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Design principles for enhancing phase sensitivity
and suppressing phase fluctuations simultaneously
in biochemical oscillatory systems
Chenyi Fei 1, Yuansheng Cao2, Qi Ouyang1 & Yuhai Tu3

Biological systems need to function accurately in the presence of strong noise and at the

same time respond sensitively to subtle external cues. Here we study design principles in

biochemical oscillatory circuits to achieve these two seemingly incompatible goals. We show

that energy dissipation can enhance phase sensitivity linearly by driving the phase-amplitude

coupling and increase timing accuracy by suppressing phase diffusion. Two general design

principles in the key underlying reaction loop formed by two antiparallel pathways are found

to optimize oscillation performance with a given energy budget: balancing the forward-to-

backward flux ratio between the two pathways to reduce phase diffusion and maximizing the

net flux of the phase-advancing pathway relative to that of the phase-retreating pathway to

enhance phase sensitivity. Experimental evidences consistent with these design principles are

found in the circadian clock of cyanobacteria. Future experiments to test the predicted

dependence of phase sensitivity on energy dissipation are proposed.
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B iochemical processes are innevitably noisy due to the sto-
chastic nature of reactions, the small number of molecules
involved, and the thermal fluctuations from environ-

ment1,2. Various regulatory mechanisms have evolved to suppress
effects of noise in order to process information accurately in vital
life processes such as biomolecule synthesis3, cell cyle4, and
development5. At the same time, some of these systems also need
to have a high sensitivity to external stimuli. For example, for
many biochemical oscillatory systems, such as glycolysis, cyclic
AMP signaling, cell cycle, circadian rhythms, and neural activ-
ities4,6–8, besides being accurate in their rhythmic timing, they
also need to respond sensitively to external cues. In fact, one of
the most salient properties of circadian rhythms is their ability to
be entrained by the daily cycle in the environment so that their
endogenous 24 h cycle can quickly synchronize with environ-
mental signals9,10.

However, these two requirements, high sensitivity and low
fluctuation, are incompatible for equilibrium systems due to the
Fluctuation Dissipation Theorem (FDT)11. Briefly, for a pertur-
bation of intensity ϵ applied to the conjugate variable of an
observable A at time t= 0, FDT establishes the fluctuation-
response relation (FRR) AðtÞh iϵ� Ah i0 = βϵ[CA(t, t)− CA(t, 0)],
where CAðt; sÞ= AðtÞAðsÞh i0 is the two-time autocorrelation and
β= 1/kBT is the reverse thermal energy. We immediately see that
the long time response ΔA≡ Aðt ¼ 1Þh iϵ� Ah i0 is linearly pro-
portional to the variance, i.e., ΔA ¼ �βϵσ2A. This means that a
higher sensitivity (ΔA/ϵ) would necessarily lead to a higher
fluctuation σ2A

� �
in any equilibrium system. Such a FRR was also

found in certain biochemical systems in their linear response
regime12.

To understand how living organisms solve the challenge of
enhancing sensitivity (responsiveness) and reducing noise (fluc-
tuation) at the same time, we studied the dynamics of a large class
of biochemical oscillators in which limit cycles exist with the
focus on non-equilibrium effects in the underlying biochemical
reaction networks where FRR breaks down. Recently, the rela-
tionship between biological regulatory functions and their energy
cost has attracted much attention in non-equilibrium statistical
physics community13–18. A previous study found that the phase
diffusion constant can be suppressed by a dissipative process that
consumes free energy19. In this work, by studying different types
of limit cycle oscillators analytically and numerically, we inves-
tigated whether dissipative processes can enhance sensitivity and

reduce fluctuation at the same time. More importantly, our study
uncovered the key design principles for biochemical circuits to
achieve these two goals simultaneously.

Result
Reduced phase description for biochemical oscillations. The
dynamics of a biochemical reaction system {X1, X2, …, XN}, with
fixed volume V and constant temperature, is described by che-
mical Langevin equation (CLE)20. For a biological oscillator, the
concentration variable of ith species xi(t) oscillates. Instead of
dealing with the entire system, we employ the phase reduction
method first developed by Kuramoto21–23, which reduce N-
dimensional state space to a single phase variable ϕ characterizing
the timing of oscillation. Specifically, ϕ xL

� �
along the determi-

nistic limit cycle L is chosen to progress with a constant speed
Ω= 2π/τ for convenience, where τ is the period. This definition
of the phase can be extended to the whole basin of attraction of
L24. If trajectories originated from two states eventually converge
onto the limit cycle at the same time, these two states are assigned
the same phase. An isochron is a line formed by all points with
the same phase (see Fig. 1a).

Clearly, geometrical structure of isochrons is crucial to the
phase response property: larger ∇xϕ would produce larger phase
shifts for the same deviation from limit cycle25. In biology
literature, a phase response curve (PRC) is commonly used to
characterize oscillators’ responsiveness26–29. The PRC Δϕ(ϕ) is
determined by delivering a perturbation at a given phase ϕ of the
oscillation for a given duration of time and comparing the shift in
peak times between the perturbed trajectories and the unper-
turbed ones to obtain Δϕ30. Indeed, as shown in Supplementary
Note 1, ∇xϕ is the key signal-independent factor in determining
the amplitude of PRC. At a given phase, we define a
dimensionless phase gradient vector ∇x�ϕ where x� ¼
xi= xmax

i � xmin
i

� �
is a dimensionless state variable (normalized

by the range of variation in xi). We further use the maximal
Euclidean norm of ∇x�ϕ along the limit cycle to define a global
phase sensitivity parameter χ:

χ � max ∇x�ϕk kf g: ð1Þ

Throughout this work, we assume that change in other signal-
dependent factors (see Supplementary Note 1) does not over-
whelm the effect of χ on phase shift.
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Fig. 1 Illustration of the phase response in biological oscillators. a The circle is the assumed stable limit cycle. The gray dashed lines represent equally
separated isochrons. An unperturbed system (purple) progresses on the circle, while a perturbed system (cyan) is driven away from the circle by an
impulsive signal between time 1 and time 2, and then relaxes back to the limit cycle. At time 2 (end of perturbation), it is moved to an isochron different
from the unperturbed one. The difference of their phases determines the phase shift. b, c Diagrams of the signal and phase evolution of the perturbed and
unperturbed system. Phase shift is induced during the perturbation and sustains after the perturbation
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Intuitively, a more sensitive circuit can enhance entrainment as
it can more readily change its oscillation phase to sync with
external stimuli31. It is also straightforward to show analytically
that a higher sensitivity widens the range of synchronizable
frequencies known as the Arnold tongue32 and therefore
enhances entrainability of biochemical oscillators (see Supple-
mentary Note 2 for details).

Due to the stochastic nature (Poisson process) of the
underlying chemical transitions, biochemical oscillations are
noisy and the phase fluctuates19. The variance of phase
fluctuations σ2ϕ grows linearly with time, σ2ϕ ¼ Dϕt, which can
be used to define a phase diffusion constant Dϕ. It can be
shown using the phase reduction method that the
probability distribution of phase fluctuation (δϕ) indeed
follows a diffusive dynamics ∂tPðδϕ; tÞ ¼ Dϕ∂

2
δϕP (see Supple-

mentary Note 3). It is usually hard to directly derive the phase
equation. As shown in Supplementary Note 4, the finite
correlation time τc due to phase diffusion is inversely
proportional to Dϕ. Thus, we use this relationship to infer
the phase diffusion constant from the autocorrelation function,
which follows a damped oscillation19

Cðt; 0Þ ¼ C0 exp �t=τcð Þ ´ cosðΩtÞ ð2Þ

We now introduce the specific biochemical oscillators we study
here. It is known that nonlinear autocatalytic biochemical
reactions in open systems can exhibit oscillatory behaviors. For
clarity, we employ a simple model (Fig. 2a) derived from

glycolysis oscillation33 and the Brusselator34,35 as follows:

A

k1
"

k�1

X; Bþ X

k02
"

k0�2

Dþ Y; 2X þ Y

k3
"

k�3

3X ð3Þ

where A, B, and D have fixed concentrations. Here we neglect the
inhomogeneous spatial distribution and focus on the dynamics
and energetics of the “well-stirred” reaction system.

To study thermodynamics of the system properly, we include
the backward reactions (see Fig. 2a) in the Brusselator model. An
equilibrium steady state can be achieved when kðeqÞ�2 k�3 ¼ kðeqÞ2 k3,
where kðeqÞ2 ¼ k02½B�ðeqÞ, kðeqÞ�2 ¼ k0�2½D�ðeqÞ are pseudo-first-order
rate constants and equilibrium values are labeled by superscript
(eq). However, if the concentrations of B and D are sustained at
values different from their equilibrium values by active processes
such as biochemical synthesis and/or active transport (pumping),
the system is driven out of equilibrium with the chemical
potential difference ΔμDB ¼ �kBT ln k�2k�3=k2k3ð Þ serving as the
chemical driving force for the reaction cycle X → Y → X.

To characterize the nonequilibrium cycle dynamics, we
introduce a (global) irreversibility parameter γ:

γ � k�2k�3

k2k3
¼ exp �ΔμDB=kBT

� �
; ð4Þ

which is related to the chemical driving force for the reaction
cycle (see Fig. 2). For the special case of an equilibrium system
with γ= 1, detailed balance is satisfied and the cycle is fully
reversible without net flux. When γ ≠ 1, the system is driven out
of equilibrium by external free-energy sources resulting in a non-
zero net cycling flux.

In general, external free energy can be utilized to change the
chemical reactions in two ways: enhancing forward reactions or
suppressing backward reactions. To understand effects of these
two distinct changes, we further introduce γ1 and γ2 to
characterize the (local) irreversibility of the forward and back-
ward reaction respectively, i.e., k2 ¼ kðeqÞ2 =γ1, k�2 ¼ kðeqÞ�2 ´ γ2,
with γ= γ1γ2.

In addition to the Brusselator model, we have studied another
class of biochemical oscillators driven by the general
activator–inhibitor (AI) mechanism (see Supplementary Fig. 1).
In the AI model, oscillation is driven by the ATP hydrolysis

energy and γ−1 can be expressed as ½ATP�½ADP�ðeqÞ½Pi�ðeqÞ
½ATP�ðeqÞ½ADP�½Pi�

. The two

“local” irreversibility parameters (γ1 and γ2) are also introduced
in the AI model to characterize the non-equilibrium effects in
different parts of the phosphorylation–dephosphorylation (PdP)
cycle that dissipates energy to drive the oscillation. Dissipation
outside of the PdP cycle is roughly independent of γ and does not
have a direct role in controlling the oscillation (see Supplemen-
tary Note 5A and Supplementary Fig. 2 for details).

Effects of free-energy dissipation on phase dynamics. From the
chemical reaction rates, we can compute the free-energy dis-
sipation rate (in units of kBT)36:

_W ¼
X
i

Jþi � J�i
� �

ln
Jþi
J�i

ð5Þ

where Jþi and J�i are the forward and backward fluxes of the ith

reaction. As the dissipation rate also oscillates, we use ΔW ¼R τ
0
_Wdt to measure free-energy cost per period per volume. Here

we study how ΔW affects the performance of the oscillation as
measured by its phase diffusivity and phase sensitivity.
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Fig. 2 The reversible Brusselator model. a The reaction with B and D can be
mapped into a unimolecular reaction with rate constants: k2 ¼ k02 ½B�,
k�2 ¼ k0�2½D�. Together with the autocatalytic reaction with rates k3 and
k−3, they form a reaction cycle with a reversibility parameter γ≡ k−2k−3/
k2k3. When γ≠ 1, the system is nonequilibrium with free-energy dissipation
driving the cyclic flux X→ Y→ X. b The steady-state probability density
P(x, y) (color plot) and the state-space fluxes (Jx, Jy) (vector field) of the
model. The two small blue boxes highlight the regions around the two
opposite phases ϕ= 0 and ϕ= π in the deterministic limit cycle. c Details
of the chemical reactions in a local region (e.g., the small boxes in b) in the
state space. Two microscopic states, (X− 1, Y+ 1) and (X, Y), are linked by
two distinct reversible reaction pathways, which form a microscopic
reaction cycle (loop)
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First, we briefly summarize the effect of energy dissipation on
phase diffusion. As shown in Fig. 3a, b, the minimum phase
diffusion constant Dmin(ΔW) depends inversely on the free-
energy cost per period ΔW consistent with our previous work19

and the general thermodynamic uncertainty relation for biomo-
lecular processes37. Here we further dissect the separate
dependence on γ1 and γ2. As shown in Fig. 3a, decreasing γ1 or
γ2 can both reduce phase diffusion. However, D eventually
saturates to a nonzero value even in the absence of backward
reactions (γ2= 0) due to the finite stochasticity in the forward
reactions with a finitie γ1 (see Supplementary Fig. 3b). On the
other hand, D seems to decrease continuously with γ1 (see
Supplementary Fig. 3c). As the number of forward reactions per
unit time Nc increases with 1/γ1, the averaging effect (1=

ffiffiffiffiffiffi
Nc

p
effect) in reducing the phase fluctuation can persist for small γ1
(or large Nc). In fact, this noise reduction strategy, i.e., taking
average over multiple irreversible steps, is also commonly
employed in other biological processes38.

We now turn to the main focus of this work, i.e., to understand
how free-energy dissipation affects phase response. In particular,
we ask whether low phase fluctuation and high phase sensitivity
can coexist in a dissipative system. For different values of the
forward and backward irreversible constants (γ1 and γ2), we
calculated phase sensitivity χ of the biochemical oscillator to
external perturbations (stimuli). Remarkably, we observed in
Fig. 3c, d that the phase sensitivity χ is bounded by a maximum
value χmax that increases linearly with ΔW in a wide range of ΔW
for different combinations of γ1 and γ2:

χ γ1; γ2
� � � χmaxðΔWÞ ¼ KWΔW þ const: ð6Þ

where KW is a constant whose value is given in the legend of Fig. 3.
We have confirmed the generality of Eq. (6) for other implementa-
tions of γ1, γ2 (Supplementary Fig. 4) in the Brusselator model, as
well as for the AI model (Supplementary Fig. 5).

The relation between phase sensitivity and entrainment to
external periodic driving. Many biochemical oscillators are
exposed to an external periodic signal ϵp(Ω, t) (e.g., temperature,
light, etc.) that entrains the internal oscillation. The external
signal varies with the system’s intrinsic frequency Ω and acts on
an internal parameter μ. Incorporating this periodic driving force
as time-dependent perturbation f(t)= (∂μF)ϵp(Ω, t) in the phase
reduction description, we obtain the dynamical equation for the
phase ϕ

dϕ
dt

¼ Ωþ ZμðϕÞ � ϵpðΩ; tÞ; ð7Þ

where Zμ(ϕ) is the infinitesimal PRC function for perturbing μ25.
Applying a pulse perturbation with duration Δt= δtτ and
intensity Δμ= δμ on μ, the PRC can be calculated as Δϕ(ϕ; δt, τ,
δμ, μ)= Zμ(ϕ)ΔtΔμ. We now relate the normalized PRC C(ϕ)=
Δϕ(ϕ)/(δtδμ)= Zμ(ϕ)τ with the performance of entrainment to
the external periodic driving signal.

To characterize the phase dynamics in the presence of an
external periodic signal, we use the phase difference ψ= ϕ−Ωt
between the internal oscillator and the external signal. By
averaging over a period (as ψ is a slow variable when ϵ is small),
we have

dψ
dt

¼ ϵ

τ
ΓðψÞ � ϵ

τ
´

1
2π

Z 2π

0
Cðψ þ θÞpðθÞdθ: ð8Þ

Entrainment to the external signal occurs, because Eq. (8) has a
stable fixed point ψ0, i.e., Γ(ψ0)= 0, Γ´(ψ0) < 0. Now, we consider
a sudden phase shift Δψ of the external signal, which is equivalent
to an initial perturbation Δψ in ψ away from its fixed point. When
Δψ is small, the perturbation δψ= ψ− ψ0 follows, to the leading
order, _δψ ¼ �t�1

e δψ where te ¼ ϵΓ′ ψ0

� ��� ���1
τ is the entrainment

time for the system to catch up the shifted signal. It is clear that
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stronger signals (larger ϵ) shorten the entrainment process. At the
same time, the internal phase response property also has an
important role. In general, both the steady state phase difference
ψ0 and the entrainment time te depend on the shape of PRC
(C(ϕ)) and how the periodic signal is applied (i.e., the waveform
p(Ω, t)); however, as long as the shape of PRC remains
approximately the same, enhancing phase sensitivity χ (the
amplitude of PRC) reduces te:

te=τ � χ�1: ð9Þ

We have simulated the AI model to test the above relation
between the phase sensitivity χ and the entrainment time te for a
periodic driving kðpÞ1 ðtÞ ¼ k1ð1þ ϵcosΩtÞ. At different phases of
the oscillation, a phase shift Δψ= 0.4π was applied to the external
signal, triggering the entrainment process. The oscillator was
considered “entrained” when the peak difference between a
perturbed and unperturbed system is small δψ < 0.1Δψ. Minimum
number of entrainment cycles minϕ tef g=τ was recorded for
different γ1 and γ2. The results are shown in Fig. 4a, b for ϵ= 0.1.

The external periodic signal also affects phase fluctuations,
which is now bounded by a “potential” well established by the
external signal (Fig. 4c). By approximating the potential well by
its harmonic form, the stochastic phase evolution equation in the
presence of noise (from stochastic chemical reactions) can be
solved to determine the phase variance:

σ2ðtÞ � δψ2ðtÞ� � ¼ Dte 1� e�t=te
� 	

=τ; ð10Þ

where D is the previously defined dimensionless phase diffusion
constant in the absence of the external signal. For time t≪ te, the

phase variance follows diffusion δψ2h i ¼ Dt=τ. For t≫ te, the
phase variance reaches a constant σ2ψ ¼ Dte=τ. From Eq. (10), it is
clear that phase fluctuation is suppressed by reducing D even in
the presence of external driving signal.

By using the Gillespie algorithm39, we also computed the
normalized auto-correlation function: CxxðtÞ ¼ xðt þ sÞxðsÞh is/
x2h i ¼ expð�σðtÞÞcosðΩtÞ, where x is a state variable. As shown
in Fig. 4c, the amplitude of a typical autocorrelation function
Cxx(t) first decreases exponentially before reaching a steady state
constant A ¼ exp �Dte=τð Þ, which verifies Eq. (10). Based on the
value of A from the simulations, we obtain the phase variance σ2ψ ,
which gives D ¼ σ2ψτ=te. As shown in Fig. 4d, the dimensionless
diffusion constant D decreases with energy dissipation ΔW
consistent with the case without external signal (Fig. 3b).

Energy-enhanced phase-amplitude coupling leads to higher
phase sensitivity. To understand the dependence of phase sen-
sitivity on free-energy consumption analytically, we study the
normal form of limit cycle oscillation originated from a Hopf
bifurcation. Applying variable transformation, we obtain from
CLE the stochastic Stuart–Landau equation40

dr
dt

¼ μr � β1r
3 þ qrffiffiffiffi

V
p ξrðtÞ

dθ
dt ¼ ωþ β2r

2 þ qθ=rffiffiffi
V

p ξθðtÞ
ð11Þ

where μ, ω, β1, β2 are parameters associated with original reaction
rate constants and ξr,θ are unit variance white noise terms. We
note that β2 characterizes the phase-amplitude coupling strength
that affects the phase dynamics. By using the stochastic averaging
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method41, we can show the two noise strength qr and qθ to be the
same q2r ¼ q2θ � Q to the leading order in amplitude. See Sup-
plementary Note 6 for detailed derivations.

For μ > 0, we have the mean amplitude rs ¼
ffiffiffiffiffiffiffiffiffiffi
μ=β1

p
and

angular velocity Ω ¼ ωþ β2r
2
s . The isochron with the phase θ can

be determined from the mean-field solution (see Supplementary
Note 7 for details)

ϕðr; θÞ ¼ θ � β2
β1

lnr � 1
2
ln

μ

β1


 �
ð12Þ

Thus, ∇xϕ ¼ � β2
β1
=r

� 	
er þ ð1=rÞeθ and the phase sensitivity can

be calculated

χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2=β1
� �2þ1

q
: ð13Þ

The dissipation of Stuart-Landau oscillators can be determined
by solving the Fokker–Plank equation for (11)19, which results in
the steady state probability distribution

Pssðr; θÞ ¼ Aexp � β1r
4=4� μr2=2

� �
Δ

� 

ð14Þ

where Δ=Q/V and A is the normalization coefficient. To have a
well-defined phase variable requires that the amplitude fluctua-
tion is much smaller than r2s , leading to a constraint
ρ � μ=

ffiffiffiffiffiffiffiffiffiffi
2β1Δ

p 	 119.
The entropy production rate computed from Pss(r, θ) yields the

minimum free-energy cost per cycle42 (kBT= 1, see also
Supplementary Note 8 for details).

ΔW ¼ _S ´
2π
Ωh i ¼

2π
Δ

´
r2 ωþ β2r

2
� �2D E
ωþ β2r

2
� �� �


 4πρ2 1þ κð Þ β2
β1


 � ð15Þ

where κ ¼ ω=β2r
2
s is a dimensionless parameter.

Finally, assuming that the phase sensitivity is dominated by the
radial contribution, i.e., β2/β1≫ 1, we have χ ≈ β2/β1 and κ≪ 1.
Inserting this into Eq. (15), we obtain that to the leading order:

χ 
 KWΔW; ð16Þ

where KW ≈ [4πρ2]−1 is a constant independent of β2.
The linear relation (16) agrees with our numerical results.

More importantly, the analytical results reveal that the
amplitude-phase coupling constant β2 has an important role
in relating energy dissipation (Eq. (15)) to phase sensitivity (Eq.
(13)). We further develop a toy model of limit cycle oscillator
(see Supplementary Fig. 6) where β2 can be explicitly calculated
in terms of the microscopic nonequilibrium parameter γ. See
Supplementary Note 9 for details. We found, in this simple
model, that free-energy cost of increasing forward rates and
suppressing backward rates both strengthen the phase-
amplitude coupling β2, therefore enhancing the phase
sensitivity.

Design principles for enhancing oscillation functions. Now
that we show it is in principle possible to increase phase sen-
sitivity and to suppress phase diffusion simultaneously in a
nonequilibrium system that consumes free energy, the next
logical question is what are the design principles for a bio-
chemical oscillator to optimize desirable oscillatory behaviors
with a fixed energy budget. Here we search for possible design
principles by studying the performance of an oscillator,

characterized by χ and D, for different combinations of
γ1 and γ2 that lead to the same free-energy dissipation per
period. In particular, we look for rules for designing the
kinetic rate parameters in reactions that form a microscopic
loop like the one shown in Fig. 2c. Unlike in simplified mod-
els43 where only one reversible reaction exists between two
states, these microscopic loops, which are formed by two dis-
tinct reaction pathways between two nearby microscopic states,
are the basic building blocks in realistic oscillatory biochemical
networks.

Balance the forward-to-backward ratio in antiparallel pathways
to suppress phase diffusion. Consider N discrete states with
equally spaced phases ϕ(n)= 2πn/N along a limit cycle, we
study the case in which there are two antiparallel pathways
i= 1, 2 between two neighboring states. For each pathway, its
forward and backward transition rates are given by w±

i ,
respectively. The overall effect of the ith transition is denoted
by the net rate wiðϕÞ ¼ wþ

i � w�
i . These two pathways are

antiparallel in the sense that wþ
1 and wþ

2 are in the opposite
direction and they together form a counter-clockwise loop (so
do w�

1 and w�
2 in the clockwise direction; see Fig. 2c for the

Brusselator model).
It is easy to show that the average change of phase and its

variance are44:

d ϕðtÞh i
dt

¼ wf ðϕÞ � wbðϕÞ � ΩN ; ð17Þ

d δϕ2ðtÞ� �
dt

¼ 2π
N


 �2 X
i ¼ f ; b; ν ¼ ±

wν
i ; ð18Þ

where the subscript f, b can be either i= 1 or i= 2 depending on
whether a given transition pathway i contributes to forward or
backward movement of the phase. As shown in Fig. 2c for the
Brusselator model, a given reaction pathway, either the Bþ
X"Dþ Y reaction (i= 1) or the 2X þ Y"3X reaction (i= 2),
can lead to a forward or a backward phase change depending on
which part of the limit cycle (or phase) the transition occurs. For
example, f= 1, b= 2 at phase ϕ= 0, whereas f= 2, b= 1 at phase
ϕ= π (see Fig. 2c).

From the above Eqs. (17) and (18), we obtain a dimensionless
phase diffusion constant

D ¼ 2π
N


 �2X
ϕ

X
i ¼ f ; b; ν ¼ ±

wν
i

ΩN

����
ϕ

: ð19Þ

Our goal is to minimize phase diffusion under the constraint of a
fixed energy dissipation ln wþ

1 w
þ
2 =w

�
1 w

�
2

� �
= lnγ�1 � ΔW=N .

For simplicity, we assume the ratio wþ
i =w

�
i take the same value

independent of the phase, i.e., wþ
i ðϕÞ=w�

i ðϕÞ � gi. The fixed
energy constraint is now given by g1g2= γ−1. By using wf(ϕ)=
wb(ϕ)+ΩN and the expressions for w±

i : wþ
i ¼ wigi= gi � 1ð Þ,

w�
i ¼ wi= gi � 1ð Þ, we can rewrite diffusion constant as

D ¼ 2π
N


 �2X
ϕ

gf þ 1

gf � 1

����
ϕ

þ gf þ 1

gf � 1
þ gb þ 1
gb � 1


 �
wbðϕÞ
ΩN

: ð20Þ

For an ideal symmetric clock, we can assume gbjϕ¼ gf
��
ϕþπ

, and
the summation of the first term in Eq. (20) can be expressed asP

ϕ
gfþ1
gf�1

���
ϕ
= N

2 ´ g1þ1
g1�1 þ g2þ1

g2�1

� 	
, which leads to a new expression
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for D and consequently its lower bound:

D ¼ ð2πÞ2
2N

1þ 2
N

X
ϕ

wbðϕÞ
ΩN

 !
´

g1 þ 1
g1 � 1

þ g2 þ 1
g2 � 1


 �
ð21Þ

� ð2πÞ2
N

1þ 2
N

X
ϕ

wbðϕÞ
ΩN

 !
´
1þ ffiffiffi

γ
p

1� ffiffiffi
γ

p ð22Þ

where the lower bound is reached when g1= g2= γ−1/2. Here we
have implicitly assumed that the average of normalized backward
rate N�1P

ϕ wbðϕÞ=ΩN has weak dependence on g1, g2.
Our analysis clearly suggests that one design principle to

minimize the phase diffusion of biochemical oscillators with a
given energy budget is to equalize (balance) the ratio between
forward and backward transition rates in the two antiparallel
pathways that form the (non-equilibrium) dissipative loop.

This design principle obtained from an ideal clock is consistent
with our previous findings in the AI model19. We have also
directly tested it by numerical simulations of the Brusselator
model, where two adjacent states (X− 1, Y+ 1) and (X, Y) are
linked by a non-equilibrium reaction loop (see Fig. 2c). We
compute the ratio r of the forward and backward flux of two
reactions, respectively: r1 ¼ wþ

1 =w
�
1 = k2[X]/k−2[Y] and

r2 ¼ wþ
2 =w

�
2 = k3[X]2[Y]/k−3[X]3. We can then define M≡

max r1ðtÞh iτ ; r2ðtÞh iτ
� �

/min r1ðtÞh iτ ; r2ðtÞh iτ
� �

to measure the
matching of these two pathways averaged over the period. As
shown in Fig. 5a, b, the exact matching point (M= 1) correlates
closely to the minimum of the phase diffusion (see Supplemen-
tary Figs. 7 and 8 for other values of ΔW).

Minimize the net backward flux relative to the net forward flux
to enhance phase sensitivity. To look for strategies in enhancing
phase sensitivity, we calculate k ∇x�ϕ k by projecting the transi-
tion fluxes in the state space onto the phase (angular) direction
and the amplitude (radial) directions. In addition to the reactions
that form part of the loop (such as w1 and w2 shown in Fig. 2c),
we also include the reaction that is not part of the dissipative
loop, e.g., the A"X reaction in the Brusselator model. The net

flux for this non-dissipative reaction is denoted by w0, which is
not regulated by the non-equilibrium parameters (γ1,2).

Recall that phase sensitivity χ measures the largest k ∇x�ϕ k
along the limit cycle. It can be shown that the maximum phase
gradient occurs at the point in phase space where the energy-
driven fluxes most closely align with the phase direction (see
Supplementary Note 10 for a more detailed analysis). A
corresponding approximation is that the transition rate in the
radial direction near the most sensitive point is controlled by w0.
Thus, we can estimate χ as:

χ 
 wf

w0
´

qf � wb=wf
� �

qb
�� ��

q0
� cw

qf � rwqb
�� ��

q0
ð23Þ

where qi ¼ Δwi=wi

Δr=rs
is the relative change of transition rates induced

by a perturbation given by a relative change Δr/rs of the
amplitude. qi characterizes the sensitivity of the ith transition
determined by the nonlinearity in the underlying reaction rates.
In biochemical oscillators, for example, reactions of (pseudo) first
order have qi ~ 1; the autocatalytic reactions in the Brusselator
model give qi ~ 3.

The dominant effect of energy dissipation is to increase wf,
which roughly takes the form c1/γ1− γ2c2, where c1,2 are
concentration-related coefficients for biochemical circuits. At a
fixed energy dissipation or a fixed wf/w0, Eq. (23) suggests that
reducing the net backward flux relative to the net forward flux,
i.e., minimizing rw≡wb/wf can lead to higher phase sensitivity.

This design principle, based largely on heuristic arguments, has
been tested directly in the Brusselator model where the two net
fluxes are w1= k2[X]− k−2[Y] and w2= k3[X]2[Y]− k−3[X]3.
We calculated rw ¼ min w1;w2ð Þ=max w1;w2ð Þ numerically along
the entire limit cycle and compared min rwf g for different
combinations of γ1 and γ2 for a fixed dissipation ΔW. As shown
in Fig. 5c, d, phase sensitivity reaches its peak when rw is small,
which confirms the strategy (design principle) for maximizing
phase sensitivity by a maximum separation of net transition
fluxes between anti-parallel pathways in a dissipative loop.
Similar results were confirmed in the AI model (see Supplemen-
tary Fig. 9 for details).
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Experimental evidence in the Kai system. To look for experi-
mental evidence of the design principles described above, we
investigate the circadian clock of cyanobacteria, i.e., the Kai sys-
tem, by studying the experimentally measured kinetic rates in the
reactions between different phosphorylation states (U, T, D, S) of
KaiC along its PdP cycle45–47.

To test the first design principle, we calculate the ratio of
forward to backward flux rX⇆Y= JX!Y=JY!X on each of the four
links in the KaiC phosphorylation cycle U → T →D → S →U based
on a kinetic model of KaiC phosphorylation with experimentally
measured rate parameters45–47 (see Supplementary Note 11 and
Supplementary Fig. 10a for details of the model and Supplemen-
tary Table S1 for the parameters). We then compare the period-
averaged ratio 〈rX⇆Y〉τ to check whether these ratios are matched
along the cycle. The KaiC model with the experimentally
determined parameters (see Supplementary Information for
details) yields 〈rU⇆T〉τ:〈rT⇆D〉τ:〈rD⇆S〉τ:〈rS⇆U〉τ=
1:1.16:0.97:1.08, clearly showing that the forward-to-backward
ratio in different links (pathways) of the KaiC phosphorylation
cycle are properly balanced, which is consistent with the first
design principle for minimizing phase diffusion.

To test the second design principle, we calculate the net flux for
each link JðnetÞX!Y ¼ JX!Y � JY!X . The net phosphorylation and
dephosphorylation flux are then approximated as JðnetÞU!D ¼
JðnetÞU!T þ JðnetÞT!D and JðnetÞD!U ¼ JðnetÞD!S þ JðnetÞS!U , respectively. From direct
simulation of the model, the backward-to-forward (in terms of
phosphorylation rhythm) net flux ratio rw is smaller during the
subjective day with an average rwh iday
 0:2 than during the night
with average rwh inight
 0:5. According to the second design
principle, this rw behavior leads to a higher phase sensitivity
during the subjective day (phosphorylation phase) than during
the night (dephosphorylation phase), which is consistent with the
experimentally measured PRC reported in ref. 46 (see Supple-
mentary Note 11 and Supplementary Fig. 10 for details). This
result confirms that the Kai system controls phase sensitivity by
modulating the relative strength of the phosphorylation and
dephosphorylation fluxes.

Discussion
In this study, we investigated whether and how biochemical
systems can achieve high sensitivity and low fluctuation at the
same time in the context of biological oscillators. In non-
equilibrium systems, the FDT is broken. There is no unique
relationship between fluctuation and response—they could have a

positive correlation or a negative one depending on which
parameters are varied. For example, in the Stuart–Landau model,
if we vary a single variable without changing the others, χ and D
satisfy a positively correlated relation: χ2=D/Teff. However, even
in this case, the effective temperature Teff could be lowered by
dissipation ΔW in different ways depending on which variable (μ
or β2) is varied (see Supplementary Note 12 for details). For a
realistic non-equilibrium biochemical reaction network (circuit)
such as the Brusselator model, where many parameters are
affected by the dissipation in a correlated manner, our study
shows that an increase in free-energy dissipation can lead to both
a suppression of phase fluctuation and an enhancement of the
phase sensitivity if it is used properly (or the circuit is designed
properly). This result should be generally applicable to other non-
equilibrium systems.

Our study revealed two design principles to achieve optimal
performance with a finite budget of free-energy consumption in
oscillatory systems. The findings of our analysis can be demon-
strated by the expression of dissipation rate
_W ¼Pi wi ln wþ

i =w
�
i

� �
. In principle, high sensitivity and low

phase fluctuations for a given dissipation rate can be achieved by
favoring the net forward flux wf over the net backward flux wb

and balancing the forward-to-backward ratio wþ
i =w

�
i among

antiparallel reaction pathways, respectively. As these two design
principles act on different combinations of the reaction rates, they
can be satisfied simultaneously leading to biochemical circuits
that have both high sensitivity and low fluctuations. Strong evi-
dence in support of these two design principles are found in the
Kai system. Aside from helping us understand the structure and
dynamics of naturally occurring biological pathways, these design
principles may also serve as the best practice rules for con-
structing efficient synthetic biochemical circuits for oscillations.

Other evidence for our theory may be found in experiments
measuring PRC at different energetic states of the system. For
example, our theory predicts that the PRC amplitude should
decrease when the background ATP/ADP ratio is decreased. As
far as we know, no such experiment has been done. The closest
are PRC measurements (to light and drug/chemical perturba-
tions) at different temperatures. In our analysis, the dimension-
less energy dissipation ΔW has a temperature-dependent
component βΔG(0), where β= (kBT)−1 is the inverse thermal
energy and ΔG(0) is a concentration-independent free-energy
difference48. According to Eq. (6), this means the phase sensitivity
increases as the temperature decreases if we neglect other
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temperature dependence. Interestingly, in the experimental sys-
tems we found, i.e., Neurospora49, Gonyaulax polyedra50, and
chick pineal cell51, except for the case of light response in chick
pineal cell where no T-dependence is found, PRC amplitudes
indeed increase with 1/T (see Supplementary Fig. 11). However,
many internal variables in biological systems can depend on
temperature, therefore these temperature dependence measure-
ments in in-vivo systems may not serve as direct tests of our
theory.

The best system to test our theory directly is the relatively
simple cyanobacterial circadian clock, especially the in vitro Kai
system. Experimental studies in cyanobacterial circadian clocks
uncover that metabolism is the fundamental synchronizer46,47,52.
However, there is yet no direct experiments investigating the
relationship between phase sensitivity and the background
metabolic state of the system. Away from the onset of oscillation,
the relative amplitude change Δr/r caused by a modest phase
resetting signal (e.g., temperature pulse) should has only a weak
dependence on the metabolic state of system. Under this
assumption, our theory shows that the phase response is domi-
nated by χ, which increases with the background ATP/ADP ratio.
In particular, we predict that the invitro KaiABC oscillators with a
lower background ATP/ADP ratio would generate a smaller PRC
amplitude in response to the same temperature perturbation. In
Fig. 6, we show the PRC in response to a particular change of
kinetic rate constants in a generic AI model, to which the Kai
system belongs. By choosing the reaction rate changes during the
temperature perturbation properly, we can reproduce the
observed PRC to a temperature pulse as shown in Fig. 6a. We
then use our model to compute the PRC to the same perturbation
(rate changes) but with different values of the energy dissipation
per period (ΔW) or different background ATP/ADP ratios. As
shown in Fig. 6b, the amplitude of the PRC decreases as ΔW
decreases. This result is robust as the enhancement of PRC
amplitude by free-energy dissipation holds true generally
regardless of the specific perturbation and the specific model used
(see Supplementary Fig. 12). This prediction can be tested in
future experiments, e.g., by measuring the PRC for changes in
temperature in different background ATP/ADP ratios. These
types of experiments would not only test our hypothesis that
energy dissipation affects phase response, they may also shed light
on its molecular mechanisms53 and how cellular metabolic
activities affects other crucial functions of biological clocks, such
as temperature compensation54–56.

Data availability. The data that support the findings of this study
are available from the corresponding author on request.

Received: 10 August 2017 Accepted: 14 March 2018

References
1. Tsimring, L. S. Noise in biology. Rep. Prog. Phys. 77, 026601 (2014).
2. Barkai, N. & Leibler, S. Biological rhythms: circadian clocks limited by noise.

Nature 403, 267–268 (2000).
3. Hopfield, J. J. Kinetic proofreading: a new mechanism for reducing errors in

biosynthetic processes requiring high specificity. Proc. Natl Acad. Sci. USA 71,
4135–4139 (1974).

4. Ferrel, J. J., Tsai, T. Y. & Yang, Q. Modeling the cell cycle: why do certain
circuits oscillate? Cell 114, 874–885 (2011).

5. Houchmandzadeh, B., Wieschaus, E. & Leibler, S. Establishment of
developmental precision and proportions in the early drosophila embryo.
Nature 415, 798–802 (2002).

6. Goldbeter, A. Biochemical Oscillations and Cellular Rhythms: The Molecular
Bases of Periodic and Chaotic Behaviour (Cambridge Univ. Press, Cambridge,
1996).

7. Martiel, J.-L. & Goldbeter, A. A model based on receptor desensitization for
cyclic amp signaling in dictyostelium cells. Biophys. J. 52, 807–828 (1987).

8. Buzsáki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science
304, 1926–1929 (2004).

9. Pittendrigh, C. S. & Daan, S. Circadian oscillations in rodents: a systematic
increase of their frequency with age. Science 186, 548–550 (1974).

10. Johnson, C. H., Stuart, P. L. & Egli, M. The cyanobacterial circadian system:
from biophysics to bioevolution. Annu. Rev. Biophys. 40, 143–167 (2011).

11. Marconia, U. M. B., Puglisib, A., Rondonic, L. & Vulpiani, A. Fluctuation
“dissipation: Response theory in statistical physics. Phys. Rep. 461, 111–195
(2008).

12. Sato, K., Ito, Y., Yomo, T. & Kaneko, K. On the relation between fluctuation
and response in biological systems. Proc. Natl Acad. Sci. USA 100,
14086–14090 (2003).

13. Skoge, M., Naqvi, S., Meir, Y. & Wingreen, N. S. Chemical sensing by
nonequilibrium cooperative receptors. Phys. Rev. Lett. 110, 248102 (2013).

14. Mehta, P. & Schwab, D. J. Energetic costs of cellular computation. Proc. Natl
Acad. Sci. USA 109, 17978–17982 (2012).

15. Govern, C. C. & ten Wolde, P. R. Energy dissipation and noise correlations in
biochemical sensing. Phys. Rev. Lett. 113, 258102 (2014).

16. Barato, A. C. & Seifert, U. Cost and precision of brownian clocks. Phys. Rev. X
6, 041053 (2016).

17. Lan, G., Sartori, P., Neumann, S., Sourjik, V. & Tu, Y. The energy speed
accuracy trade-off in sensory adaptation. Nat. Phys. 8, 422–428 (2012).

18. Sartori, P. & Tu, Y. Free energy cost of reducing noise while maintaining a
high sensitivity. Phys. Rev. Lett. 115, 118102 (2015).

19. Cao, Y., Wang, H., Ouyang, Q. & Tu, Y. The free-energy cost of accurate
biochemical oscillations. Nat. Phys. 11, 772–778 (2015).

20. Gillespie, D. T. The chemical langevin equation. J. Chem. Phys. 113, 297–306
(2000).

21. Kuramoto, Y. Chemical Oscillations, Waves and Turbulence, Springer Series in
Synergetics, Vol. 19 (Springer, Berlin, 1984).

22. Winfree, A. T. Biological rhythms and the behavior of populations of coupled
oscillators. J. Theor. Biol. 16, 15–42 (1967).

23. Goldobin, D. S., nosuke Teramae, J., Nakao, H. & Ermentrout, G. B. Dynamics
of limit-cycle oscillators subject to general noise. Phys. Rev. Lett. 105, 154101
(2010).

24. Winfree, A. T. The Geometry of Biological Time (Springer, New York, 2001).
25. Taylor, S. R., Gunawan, R., Petzold, L. R. & Doyle, F. J. Sensitivity measures

for oscillating systems: Application to mammalian circadian gene network.
IEEE T. Autom. Contr. 53, 177–188 (2008).

26. Johnson, C. H. Phase response curves: What can they tell us about circadian
clocks? in Circadian Clocks from Cell to Human (eds Hiroshige, T. & Honma,
K.) 209–249 (Hokkaido Univ. Press, Sapporo, 1992).

27. Saunders, D., Gillanders, S. & Lewis, R. Light-pulse phase response curves for
the locomotor activity rhythm in period mutants of drosophila melanogaster.
J. Insect Physiol. 40, 957–968 (1994).

28. Buhr, E. D., Yoo, S.-H. & Takahashi, J. S. Temperature as a universal resetting
cue for mammalian circadian oscillators. Science 330, 379–385 (2010).

29. Lengyel, M., Kwag, J., Paulsen, O. & Dayan, P. Matching storage and recall:
hippocampal spike timing dependent plasticity and phase response curves.
Nat. Neurosci. 8, 1667 (2005).

30. Aschoff, J. Response curves in circadian periodicity in Circadian Clocks (ed.
Aschoff, J.) 95–111 (Elsevier, Amsterdam, North-Holland, 1965).

31. Daan, S. & Pittendrigh, C. S. A functional analysis of circadian pacemakers in
nocturnal rodents. ii. the variability of phase response curves. J. Comp. Physiol.
106, 253–266 (1976).

32. Jensen, M. H., Bak, P. & Bohr, T. Complete devil’s staircase, fractal dimension,
and universality of mode- locking structure in the circle map. Phys. Rev. Lett.
50, 1637–1639 (1983).

33. Sel’kov, E. E. Self-oscillations in glycolysis. Eur. J. Biochem. 4, 79–86 (1968).
34. Nicolis, G. & Prigogine, I. Self-Organization in Non-equilibrium Systems

(Wiley, New York, 1977).
35. Qian, H., Saffarian, S. & Elson, E. L. Concentration fluctuations in a

mesoscopic oscillating chemical reaction system. Proc. Natl Acad. Sci. USA 99,
10376–10381 (2002).

36. Qian, H. Phosphorylation energy hypothesis: Open chemical systems and
their biological functions. Annu. Rev. Phys. Chem. 58, 113–142 (2007).

37. Barato, A. C. & Seifert, U. Thermodynamic uncertainty relation for
biomolecular processes. Phy. Rev. Lett. 114, 158101 (2015).

38. Doan, T., Mendez, A., Detwiler, P. B., Chen, J. & Rieke, F. Multiple
phosphorylation sites confer reproducibility of the rods single photon
responses. Science 313, 530–533 (2006).

39. Gillespie, D. T. Exact stochastic simulation of coupled chemical reactions.
J. Chem. Phys. 81, 2340–2361 (1977).

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03826-4 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:1434 | DOI: 10.1038/s41467-018-03826-4 |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


40. Kuznetsov, Y. A. Elements of Applied Bifurcation Theory, Applied
Mathematical Sciences, Vol. 112 (Springer, New York, 1998).

41. Roberts, J. & Spanos, P. Stochastic averaging: An approximate method of
solving random vibration problems. Int. J. Nonlinear Mech. 21, 111–134
(1986).

42. Tomé, T. & de Oliveira, M. J. Entropy production in irreversible systems
described by a fokker-planck equation. Phys. Rev. E 82, 021120 (2010).

43. Barato, A. C. & Seifert, U. Coherence of biochemical oscillations is bounded
by driving force and network topology. Phys. Rev. E 95, 062409 (2017).

44. Kampen, N. G. V. Stochastic Processes in Physics and Chemistry (Elsevier,
Amsterdam, 2007).

45. Rust, M. J., Markson, J. S., Lane, W. S., Fisher, D. S. & O’shea, E. K. Ordered
phosphorylation governs oscillation of a three-protein circadian clock. Science
318, 809–812 (2007).

46. Rust, M. J., Golden, S. S. & O’Shea, E. K. Light-driven changes in energy
metabolism directly entrain the cyanobacterial circadian oscillator. Science
331, 220–223 (2011).

47. Pattanayak, G. K., Lambert, G., Bernat, K. & Rust, M. J. Controlling the
cyanobacterial clock by synthetically rewiring metabolism. Cell Rep. 13,
2362–2367 (2015).

48. Beard, D. A. & Qian, H. Chemical Biophysics: Quantitative Analysis of Cellular
Systems (Cambridge Univ. Press, Cambridge, 2008).

49. Nakashima, H. & Feldman, J. F. Temperature-sensitivity of light-induced
phase shifting of the circadian clock of neurospora. Photochem. Photobiol. 32,
247–251 (1980).

50. Broda, H., Johnson, C. H., Taylor, W. R. & Hastings, J. Temperature
dependence of phase response curves for drug-induced phase shifts. J. Biol.
Rhythms 4, 327–333 (1989).

51. Barrett, R. & Takahashi, J. Lability of circadian pacemaker amplitude in chick
pineal cells: A temperature-dependent process. J. Biol. Rhythms 12, 309–318
(1997).

52. Abe, J. et al. Atomic-scale origins of slowness in the cyanobacterial circadian
clock. Science 349, 312–316 (2015).

53. Paijmans, J., Lubensky, D. K. & Rein ten Wolde, P. Period robustness and
entrainability of the Kai system to changing nucleotide concentrations.
Biophys. J. 113, 157–173 (2017).

54. Nakajima, M. et al. Reconstitution of circadian oscillation of cyanobacterial
kaic phosphorylation in vitro. Science 308, 414–415 (2005).

55. François, P., Despierre, N. & Siggia, E. D. Adaptive temperature compensation
in circadian oscillations. PLoS Comput. Biol. 8, e1002585 (2012).

56. Kidd, P. B., Young, M. W. & Siggia, E. D. Temperature compensation and
temperature sensation in the circadian clock. Proc. Natl Acad. Sci. USA 112,
E6284–E6292 (2015).

57. Yoshida, T., Murayama, Y., Ito, H., Kageyama, H. & Kondo, T. Nonparametric
entrainment of the in vitro circadian phosphorylation rhythm of

cyanobacterial kaic by temperature cycle. Proc. Natl Acad. Sci. USA 106,
1648–1653 (2009).

Acknowledgements
The work is supported by Chinese Ministry of Science and Technology (2015CB910300)
and NSFC (11434001). Y.T. is also supported by NIH (GM081747).

Author contributions
Y.T. initiated the project. C.F., Y.C., Q.O., and Y.T. designed the research. C.F., Y.C., and
Y.T. developed the models, contributed to the analytical results, and wrote the manu-
script. C.F. performed simulations.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
018-03826-4.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2018

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03826-4

10 NATURE COMMUNICATIONS |  (2018) 9:1434 | DOI: 10.1038/s41467-018-03826-4 |www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-018-03826-4
https://doi.org/10.1038/s41467-018-03826-4
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Design principles for enhancing phase sensitivity and suppressing phase fluctuations simultaneously in biochemical oscillatory systems
	Result
	Reduced phase description for biochemical oscillations
	Effects of free-energy dissipation on phase dynamics
	The relation between phase sensitivity and entrainment to external periodic driving
	Energy-enhanced phase-amplitude coupling leads to higher phase sensitivity
	Design principles for enhancing oscillation functions
	Balance the forward-to-backward ratio in antiparallel pathways to suppress phase diffusion
	Minimize the net backward flux relative to the net forward flux to enhance phase sensitivity
	Experimental evidence in the Kai system

	Discussion
	Data availability

	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




