
are shown in Fig. 4A. The extended PAM50 genes are divided into
three groups based on their expression patterns, where groups 1–3
are enriched with estrogen response, immune response, and cell
cycle process, respectively (Table S14A–C).
We developed a simple algorithm to predict the breast cancer

subtypes of single-cell data (GSE75688) by comparing their
extended PAM50 gene expressions with the signatures retrieved
from the bulk level METABRIC data (see the Materials and
Methods). Fig. 4B displays the predicted subtype compositions of
cells in 10 tumors. The dominant subtypes of the tumors agree with
their subtype labels according to bulk tumor assessment in 70%
(seven of ten) of the tumors, which are closely aligned with the
results by Chung et al. (2017).

Despite the reasonable accuracy on tumor-level prediction, the
expression patterns of extended PAM50 genes in the METABRIC
data are highly preserved in the bulk level TCGA BRCA data
(Fig. 4C) but are not well preserved in the single-cell data (Fig. 4D).
The expression vectors of about 73% of the cells are poorly
correlated with the expression patterns of all subtypes (average
correlation coefficient ≤ 0.1). By restricting to cells with higher
average correlation coefficients (> 0.1), the single-cell expression
data (Fig. 4E) more resemble the subtype expression patterns in the
bulk data. There is a tradeoff between the preservation of subtype
gene expression patterns and the number of cells left by varying the
threshold of correlation coefficients. Fig. S15 displays the sorted
sc-RNAseq expression patterns among the cells with the correlation
coefficients>0.05. The expression data resembles those of all the
cells (Fig. 4D), and the expression patterns of PAM50 subtypes
(Fig. 4E) are no longer recognizable. We varied the correlation
coefficient threshold as 0, 0.02, 0.05, 0.1, and found 100%, 92.2%,
67.7% and 27% of the cells passed the filter. No cells were left when
the correlation coefficient threshold ≥ 0.2. Although the PAM50
expression patterns are poorly preserved in sc-RNAseq data with a
relaxed correlation coefficient threshold, the dominant predicted
subtypes in seven of ten tumors still agree with their bulk labels. In
contrast, with threshold 0.1 the PAM50 expression patterns are
marginally recognizable, but two tumors contain no cells and the
dominant predicted subtypes in five of eight remaining tumors still
agree with their bulk labels.

We further related bulk level and single-cell data by counting the
overlap between PAM50 gene groups and single-cell gene clusters
(Table S14D,E). There is generally poor enrichment of PAM50
gene groups in each gene cluster, implicating that the patterns of
breast cancer subtype gene expressions are blurred by other

Fig. 2. Summary information of clustering results of GSE75688 breast cancer data. The left hierarchy (A) displays the reduced hierarchy derived from
stable k-means clusters. A node denotes a gene cluster. An edge denotes an inheritance relation from a higher-level cluster (a cluster generated by a larger
k) to a lower-level cluster (a cluster generated by a smaller k). The thickness of an edge reflects the overlap level (intersection size over the higher-level
cluster size). Uniquely enriched selected GO terms of clusters are annotated in boxes. The meta gene cluster identities of gene clusters are annotated by the
circumference colors of nodes. Some gene clusters belong to multiple meta gene clusters, and the orphan clusters without meta gene cluster assignments
are colored by black. The colored dots along some lineages denote significant enrichment of marker gene sets reported in the study (ER+, HER+ and TNBC
genes in breast cancer data) in gene clusters of the reduced hierarchy. The right heatmap (B) displays (1) densities of valid entries of gene clusters, (2)
homogeneity pdiff scores of gene clusters (range in [0, 1]), (3) − log10 of hyper-geometric enrichment P-values of the previously reported marker genes in
gene clusters (ER+, HER2+, TNBC, range in [0, 25], colors compatible with the colored dots in the left panel), (4) − log10 of FDR-adjusted hyper-geometric
enrichment P-values of selected GO terms appeared in the left boxes in gene clusters (range in [0, 25]). The color scales of − log10 P-values (between 0 and
25) and density and pdiff (between 0 and 1) are displayed at the top of B.
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processes in the single-cell data. The enrichment of breast cancer
subtype gene markers of the single-cell data in gene clusters (Fig. 2)
also indicates that those marker genes are enriched in clusters under
the sparse lineage and possess relatively incoherent expressions.
To verify whether the observed relations between bulk and

single-cell expression data in breast cancers also hold in other cancer
types, we performed a similar analysis on the astrocytoma single-
cell data and TCGA glioblastoma (GBM) bulk data. GBM tumors
were previously categorized into four molecular subtypes (classical,
mesenchymal, neural and proneural), and the marker genes of each
subtype were reported (Verhaak et al., 2010). The observed
correlation between the expression vectors of single cells and the

expression patterns of all subtypes were also present. When the
threshold of correlation coefficients varied among 0, 0.02, 0.05, 0.1
and 0.2, 100%, 89.9%, 49.9%, 10% and 0.33% of cells passed the
filter. We could predict the dominant subtypes of tumors as for
breast cancer data, but the prediction accuracy could not be assessed
since the subtypes of astrocytoma tumors were not reported.

To address the reverse question, we downloaded and processed
the mRNA expressions and survival times data of the corresponding
cancer types from TCGA (Hoadley et al., 2018). The expression
coherence and association with survival times of each reduced gene
cluster were quantified by pdiff scores between the distributions of
gene expression correlation coefficients/Cox regression coefficients
among member genes in the cluster and among all valid genes in the
data. For each TCGA cancer type, we then checked whether the
members of a meta gene cluster were enriched in the top-ranking
gene clusters in terms of pdiff scores and reported the enrichment
P-values. Small P-values indicate that members in a meta gene
cluster are more coherently expressed or associated with survival
times relative to all reduced gene clusters in a cancer type. The
detailed procedures of validations on TCGA data are described in
the Materials and Methods.

Fig. 3. GO term enrichment of meta gene clusters deduced from gene clusters. Each panel displays the enrichment outcomes of one meta gene cluster
over selected GO terms. The selected and sorted GO terms for meta gene clusters are identical for all panels and are reported in Table S12. In each panel,
an entry visualizes the geometric mean of − log10 of FDR-adjusted P-values of a GO term (row) over the member clusters in a dataset (column).

Table 3. The average values of pdiff scores and average ranks of pdiff

scores over the member gene clusters in each meta gene cluster

Meta cluster pdiff pdiff rank

1 0.470799 10.833333
2 0.207768 21.753846
3 0.363979 14.78022
4 0.219926 26.398649
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Table 4 shows the enrichment P-values of expression coherence
(4A) and survival time association (4B) for meta gene clusters. Meta
gene cluster 3 possesses significant P-values (P≤0.05) in five of
eight cancer types for expression coherence and positive Cox
regression coefficient deviation, and almost all remaining
insignificant P-values are also relatively small (P≤0.2). Other meta
gene clusters either have poor P-values for most cancer types (such
as meta gene cluster 4) or have valid entries in only a few cancer
types (such as meta gene cluster 1). Meta gene cluster 3 comprise
intra-tumoral homogeneous gene clusters. Strikingly, in the bulk
level TCGA data these homogeneous gene clusters are coherently
expressed, and their expressions are negatively associated with
survival times (positive deviation of Cox regression coefficients). In
contrast, in the bulk level TCGA data the heterogeneous gene
clusters (meta gene cluster 4) are incoherently expressed, and their
expressions are not associated with survival times.

DISCUSSION
In this work, we present several bioinformatics methods for
clustering analysis of cancer sc-RNAseq data. Our methods
possess a number of unique features compared to prior studies.
First, we explicitly quantified intra-tumoral heterogeneity/
homogeneity of expression data using two measures that could be
efficiently computed in high dimensional data. Second, rather than
fixing the number of clusters, we clustered genes with varying
numbers of clusters and represented the clustering outcomes with a

compact hierarchy of clusters. Third, we aligned the cluster
hierarchies from multiple datasets to form meta gene clusters and
orphan gene clusters. We applied these methods to nine sc-RNAseq
datasets covering seven cancer types and compared their inference
results with those derived from the bulk level gene expression data.
Most findings agree with previous reports about cancer sc-RNAseq
data, yet some novel information also arises. The source codes of
these methods are deposited in the Synapse database for public
access.

Prior studies of cancer sc-RNAseq data noted higher levels of
intra-tumoral heterogeneity of normal cells relative to cancer cells
(Suva and Tirosh, 2019), but we also showed this trend sustained
even after conditioning on normal cell types, albeit with a weaker
strength (Figs S1–S6). Although the normal cell types from which
cancers originate (such as luminal epithelial cells for breast cancer
and colonic crypt epithelial cells for colon cancer) are not probed in
the sc-RNAseq data we analyzed, in all datasets cancer cells are
typically more homogeneous than almost all types of normal cells
measured, suggesting that this observation is not cell type specific.

The data of colorectal cancer (GSE81861, Fig. 1F) differs from
other sc-RNAseq data in our analysis as it lacks salient clustering
patterns. We suspect this abnormality is partly due to the small
number of cells in the data and partly due to the inferior quality of
the data. All but two datasets in our study have more than 7000 valid
genes and more than 500 cells (Table 1), yet the colorectal cancer
data (GSE81861) has only 4683 valid genes and 480 cancer+normal

Fig. 4. The subtype prediction outcomes of breast cancer sc-RNAseq data. (A) The combinatorial expression patterns of extended PAM50 genes over
the four breast cancer subtypes in METABRIC data. (B) Fractions of cancer cells with predicted subtypes in each patient. The colors of the patient IDs
indicate their pathological classifications. (C) The combinatorial expression patterns of extended PAM50 genes over the four breast cancer subtypes in
TCGA breast cancer data. (D) The combinatorial expression patterns of extended PAM50 genes of breast cancer sc-RNAseq data. Predicted subtypes,
patient (bulk) subtypes and patient IDs of single cells are annotated. (E) The combinatorial expression patterns of extended PAM50 genes of breast cancer
sc-RNAseq data, including only the cells whose expression patterns are strongly correlated with the bulk level data.
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cells. The colorectal cancer data is the only dataset with low
numbers of valid genes and cells together. Therefore, its t-SNE
projection data are likely much more sparse than other datasets.
Intra-tumoral homogeneity/heterogeneity of single cell

transcriptomes may result from three interrelated processes:
(1) different genetic backgrounds contribute to inter-tumoral
transcriptomic differences of all cell types, (2) all cancer cells in a
tumor likely descend from one malignant cell, (3) accumulated
genetic/epigenetic alterations split cancer cells into subclones. We
speculate that the mutational landscapes of the initiating cancer cells
are likely the dominant cause of the observation that cancer cells
possess more intra-tumoral homogeneity than each type of normal
cells. If the genetic backgrounds of patients dominate inter-tumoral
differences, then cancer cells and normal cells (of the same type)
should exhibit similar levels of transcriptomic homogeneity. If
tumors possess diverse subclones with distinct transcriptional
signatures, then cancer cells should be more heterogeneous than
each type of normal cells.
The causes of differential intra-tumoral transcriptional

homogeneity among the meta gene clusters are not completely
clear. A major contribution is likely expression abundance of genes.
Genes with abundant/small mRNA quantities typically possess
lower/higher cell-to-cell variability and lower/higher fraction of
dropouts, thus constitute homogeneous/heterogeneous gene clusters
such as meta gene cluster 3/meta gene cluster 4. In addition,
cell cycle gene expressions (which are enriched in the meta gene
cluster 4) vary with cell cycle phases in an asynchronous tumor cell
population and thus may add intra-tumoral heterogeneity in
sc-RNAseq data (Buettner et al., 2015; Kowalcsyk et al., 2015;
Suva and Tirosh, 2019). The effect of asynchronous cell cycles on
expression heterogeneity is prominent in some gene clusters which
are enriched with cell cycle genes and have low pdiff scores but low
fraction of dropouts.
Functional enrichment indicates that the coarse-level gene

expression patterns of cancer cells largely inherit from the normal
tissues of origin. In almost all datasets, gene clusters are enriched
with four functional categories fundamental for cellular life:
ribosome, respiration, RNA splicing, and cell cycle. In specific
datasets, gene clusters are also enriched with functions related
to their tissues of origin (such as pigmentation for melanomas,
neuron projection and differentiation for brain tumors, and
hematopoiesis for CML). Subtle expression patterns arising after

oncogenesis – such as subclonal structures and differential
epigenomic responses – may be retrieved after taking these
background patterns into account.

The combinatorial expression signatures of breast cancers are
highly preserved between two bulk level data (METABRIC and
TCGA BRCA, figures 4A and 4C) but poorly preserved in single-
cell data (Fig. 4D,E). Low concordance of the combinatorial
expression patterns of marker gene groups between bulk level
and single-cell level data suggests that the molecular subtypes at
bulk level are aggregations/combinations of multiple refined
subtypes at single-cell level or depend on interactions between
tumor cells and stromal cells/immune cells microenvironment
(or both). Indeed, both possible explanations were confirmed in a
recent single-cell proteomic study of breast cancers (Jackson et al.,
2020).

The homogeneous meta gene cluster in sc-RNAseq data retains
relatively coherent expressions and negative associations with
survival times in the bulk level TCGA data of the corresponding
cancer types, but the heterogeneous meta gene cluster does not
maintain these properties. Genes possessing intra-tumoral
homogeneity in sc-RNAseq data tend to exhibit a consistent
direction over the constituent cells and hence retains coherent
expressions in bulk level RNAseq data. However, negative
associations between the expressions of homogeneous genes and
survival times in the bulk level data are less interpretable. Curiously,
the homogeneous meta gene cluster is enriched with immune
responses and cellular respiration, whose functions in cancers are
under scrutiny in recent years.

Our study provides a crude-level characterization of intra-tumoral
transcriptomic homogeneity/heterogeneity across multiple sc-
RNAseq datasets. Cancer cell transcriptomes are well separated
by their tumor identities, and their differences are primarily
attributed to a subset of gene clusters with abundant expressions
and enriched with cellular respiration, antigen processing and
presentation, immune responses, cellular junction, etc. These
homogeneous gene clusters retain coherent expressions and
negative associations with survival times in the bulk level TCGA
data. In contrast, another subset of gene clusters has low expressions
in sc-RNAseq data, possesses high level intra-tumoral variability,
and is enriched with cell cycle, chromosome organization,
chromatin modification, and DNA repair. These heterogeneous
gene clusters do not retain coherent expressions and prognostic

Table 4. Validation of sc-RNAseq meta gene clusters in TCGA data

4A: Enrichment P-values of meta gene clusters for expression coherence in TCGA data

meta gene cluster BRCA COAD GBM HNSC LGG LUAD LUSC SKCM

0 0.2135 0.8833 0.0011 0.4094 0.0356 0.0619 0.1250 0.0669
1 NaN NaN NaN NaN NaN 0.0315 0.0583 0.0344
2 NaN NaN 0.5223 0.2334 0.3862 NaN NaN 0.0010
3 0.0219 0.0014 0.0349 0.0056 0.0008 0.2320 0.2320 0.1042
4 1.0000 0.9036 0.1583 1.0000 0.9478 1.0000 1.0000 0.9958

4B: Enrichment P-values of meta gene clusters for positive Cox regression coefficients in TCGA data

meta gene cluster BRCA COAD GBM HNSC LGG LUAD LUSC SKCM

0 0.9413 0.9753 0.1080 0.2965 0.0068 0.3294 0.7262 0.8914
1 NaN NaN NaN NaN NaN 0.4638 0.0211 0.0003
2 NaN NaN 0.9465 0.9698 0.9939 NaN NaN 0.4322
3 0.1266 0.0000 0.0337 0.0002 0.0699 0.1291 0.0045 0.0146
4 0.9543 0.1588 0.0301 0.8741 0.2751 0.9914 1.0000 0.9794

Meta gene cluster 0 denotes orphan gene clusters. Ameta gene cluster has no enrichmentP-value (NaN) in a cancer type if it has <5 reduced gene clusters in the
corresponding sc-RNAseq datasets.
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associations in the bulk level TCGA data. This simple yet
comprehensive and general picture serves as a background model
that accounts for intra-tumoral homogeneity and variations of gene
expressions in single-cells.

MATERIALS AND METHODS
We describe some of the data processing and analysis methods and
algorithms in this section.

Data collection and preprocessing
Eight of the nine sc-RNAseq datasets were downloaded from the NCBI
Gene Expression Omnibus (GEO) repository, and the E-MTAB-6149
NSCLC dataset was downloaded from the EBI ArrayExpress. The
downloaded data were already normalized by total read counts (RPKM or
FPKM). We removed the genes that contained more than 70% missing
entries over all samples and passed the transformed data of the remaining
genes for subsequent analysis. A bulk level breast cancer gene expression
data – METABRIC – was downloaded from https://www.synapse.org/#!
Synapse:syn213309. In addition, the bulk level gene expression and clinical
data of eight cancer types were downloaded from the TCGA data portal
https://gdc-portal.ncbi.nih.gov. They include breast invasive carcinoma
(BRCA), colon adenocarcinoma (COAD), glioblastoma multiforme
(GBM), head and neck squamous cell carcinoma (HNSC), brain lower
grade glioma (LGG), lung adenocarcinoma (LUAD), lung squamous cell
carcinoma (LUSC), and skin cutaneous melanoma (SKCM). In each dataset,
the expression levels of each gene over the samples were transformed into
their cumulative distribution function values. Furthermore, gene sets were
downloaded from Molecular Signatures Database MSigDB (http://software.
broadinstitute.org/gsea/msigdb).

Imputing dropout entries in sc-RNAseq data
We employed a simple criterion to impute dropout entries by replacing a
missing entry with the mean expression value over the valid entries of the
same gene. To verify the robustness of the characteristics derived from
clustering outcomes against the imputation methods, we applied two
additional methods of dropout entry imputation: replacing missing entries
with zeros and applying VIPER (Chen and Zhou, 2018) to the normalized
data. Among the imputation methods reported in Hou et al. (2020), only
VIPER fits data requirement since all other imputation programs need read
counts as inputs, which are unavailable in GEO and EBI datasets. We first
clustered genes on imputed data with a fixed number k=7 and compared the
intra-tumoral homogeneity pdiff scores, densities of valid (non-missing)
entries, and enrichment outcomes of four major functional categories (cell
cycle, ribosome, respiration, and RNA splicing) in each gene cluster
(Table S15). For both mean and zero imputed data, the gene clusters
enriched with the four functional categories roughly follow a consistent
order in terms of the pdiff scores or densities of valid entries:
ribosome>respiration>RNA splicing>cell cycle. For VIPER-imputed data,
the gene clusters enriched with ribosomes tend to have higher pdiff scores
and densities than the gene clusters enriched with cell cycle. We then
aligned gene clusters to formmeta gene clusters and orphan gene clusters on
each imputed data, sorted gene clusters by their meta gene cluster
memberships, and counted the overlap ratios of sorted gene clusters
within and between three dropout imputationmethods (Fig. S16). Meta gene
clusters 1, 3 and 5, 4 from zero imputation moderately overlap with meta
gene clusters 3, 4 and 2 from mean imputation. There are six meta gene
clusters from VIPER imputation, and meta gene clusters 2 and 5 are
considerably larger than others. Meta gene cluster 2 moderately overlaps
with meta gene cluster 4 from mean imputation, and meta gene cluster 5
moderately overlaps with meta gene clusters 3 and 4 from mean imputation.
Meta gene cluster 2 from VIPER imputation contains primarily
heterogeneous gene clusters and has a higher (less homogeneous) average
rank of pdiff scores (22.9910), while meta gene cluster 5 from VIPER
imputation contains both heterogeneous and homogeneous gene clusters
and has a lower (more homogeneous) average rank of pdiff scores (20.7414).
Meta gene cluster 6 from VIPER imputation moderately overlaps with meta
gene cluster 2 from mean imputation.

Assessing intra-tumoral heterogeneity/homogeneity
The silhouette value of a cell (Eqn 1) is determined by the average
intra-tumoral and inter-tumoral distances of the expression vectors. The pdiff
score quantifies the deviation from pintra to pinteras pdiff≡P(X>(Y+ε))−
P(X<(Y−ε)), where random variables X and Y are sampled from pintra to
pinter, respectively. We applied the following rejection sampling procedures
to draw N data points from a distribution p:

1. Start with an empty set X=φ.
2. Repeat the following steps until |X|=N.

2.1 Uniformly draw a number x from the domain of p ([−1, 1] for
correlation coefficients).

2.2 Evaluate p(x).
2.3 Uniformly draw a number q(x) from the interval [0, pmax], where

pmax is the maximum value of p.
2.4 If q(x)≤p(x), then X  X < fxg.

The pdiff score can be directly assessed by counting the fractions of (X, Y )
pairs from the sampled data satisfying the relations X>(Y+ε) or X<(Y−ε),
respectively.

Assessing intra-tumoral heterogeneity in simulated data
We generated a toy expression data comprising ten genes and 500 cells. The
500 cells were subdivided into five populations (with 100 cells per
population). In each population i=1−5, the expression vector of each cell is
x=ci+ε, where ci is a constant vector and e~Nð0;s2IÞ, where I is an identity

matrix. Each ci contains 10 components (genes) with
�1ffiffiffiffiffi
10
p in components

2i−1 and 2i and
1ffiffiffiffiffi
10
p in other components, hence |ci|=1. The 500 cells were

allocated to five tumors with three cases: (1) each tumor constituted
exclusively 100 cells from one population, (2) each tumor contained 60 cells
from one population and ten cells from each of the remaining populations,
(3) each tumor contained 20 cells from each population. Besides NSV and
pdiff scores, we also calculated the entropy of the expression data in each
tumor. In each tumor, the marginal density of each gene was separately
inferred by kernel density estimation, and the entropy of ten genes was the
sum of the entropies of individual genes (assuming the genes were
independent), and the average entropy over the five tumors was evaluated.
We varied the standard deviation σ of Gaussian noise with σ=0.05, 0.1, 0.2,
0.3, 0.5 in simulated data and reported the three heterogeneity/homogeneity
indices of the three cases in Table S1.

Generating stable clusters using the k-means algorithm
We used the R package of ConsensusClusterPlus (Wilkerson and Hayes,
2010) to generate stable gene clusters by the k-means algorithm with a fixed
k. In brief, it subsampled the data and ran k-means 100 times, then calculated
pairwise consensus values as the fractions of runs where two genes were
clustered together. An agglomerative hierarchical clustering using the
distances of 1-consensus values was implemented and pruned to k groups.

Generating the extended PAM50 gene list
The original PAM50 genes were extended into a larger gene list in order to
better predict breast cancer subtypes from single-cell gene expressions. We
subdivided the PAM50 genes into three groups by k-means clustering on the
METABRICgene expression data. For each gene outside the PAM50 gene list,
we calculated its correlation coefficients with the PAM50 genes in both
TCGA-BRCA andMETABRIC data and averaged the correlation coefficients
over the members of each PAM50 group. Genes were sorted by the maximum
of group-level average correlation coefficients in each dataset (TCGA-BRCA
and METABRIC) separately. 127 genes appeared in the top 200 genes from
both datasets, and they were included in the extended PAM50 gene list.

Predicting breast cancer subtypes from sc-RNAseq data
METABRIC samples were categorized into four subtypes: Basal, Her2,
Luminal A and Luminal B. We calculated the correlation coefficients
between all cells in the breast cancer sc-RNAseq data and all samples in the
METABRIC RNAseq data by restricting to the 127 extended PAM50 genes.
For each cell in the sc-RNAseq data, we calculated the average correlation
coefficient over the METABRIC samples in each subtype and assigned it to
the subtype with the maximum average correlation coefficient. We further
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assigned each patient in the breast cancer sc-RNAseq data to the subtype
with the most abundant cells.

Validating expression coherence and prognostic association in
TCGA data
Validation on bulk level TCGA data comprises four major steps. First, we
downloaded and processed the mRNA expressions and survival times data
of the corresponding cancer types from TCGA. Second, for each reduced
gene cluster from sc-RNAseq data we assessed its expression coherence in
the corresponding TCGA data. We computed the correlation coefficients of
the mRNA expressions of all pairs of genes in the data. To assess expression
coherence, we compared the correlation coefficient distributions of member
genes in the cluster and of all valid genes in the data and quantified the
deviation between the two distributions by the pdiff score. Third, similar to
expression coherence of each reduced gene cluster we assessed the direction
and strength of association with survival times by the deviation of the Cox
regression coefficient (Cox, 1972) distribution of member genes from the
background distribution of all valid genes in the data (quantified again by
pdiff scores). Fourth, for each TCGA cancer typewe sorted the corresponding
sc-RNAseq reduced gene clusters by their expression coherence or survival
time association pdiff scores and calculated the P-values that members in a
meta gene cluster were enriched in the top-ranking positions in the sorted list
(Subramanian et al., 2005).

Algorithms of simplifying and characterizing gene clusters
We describe the following algorithms below: (1) reducing a cluster
hierarchy by collapsing stumps, (2) identifying the uniquely enriched
clusters in a hierarchy for each GO term, (3) aligning cluster hierarchies from
multiple datasets to form meta gene clusters, (4) characterizing functional
enrichment and intra-tumoral heterogeneity of meta gene clusters.

Reducing the cluster hierarchy
We propose an algorithm to reduce a cluster hierarchy by collapsing stumps
in the hierarchy to single nodes. The procedures are described below.

Inputs: A directed acyclic graph G as the full cluster hierarchy.
Outputs: A directed acyclic graph rG as the reduced cluster hierarchy. The

mapping f from nodes in G to nodes in rG.
Procedures:
1. Identify the linear nodes L in G where each node v∈L has one or no

parent and one or no child.
2. Group the linear nodes in L to maximal chains C1, · · · , Ck, where each

chain Ci comprises nodes in L and consecutive edges in G, each
Cicannot be extended by augmenting linear nodes in L on the top or
bottom of the chain, and no two chains share common nodes.

3. Append the bottom of each chain to a node with multiple or no
children (if it exists). The appended chains are called stumps.

4. Construct reduced nodes rV and a mapping f from nodes V∈G to rV.
4.1 Start with rV=φ.
4.2 For each stump Ci, add a new node to rV: rV  rV <fug. Map

all nodes of Ci to the new node: 8v [ Ci; f ðvÞ ¼ u.
4.3 For each non-stump node v, add a new node to rV:

rV  rV <fug, and map v to the new node f (v)=u.
5. Construct the reduced graph rG from rV and f. For each edge (v1,

v2)∈G, if u1=f (v1)≠f (v2)=u2, then add edge (u1, u2) to rG.
We illustrate the algorithm of cluster hierarchy reduction by a toy example
shown in Fig. S17. The input hierarchy comprises 11 nodes and two
subgraphs. In step 1, two linear nodes v4 and v8 are identified as L1 and L2.
They form the seeds of two linear chains. In step 2, the two linear chains C1

and C2 are extended by including the nonlinear nodes v5 and v9 in the
bottom. In step 3, the reduced graph and the mapping are created. Nodes not
belonging to maximal chains are mapped to distinct nodes in the reduced
graph (e.g. f (v1)=u1). Nodes belonging to the same maximal chain are
mapped to one node in the reduced graph (e.g. f (v4)=f (v5)=u4).

Determining uniquely enriched GO terms
We propose an algorithm to identify the uniquely enriched clusters
for each GO term. In brief, for each selected GO term, it sorts clusters by
the − log10(.) transformed FDR-adjusted P-values and identifies the top-

ranking clusters and the paths containing those clusters. It then extracts and
extends the maximal path from the selected clusters and paths. The uniquely
enriched cluster is the terminal node in the maximal path. The detailed
procedures are described below.

Inputs: A directed graphG as the cluster hierarchy. The enrichment FDR-
adjusted P-value of a GO term for each cluster.

Outputs: A cluster in G where the GO term is uniquely enriched, or an
empty cluster φ if no cluster is uniquely enriched.

Procedures:
1. Transform the P-values by − log10(.) operation.
2. Sort clusters according to the transformed P-values in a descending

order.
3. Enumerate all paths from the root to leaves in the hierarchy and name

the list as P.
4. Find the list of top-ranking clusters and the paths containing those

clusters.
4.1 Generate a list L of clusters with top-ranking transformed

P-values. Place the first cluster in the sorted clusters in L.
4.2 Proceed with adding subsequent sorted clusters to L and trimming

the list P of root-leaf paths containing all clusters in L, until any of
the following stopping criteria are met.
4.2.1 If the new sorted cluster c is not contained in any path in

P, then stop.
4.2.2 If c completes a path from the root to a leaf in P, then

L L<fcg and stop.
4.2.3 If the transformed P-value of c is less than half of that of

the last member in L and less than 5.0, then stop.
5. Extract the maximal path from L and P.

5.1 If L comprises a complete path p in P, then report p as the maximal
path.

5.2 If the first sorted cluster after L shares the same parent as the last
member of L, and has transformed P-value greater than half of
that of the last member in L and greater than 5.0, then remove the
last member of L.

5.3 If all paths in P have holes (clusters between members of L and
with transformed P-values below the minimum score in L), then
find the maximal subpath in P spanned by clusters in L.

5.4 Otherwise find the subpath in P spanned by all members in L.
6. Extend the maximal path if possible.

6.1 Traverse upstream of the maximal path. If one parent of the top
cluster has rank less than the max rank of the maximal path
clusters+5, and score ≥5, while other parents of the top cluster do
not satisfy the same criteria, then add the parent to the top of the
maximal path.

6.2 Traverse downstream of the maximal path. If one child of the
bottom cluster has rank less than the max rank of the maximal
path clusters+5, and score ≥5, while other children of the bottom
cluster do not satisfy the same criteria, then add the child to the
bottom of the maximal path.

7. Find the uniquely enriched cluster from the maximal path.
7.1 If the maximal path exists, and the transformed score of the most

downstream cluster of the maximal path ≥5, then report the most
downstream cluster as the uniquely enriched cluster.

7.2 Otherwise do not report the uniquely enriched cluster.
We illustrate the algorithm of unique enrichment determination by four toy
examples shown in Fig. S18. In all examples, the top three clusters have the
highest transformed P-values. Thus, the two root-leaf paths traversing the two
branches are included in the candidate paths at steps 1–3. At step 4, the sorted
cluster descends along the left branch, thus one path is removed from the
candidates. Path traversing stops at step 5 for all examples. At step 5, the sorted
cluster examined (red nodes) reaches a leaf (example 1, score 12), is not in the
candidate path (example 2, score 12), or has considerably smaller scores than
the previous node (examples 3 and 4, score 3). At step 6, the maximal path is
extracted from the selected clusters and path.

Aligning the gene cluster hierarchies across multiple datasets
We propose an algorithm to align the gene cluster hierarchies from all the
datasets to form the meta gene clusters. The inputs are the reduced cluster
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hierarchies and the member genes of clusters for all the datasets. The outputs
are the meta gene cluster labels of all clusters over all datasets. In brief, the
algorithm consists of three parts. First, for each pair of datasets it matches
paths in the corresponding cluster hierarchies and identifies the subgraphs
spanned by the maximally matched paths. Second, it applies non-negative
matrix factorization to the maximal subgraphs over multiple trials to identify
the frequent subunits, and then merges highly overlapped subunits into meta
gene clusters. Third, it identifies the consensus meta gene cluster over the
multiple trials. Below we describe each part in detail and illustrate the
procedures with toy examples and schematic diagrams.

Part 1:
Inputs: The reduced cluster hierarchies and the member genes of clusters

for all the datasets.
Outputs: Subgraphs of the reduced hierarchies for all the datasets.
1. For each cluster hierarchy, enumerate all paths of clusters.
2. For each pair of datasets, identify all maximally matched path pairs.

2.1 For each pair of clusters belonging to the two datasets (say
datasets 1 and 2), determinewhether they overlap according to the
following criteria.
2.1.1 If the overlap ratio of the two clusters (the Jaccard index)

exceeds 0.2, then the two clusters overlap.
2.1.2 If the overlap ratio is between 0.1 and 0.2, but cluster 2 is

within the top ten dataset 2 clusters in terms of the overlap
ratios with cluster 1, and cluster 1 is within the top ten
dataset 1 clusters in terms of the overlap ratios with cluster
2, then the two clusters overlap.

2.2 For each pair of paths belonging to the two datasets (e.g. 1 and 2),
determine whether they are maximally matched according to the
following criteria.
2.2.1 If more than 90% of the member cluster pairs in the two

paths overlap, then they are matched.
2.2.2 If the two paths are matched but no larger paths containing

those two paths are matched, then the two paths are
maximally matched.

2.3 Trim the top nodes of maximal paths if their downstream portions
below the top nodes are poorly overlapped, and the matched
clusters of these portions in another dataset are also poorly
overlapped. By poorly overlapped we mean more than half of the
cluster pairs within a collection of clusters do not overlap (2.1.1
and 2.1.2).
2.3.1 For each target path p1 in each dataset (say dataset 1), find

its matched paths in dataset 2.
2.3.2 Find the complementary paths of p1 in dataset 1 which

share the top nodes with p1, but the remaining parts do not
intersect with those of p1.

2.3.3 Find the matched paths of p1 in dataset 2.
2.3.4 If the complementary paths (obtained in 2.3.2) and the

matched paths (obtained in 2.3.3) are poorly overlapped
along the clusters below the top nodes, then trim the top
nodes from p1.

2.3.5 Trim the top nodes of p1 if condition 2.3.4 is met.
2.4 Check whether each pair of maximal paths in the same dataset are

mergeable according to the following procedures.
2.4.1 Check whether the top nodes of the two paths coincide.
2.4.2 If so, then find their matched paths in another dataset.
2.4.3 If the matched paths of the two paths are also considerably

overlapped (more than 90% of the member cluster pairs in
the two paths overlap), then mark the pair of maximal paths
mergeable.

2.5 Group the maximal paths together where all pairs of the member
maximal paths are mutually mergeable. In other words, construct
the cliques of maximal paths defined by the mergeable relations.

2.6 For each dataset, construct the subgraphs spanned by the maximal
path groups. Each subgraph consists of the nodes and edges
contained in a maximal path group.

We illustrate the procedures of part 1 with toy examples depicted in Fig. S19.
In the top row, two paths from two datasets (1→2→3→4→5 and
1′→2′→3′→4′→5′) are compared. Clusters 2-4 and 2′-4′ are mutually

overlapped, as shown in the dotted lines in the left and the heatmap in the
middle. Yet the upstream and downstream nodes of 2-4 and 2′-4′ are
generally not overlapped with the counterparts in the other paths (except for
the clusters 1-1′ pair). Hence the subpaths 2→3→4 and 2′→3′→4′ are
maximally matched. In the middle row, the top node 1 appears in the paths
p1 and p2 which contain disjoint downstream portions, and the matched
clusters of these portions are also poorly overlapped. For instance, node 1
can be the root cluster comprising all genes, and nodes 2 and 3 are the dense
and sparse clusters at k=2. Then the valid paths should exclude the top node
1. In the bottom row, two paths p1 and p2 highly overlap, and their matched
paths in another dataset also highly overlap. Hence, they are merged to form
a subgraph.

Part 2:
Inputs: Subgraphs of the reduced hierarchies for all the datasets.
Outputs: Meta gene clusters generated from 100 trials.
1. Repeat the following procedures 100 times for distinct random initial

factorized matrices.
2. For each dataset, retrieve all maximal subgraphs and represent them as

a binary matrix A of edge memberships. Each row represents a
subgraph, and each column represents an edge in the reduced cluster
hierarchy of the dataset. A unit entry denotes that an edge appears in a
subgraph.

3. Vary the number of components K from 2 to 10. For each K apply
Nonnegative Matrix Factorization (NMF) to find the decomposition
A≈W ·H, where entries in W and H are nonnegative.

4. QuantizeH to a binary matrix ~H . For each component (row) inH, keep
the entries ≥ 0.1 of the maximal value and quantize them to 1, and
leave the remaining entries to 0.

5. Retrieve the unique rows in ~H which have > 1 nonzero entry.
Each unique row denotes a candidate component with at least two
edges.

6. Discard the components which are disconnected, and the components
that consist of multiple connected components.

7. Merge the remaining components into meta clusters.
7.1 Establish mergeable relations for each pair of undiscarded

components. If their overlap size ≥ 75% of the size of each
component, then label the pair as mergeable.

7.2 Find cliques of components according to the mergeable relations.
Combine the components within each clique to form new
components.

We illustrate the procedures of part 2 with toy examples depicted in Fig. S20.
In the top row, 4 subgraphs p1, p2,p3,p4 span 8 edges in a cluster hierarchy.
The membership matrix A is decomposed into W ·H with two components
according to NMF. H specifies the relaxed membership matrix of the two
components. Component 1 comprises e1, e2, e4, and component 2 comprises
e1, e2, e3.W specifies the mixture coefficients of the four subgraphs in terms
of the two components. In the bottom row, the two components are merged
to form a meta cluster.

Part 3:
Inputs: Meta gene clusters generated from 100 trials.
Output: The consensus meta gene clusters.
1. In each trial, build a co-occurrence matrix of gene clusters according to

the meta clusters. An entry (i, j ) in the co-occurrence matrix indicates
whether clusters i and j appear in the same meta cluster.

2. Compute the Hamming distances between the co-occurrence matrices
of each pair of trials.

3. Find the trial which has the closest total Hamming distances from all
remaining trials.

4. Report the clustering outcomes of the selected trial as the meta gene
clusters.

5. We manually combine a few meta gene clusters generated from the
algorithm to form larger meta gene clusters.

We illustrate the procedures of part 2 with a toy example depicted in
Fig. S21. In the top row, 5 NMF trials yield 5 co-occurrence matrices of meta
clusters C1, C2, C3, C4, C5over ten clusters. In the middle row, the heatmap
displays the Hamming distances between pairs of the co-occurrence
matrices. In the bottom row, the algorithm picks the trial with the smallest
overall Hamming distance with respect to all other trials (C5).
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Notice that meta gene clusters are constructed by clustering the NMF
components, which are collections of edges in the gene cluster hierarchies.
One gene cluster may belong to multiple meta gene clusters if it belongs to
multiple NMF components which are assigned to distinct meta gene
clusters.

Characterizing meta gene clusters
We characterize the meta gene clusters by both functional enrichment and
intra-tumoral heterogeneity. The following procedures are adopted to
calculate the enrichment FDR-adjusted P-values for each selected GO term
in each meta gene cluster and dataset.

1. For each meta gene cluster and each dataset, identify the member
reduced gene clusters.

2. Find the subgraph in the reduced cluster hierarchy spanned by the
clusters obtained in the previous step. If the subgraph is disconnected,
then add the minimal edges to make the subgraph connected.

3. Subtract the subgraph from the member reduced gene clusters of other
meta gene clusters.

4. For each GO term, identify all paths in the subgraph satisfying the
following conditions.
4.1 The paths have ≥ 3 nodes (clusters).
4.2 Each member cluster along the path has a FDR-adjusted P-value

≤ 10−3.
4.3 The paths are maximal.

5. Retrieve the nodes of all the selected paths.
6. The FDR-adjusted P-value score of the combination of (meta gene

cluster, dataset, GO term) is the geometric mean of the scores over the
selected nodes.

7. Identify the GO terms whose scores ≤ 10−3 in at least two datasets for
at least one meta gene cluster. There are 648 and 775 enriched GO
terms in scenarios 1 and 2 meta gene clusters.

8. For scenario 1 clusters, meta gene clusters 1 and 5 comprise most
enriched GO terms. For scenario 2 clusters, meta gene clusters 3 and 4
comprise most enriched GO terms.

9. Partition the selected GO terms into three groups for scenarios 1 and 2
clusters separately. For scenario 1 clusters, the group 1 GO terms are
enriched in more datasets of meta gene cluster 1 than meta gene cluster
5. The group 2 GO terms are enriched in more datasets of meta gene
cluster 5 than meta gene group 1. The remaining selected GO terms are
in group 3. For scenario 2 clusters, the group 1 GO terms are enriched
in more datasets of meta gene cluster 3 than meta gene cluster 4. The
group 2 GO terms are enriched in more datasets of meta gene cluster 4
than meta gene group 3. The remaining selected GO terms are in
group 3.

10. Sort the GO terms into the three groups for scenarios 1 and 2 clusters
separately and visualize their transformed P-value scores in heatmaps.

To assess the average intra-tumor homogeneity of each meta gene cluster,
for each dataset we sort the pdiff scores of the reduced clusters in a
descending order and report their ranks accordingly. For a meta gene cluster,
we extract the pdiff ranks of its member reduced clusters and report their
mean.

Validating sc-RNAseq meta gene clusters in bulk level TCGA
data
We validated the sc-RNAseqmeta gene clusters in the bulk level TCGA data
by checking whether the member gene clusters retain coherent expressions
and associations with survival times in the TCGA data. Below we depict the
four steps in the validation analysis.

1. We downloaded and processed the mRNA expressions and survival
times data of the corresponding cancer types from TCGA. The
corresponding TCGA cancer types of sc-RNAseq datasets are reported
in Table 1. All but one dataset (GSE76312 CML) have corresponding
TCGA cancer types, and some datasets have multiple TCGA cancer
types (such as LUAD and LUSC for E-MTAB-6149 NSCLC data).

2. For each reduced gene cluster from sc-RNAseq data, we calculated the
pairwise correlation coefficients of the corresponding TCGA mRNA
expression data of its member genes. We compared the distribution of
these correlation coefficients (denoted by p1) with the background

distribution of mRNA expression correlation coefficients among 8000
randomly selected genes (denoted by p0) from the TCGA data. The
expression coherence is captured by the deviation between p1 and p0,
specified by the pdiff score.

3. For each reduced gene cluster from sc-RNAseq data, we calculated the
Cox regression coefficients of the corresponding TCGA mRNA
expression data of its member genes pertaining to survival/censoring
times of patients. We again compared the distribution of these Cox
regression coefficients ( p1) with the background distribution of the
Cox regression coefficients among all genes ( p0) from the TCGA data.
The direction and strength of associations with survival times are
captured by the pdiff score between p1 and p0 distributions.

4. For each TCGA cancer type we sorted the corresponding sc-RNAseq
reduced gene clusters by their expression coherence or survival time
association pdiff scores in a descending order. We then extracted the
membership vector of a meta gene cluster along the sorted reduced
gene clusters and generated a random walk accordingly. The random
walk starts with zero, scans along the sorted clusters, and increments
by one when encountering a member of the meta gene cluster. A two-
dimensional curve y=C1(x) is derived from this random walk, where x
and y positions of each point denote the rank of a reduced gene cluster
and its random walk value. Another curve y=C0(x) is a straight line
connecting the terminal points of C1(x). A positive deviation of C1(x)
from C0(x) indicates that members of a meta gene cluster are enriched
in the top-ranking clusters relative to a null model where members of a
meta gene cluster are uniformly distributed along the sorted list. After
normalizing both C1(x) and C0(x) by the total number of clusters, they
possess characteristics of cumulative distribution functions (CDFs)
where the minimum and maximum values are 0 and 1, respectively.
Therefore, we quantified the deviation between C1(x) and C0(x) by the
P-value of the one-sided Kolmogorov–Smirnov test between the two
CDFs. The same procedures were employed to assess gene set
enrichment P-values.
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