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SUMMARY

Human embryonic stem cells (hESCs) provide a novel source of hematopoietic and other cell 

populations suitable for gene therapy applications. Preclinical studies to evaluate engraftment of 

hESC-derived hematopoietic cells transplanted into immunodeficient mice demonstrate only 

limited repopulation. Expression of a drug resistance gene, such as Tyr22-dihydrofolate reductase 

(Tyr22-DHFR), coupled to methotrexate (MTX) chemotherapy has the potential to selectively 

increase engraftment of gene-modified hESC-derived cells in mouse xenografts. Here, we describe 

the generation of Tyr22-DHFR – GFP expressing hESCs that maintain pluripotency, produce 

teratomas and can differentiate into MTXr-hemato-endothelial cells. We demonstrate that MTX 

administered to nonobese diabetic/severe combined immunodeficient/IL-2Rγcnull (NSG) mice 

after injection of Tyr22-DHFR-derived cells significantly increases human CD34+ and CD45+ cell 

engraftment in the bone marrow (BM) and peripheral blood of transplanted MTX-treated mice. 

These results demonstrate that MTX treatment supports selective, long-term engraftment of 

Tyr22-DHFR-cells in vivo, and provides a novel approach for combined human cell and gene 

therapy.
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INTRODUCTION

Over the past two decades, development of stem cell-based gene therapies has been 

challenging due to low level of gene transfer in human hematopoietic stem cells (HSCs) and 

difficulties with long-term stable engraftment of modified cells 1. In clinical trials for X-

linked severe combined immunodeficiency (X-SCID) and adenosine deaminase deficiency 

(ADA-SCID), the growth advantage of gene-modified lymphocytes compensated for the low 

level of gene transfer to support immune reconstitution 2–5. However, in cases where the 

gene-of-interest does not confer a selective advantage to modified cells, drug resistance gene 

expression in HSCs may be clinically beneficial. For example, drug resistance gene 

expression coupled to chemotherapy has been shown to selectively expand gene-modified 

cells in vivo 6–8. In addition, drug resistance gene expression in nonmalignant 

chemosensitive tissues, such as the bone marrow and gastrointestinal tract, has the potential 

to decrease toxicity associated with high-dose chemotherapy7. In the allogeneic setting, 

coupling post-transplantation immunosuppressive drug treatment to drug-resistance in the 

allograft also has the potential to reduce the risk of graft rejection and the severity of graft-

versus-host disease (GVHD).

Methotrexate is widely used in post-hematopoietic stem cell transplantation (HSCT) 

immunosuppressive therapy and in the treatment of some cancers 9–11. We and others have 

shown that gene transfer and expression of a MTX-resistant dihydrofolate reductase (Tyr22-

DHFR) in hematopoietic stem cells (HSCs) confers chemoprotection to recipient animals 

12–14. In these studies, MTX supported a transient drug-dependent selective expansion of 

gene-modified cells in the peripheral blood of treated animals. These results suggest that 

MTX administration may be used to regulate in vivo expansion of gene-modified cells.

Human embryonic stem cells (hESCs) are capable of self-renewal and can be induced to 

differentiate into diverse hematopoietic cell lineages including myeloid and lymphoid 

lineages of characteristic phenotypes and function 15–20. We have also found that natural 

killer (NK) cells derived from hESCs have potent anti-tumor activity both in vitro and in 

vivo 21,22. Others have characterized maturation of erythroid cells from hESCs with normal 

oxygen carrying capacity 23–25. However, in studies to date, only limited long-term 

hematopoietic potential of hESC-derived cells has been observed when transplanted into 

immunodeficient mice or in fetal sheep models 26–29. Several studies have focused on gene 

modification of hESCs, defining optimal conditions for achieving stable viral and non-viral 

transfer of genes encoding bioluminescent or fluorescent proteins 30–32. Other groups have 

demonstrated expression of antibiotic resistance genes for enrichment of drug-resistant cells 

33–35, or used lineage- or stage-specific regulation of GFP to monitor differentiation of 

hESCs 36–39. To date, gene transfer and in vivo expression of chemotherapeutic drug 

resistance genes, such as Tyr22-DHFR, in hESC-derived cells has not been reported.

Clinically, Tyr22-DHFR expression by hematopoietic progenitor cells derived from either 

hESCs or induced pluripotent stem (iPS) cells coupled to MTX chemotherapy after HSCT 

could potentially protect the transplanted cells, providing a selective engraftment advantage 

to improve levels of long-term engraftment. Here, we describe stable expression of Tyr22-

DHFR and GFP in hESCs after lentiviral transduction. These Tyr22-DHFR-GFP cells were 
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evaluated in vitro and in vivo to demonstrate improved cell survival, maintaining 

hematopoietic differentiation potential while under MTX selection when transplanted into 

immunodeficient mice.

RESULTS

Stable expression of DHFR and GFP in undifferentiated hESCs

In order to determine the vector design that would best support long-term DHFR and GFP 

expression in hESCs, the human H9 cell line was transduced with three different 

bifunctional self-inactivating (SIN)-lentivirus vectors, each containing the human EF1-α 

promoter regulating transcription of the murine Tyr22-DHFR variant (Figure 1a). Other 

genetic features include a posttranscriptional regulatory element (pre), rev response element 

(rre) and a central polypurine tract. In the EFDIG lentivirus vector, the DHFR and GFP 

coding sequences are separated by an internal ribosomal entry site (IRES) for translation of 

both proteins from one transcribed message. We also engineered a vector (DL2G) 

expressing a DHFR-GFP fusion protein with the intent that GFP expression would more 

accurately reflect drug resistance in transduced cells. Our previous transduction studies in 

mouse HSCs showed that EFDIG conferred a higher level of chemoprotection in vivo, 

compared to DL2G 12. We also evaluated a two-promoter configuration (REDPeG), 

because our recent studies in canine HSCs have shown that this vector supports a higher 

level of GFP expression compared to EFDIG and DL2G, thus providing easier detection of 

gene-modified cells in vivo (unpublished observation). Also included in all studies is a GFP-

only control (CSIIEG), which has also been previously described 40. All studies here were 

done with the H9 hESC line that has been commonly used for studies to derive 

hematopoietic and other cell lineages. This line is quite amenable to stable genetic 

modification while retaining a normal karyotype and pluripotency.31

Four days after transduction (as detailed in Materials and Methods), characteristic colonies 

emerged, some of which were GFP+ when evaluated by fluorescence microscopy. The GFP+ 

colonies transduced with the vectors described above retained characteristic hESC 

morphology, and GFP expression was distributed evenly among the cells in each colony 

(Figure 1b). One month after transduction, the cells maintained the morphology of 

undifferentiated hESCs and 40 to 80% of the transduced populations were positive for both 

GFP and stage specific embryonic antigen-4 (SSEA-4), indicating stable transgene 

expression in undifferentiated cells (Figure 1c). All gene-modified cell populations retained 

a normal karyotype (Supplemental Figure. 1). While fluorescence intensity was highest for 

CSIIEG- and DL2G-hESCs and lower for EFDIG- and REDPeG-hESCs, all gene-modified 

populations contained 1–2 vector copies per genome equivalent as determined by 

quantitative PCR. Since GFP expression was similar in EFDIG and DL2G cell populations 

(~60% GFP+ cells), we also determined MTXr-DHFR enzyme activities in cell extracts. In 

the absence of MTX, there was no significant difference in DHFR activities among the 

different transduced cell populations (Table 1). However, in the presence of MTX, DHFR 

activity was significantly higher in extracts from EFDIG-H9 (p<0.005) and DL2G-H9 

(p<0.01) populations compared to CSIIEG-HP (GFP only control) extracts, in which 

MTXrDHFR activity was undetectable. Interestingly, DHFR activity was not significantly 

Gori et al. Page 3

Gene Ther. Author manuscript; available in PMC 2010 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



increased by Tyr22-DHFR expression in the absence of MTX. Given the higher level of 

enzyme activity associated with EFDIG-hESCs and our previous studies showing that 

EFDIG confers a higher level of chemoprotection in mice compared to DL2G 12, we 

selected the EFDIG-modified hESCs for subsequent in vivo studies.

MTX dose-escalation and teratoma formation in immunodeficient mice

Previous studies in immunocompetent mice showed that transplantation with marrow that 

expresses MTXr-DHFR (MTXr-DHFR marrow) protects recipients from chemotoxicity 12. 

In preparation for long-term MTX treatment of immunodeficient mice, we first transplanted 

NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice with MTXr-DHFR or GFP lentivirus-

transduced bone marrow as described in Materials and Methods. MTX was administered i.p. 

daily, starting at 0.25 mg/kg day. The dose was increased if both animal weight and 

hematocrit were stable among the mice in a particular cohort (Supplemental Figure 2). The 

goal of this dose escalation experiment was to determine the maximum MTX dose that 

could be tolerated by DHFR-transduced BMT NSG mice without causing anemia. We found 

that mice transplanted with GFP-transduced marrow could tolerate up to 0.5 mg/kg/day, 

while the DHFR-transduced BMT mice tolerated up to 2 mg/kg/day while maintaining 

stable health and hematocrits (Supplemental Figure 2).

Using these mice engrafted with MTXr marrow, we next evaluated the ability of EFDIG-

hESCs to give rise to advanced derivatives of all three germ layers in teratomas that were 

allowed to develop in the presence and absence of MTX. In this assay, EFDIG and CSIIEG 

undifferentiated hESCs were injected into the left and right hind limbs of DHFR-

chemoprotected NSG mice, respectively. One month after hESC injection, animals were 

treated daily with either PBS or MTX for one month and tumor growth monitored. Both 

gene-modified hESC populations gave rise to teratomas. There was a trend toward growth 

inhibition of CSIIEG teratomas (with no DHFR expression) compared to the growth of 

EFDIG teratomas (that express DHFR), as would be expected by expression of DHFR, 

although the difference between these groups was not statistically significant (Figure 2a). 

Notably, in this study, MTX treatment and tumor growth was terminated when tumor size 

was 1.5 cm, approximately 1 month after the start of MTX treatment. Therefore, this 

difference in teratoma growth between the treatment groups would likely have been greater 

if tumors were allowed to grow beyond 1.5 cm (as limited by our animal protocol). QPCR 

analysis showed that lentiviral integrants per genome equivalent were maintained or 

increased slightly during differentiation, compared to GFP marking by qPCR in the input 

undifferentiated ESC populations (Figure 2a). Derivatives of all three germ layers and GFP+ 

cells were detected in the teratomas, with no discernible developmental differences among 

treatment groups (Figure 2b,c). These data indicate that the gene-modified ESCs maintained 

their multipotency and gene expression during MTX administration.

DHFR and GFP expression during hESC differentiation on M210 stromal cells

We next compared GFP expression and hematopoietic differentiation in gene-modified 

hESCs. Here, the four hESC lines transduced with CSIIEG, EFDIG, DL2G, or REDPeG 

were allowed to differentiate by co-culture with M2-10B4 stromal cells as previously 

described 17,41. The level of GFP expression was maintained in CSIIEG cells during this 
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process, but was progressively reduced in DHFR-GFP populations during the 5-week time 

course (Figure 3a). Peak development of CD34+ cells ranged between 10 and 33% (Figure 

3b), similar to what we have previously found for unmodified hESCs 42. Subpopulations of 

all transduced differentiated cells also expressed endothelial progenitor markers (ACE, 

CD31, Flk1)(Fig. 3c and data not shown), also as previously shown for unmodified hESCs 

42,43. By day 21, subpopulations emerged that co-expressed CD34 and the pan-

hematopoietic marker CD45 (Fig. 3d). Peak expression of CD45 ranged from 1% (EFDIG) 

to 6% (REDPeG). Importantly, subpopulations of CD34+ were also GFP+ (Figure 3e). Of 

the DHFR-GFP transduced cell populations evaluated, co-expression of CD34 and GFP was 

the highest for EFDIG transduced cells.

To further define hematopoietic potential and MTX resistance in DHFR+ hESC-derived 

progeny, the cell populations were evaluated for hematopoietic colony forming cells (CFC) 

in the presence of MTX. The nucleoside transport inhibitor dipyridamole (DP) was included 

with MTX to provide more stringent selective conditions 44. As previously demonstrated 

with other hESC populations, here we found that the gene-modified hESCs readily generate 

hematopoietic progenitor cells capable of hematopoietic colony formation as quantified in 

this CFC assay. Importantly and as expected, MTX treatment alone did not inhibit colony 

formation by CSIIEG-transduced cells (Fig. 4a). However, in the presence of both MTX and 

DP, CFCs were maintained for all Tyr22-DHFR-transduced cells and significantly reduced 

for CSIIEG-cells (Figure 4). Hematopoietic cells within the colonies retained GFP 

expression (Fig. 4b). These data demonstrate that CFCs derived from hESCs that express 

Tyr22-DHFR have a survival advantage over control CSIIEG-cells when both folate 

metabolism and nucleoside transport are inhibited (MTX/DP conditions).

Engraftment and differentiation of DHFR-GFP transduced hESC hematopoietic progenitors 
after transplantation into NOD/SCID-IL2Rγcnull mice

To further assess the effects of MTX administration and MTXr-DHFR expression by hESC-

derived cells in vivo, NSG mice were injected intravenously with 4 × 106 EFDIG-hESC-

derived cells after hematopoietic differentiation via M2-10B4 stromal cell co-culture for 10 

days. This study consisted of three experimental groups: PBS treated mice (PBS, n=6), low 

dose (0.5 mg/kg) MTX treated mice (LDM, n=6) and DHFR marrow transplant recipients 

treated with high dose (2 mg/kg) MTX (HDM, n=8). Mice were treated 5 days per week for 

4 weeks with either PBS or MTX. Two weeks after treatment cessation (6 weeks post 

transplantation), GFP+ cells and TRA-1-85+ cells (a monoclonal antibody that recognizes a 

cell surface antigen expressed by all human cells) in the blood of HDM and LDM mice were 

significantly higher than that observed in PBS treated animals (Fig. 5a). Twelve weeks after 

EFDIG-hESC-hematopoietic cell transplantation, GFP+TRA-1–85+ cells remained 

significantly higher in HDM mice, compared to PBS mice (Fig. 5b). CD34+ and CD45+ 

cells were also detected in some peripheral blood samples, though at low levels (<1%) (data 

not shown).

Twelve- to 16-weeks after EFDIG-cell transplantation, animals were sacrificed to evaluate 

engraftment in different organs. Cells harvested from bone marrow, liver and spleen were 

stained with combinations of antibodies specific for hematopoietic and endothelial lineages. 
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Significantly more GFP+ cells were detected in the bone marrow of HDM mice in 

comparison with LDM or PBS-treated mice (p<0.05, Fig. 6a). QPCR analysis of bone 

marrow samples confirmed the GFP marking observed by flow cytometry with significantly 

higher GFP marking observed in LDM and HDM treated mice compared to PBS treated 

controls (p< 0.05). When GFP levels were normalized to the total percentage of GFP 

marking in the hESC-derived cells at the time of injection (20% GFP+ hESC-derived cells at 

day 10 of differentiation), the difference in GFP marking among treatment groups became 

more striking (Fig. 5 and Fig. 6a). There was significantly more TRA-1–85+ human cell 

engraftment in the bone marrow of mice from both MTX treatment groups compared to PBS 

administered mice (p<0.0005), with both CD34 and CD45 subsets represented at 

significantly higher levels in MTX treated groups (CD45: p<0.05) (Fig.6). LDM mice 

exhibited significantly higher CD34+ cell engraftment compared to both PBS (p<0.05) and 

HDM (p<0.005) administered mice, the latter perhaps resulting from high dose toxicity for 

both transduced as well as untransduced cells. Gene-modified human cells were also 

detected in the spleens and livers of transplanted mice (Fig. 6b,c). We conclude that MTX 

administration brought about the selective engraftment of DHFR+ hematopoietic cells 

derived from hESCs when transplanted into immunodeficient NSG mice.

DISCUSSION

Our study is the first report of MTX resistance gene transfer to potentiate transplantation and 

selective engraftment of hESC-derived cells. We provide a model system to evaluate in vivo 

selection with antifolate-resistance genes in hESC-hematopoietic cells that may be applied 

to evaluate other chemotherapeutic drug resistance systems. In order to characterize 

expression of Tyr22-DHFR in hESCs, we first achieved stable DHFR-GFP expression in 

hESCs using three different genetic configurations. In contrast to control CSIIEG-hESCs, 

GFP expression decreased over time in cells transduced with DHFR-GFP bicistronic 

lentivirus vectors, possibly due to epigenetic silencing. We then used MTX chemotherapy 

and DHFR expression to establish teratomas with increased MTX resistance that were also 

enriched for gene-modified cells, as determined by the fold increase in transgene copies in 

the teratoma, compared to the GFP transgene copies detected in the undifferentiated input 

cell population. Finally, we demonstrated the feasibility of using Tyr22-DHFR and MTX 

chemotherapy to achieve in vivo selection and increased engraftment of hESC-

hematopoietic cells in immunodeficient mice. These results extend our previous work on 

lentiviral-mediated chemoprotection in murine marrow-derived hematopoietic stem cells to 

demonstrate the effectiveness of this approach in ES-derived HSC and in the human system.

Historically, in vivo selection at the level of slowly dividing stem cells has not been 

achieved by MTX administration alone, because the inhibitory activity of MTX affects 

primarily highly proliferative cells, such as myeloid and lymphoid progeny. In vivo selection 

has been achieved using the anti-folate trimetrexate (TMTX) when administered along with 

the nucleoside transport inhibitor nitrobenzylmercaptopurine ribose phosphate (NBMPR-P) 

14,45,46. Although TMTX/NBMPR-P treatment was sufficient to achieve in vivo selection 

of gene-modified HSCs in mice, selection was only transient in a study of non-human 

primates14,45. In contrast to the DHFR/antifolate system, expression of P140K-O6-

methylguanine DNA methyltransferase (P140K-MGMT), which confers resistance to O6-

Gori et al. Page 6

Gene Ther. Author manuscript; available in PMC 2010 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



benzylguanine (O6-BG) and alkylating agents such as 1,3-bis-(2-chloroethy)-1-nitrosourea 

(BCNU) and temozolomide (TMZ), has been shown to support significant, long-term in vivo 

selective expansion of gene-modified HSCs in dogs 7,47. However, in a clinical study using 

retroviral vector to transduce MGMT activity in hematopoietic cells, the gene transfer 

frequency remained low 8. The differential outcomes between the canine studies and the 

clinical trial highlight the importance of evaluating drug resistance genes and 

chemoprotection in alternative human cell sources that can be expanded ex vivo, in order to 

anticipate potential challenges that may arise in future studies of large animals and humans. 

The differential outcomes between the antifolate studies and the MGMT studies highlight 

the importance of evaluating drug resistance genes and chemoprotection in alternative cell 

sources that can be expanded ex vivo, in order to anticipate potential challenges that may 

arise in future studies of large animals and humans.

Drug resistance gene therapy models in human-mouse xenografts have been developed to 

determine whether high dose chemotherapy inhibits human tumor progression and the extent 

of protection provided by drug resistance genes (DHFR, MGMT) expressed in the mouse 

marrow 48,49. Human CD34+ cells, either from umbilical cord blood (UCB) or mobilized 

peripheral blood (MPB) have been evaluated in mice after transfer of P140K-MGMT 50,51. 

Pollok and colleagues showed that O6-BG/BCNU treatment increased long-term 

engraftment of CD45+GFP+ cells in the marrow of NOD/SCID mice two to eightfold 14 

weeks after transplantation of UCB or MPB CD34+ cells, respectively 50. In Pollok’s 

studies, CD34-enriched cell populations that were 60% GFP+ were infused into mice that 

were irradiated immediately before transplantation. Four treatments of O6-BG and BCNU 

had a potent selective effect in vivo, increasing CD45+ cell engraftment in the bone marrow 

from 30% to 80% for UCB-derived cells and from 20% to 90% for MPB-derived cells. 

These results demonstrate the potential effectiveness of in vivo human stem cell selection as 

xenografts in immunodeficient animals, also applicable to human ES cells as demonstrated 

in this article.

In our study, we transplanted an unselected population of mixed, differentiated cells that was 

only 20% GFP+ at the time of infusion. By normalizing GFP marking of engrafted cells to 

this initial percentage (i.e., by dividing the percent of GFP+ cell detected in the bone marrow 

by the percent of GFP+ cells in the input cell population), the selective effect of MTX 

treatment becomes even more apparent at twelve weeks post transplant (Figure S3). Twelve 

times more GFP marking (6% vs. 0.5% mean GFP+ cells) was detected in the bone marrow 

of HDM compared to PBS treated mice. In the peripheral blood, 5 times more GFP marking 

(22 % vs. 4 % mean GFP+ cells) was detected in HDM treated mice vs. PBS-treated mice. 

We thus achieved significantly higher long-term engraftment of hESC-hematopoietic cells 

in the bone marrow of treated mice, compared to untreated mice. It is also striking that the 

levels of CD34+/CD45+ cells were similar in LDM and HDM treatment groups. These 

results demonstrate the long-term selective effects of MTX on hESC-hematopoietic cell 

engraftment and show that MTX supports in vivo selection that persists long after treatment 

cessation.

iPS cells and/or hESC-derived hematopoietic cells provide candidate sources for allogeneic 

or autologous HSCT, so it is important to consider the conditions of this clinical translation 
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and the potential challenges that may arise in achieving effective engraftment of these cells 

after transplantation. Drug resistance gene transfer represents an important complement to 

such cell-based therapies as a means of supporting selective engraftment of gene-modified 

cells for hematopoietic reconstitution and prevention of allograft rejection. In this study, we 

show that MTX administration provided a selective benefit to the engraftment of MTXr-

DHFR hESC-hematopoietic cells in the bone marrow of NSG mice. Other conditions may 

improve hematopoietic differentiation 26,42,52 coupled with the evaluation of more potent 

drug resistance genes (such as MGMT) that also support stem cell selection will better 

define the potential roles of drug resistance genes in hESC-derived hematopoietic function 

in vivo.

MATERIALS AND METHODS

Embryonic Stem Cell Culture

The hESC line H9 (WiCell Research Institute, Inc., Madison, WI) was maintained on 

mitotically inactive mouse embryonic fibroblast (MEF) feeder layers (Chemicon/Millipore, 

Temecula, CA) that were irradiated at 5500 cGy using a Cesium source as previously 

described 17,41. MEFs and the stromal cell line M2-10B4 were maintained as described 

17,41.

Lentivirus vector construction and vector preparation

The self-inactivating HIV-1-based lentivirus plasmids CCDG, CSIIMCS, CSIIEG, DL2G, 

and EFDIG have been previously described 12. Briefly, in these vectors the human 

elongation factor-1 alpha (hEF-1α) promoter regulates transcription of the murine 

tyrosine-22 dihydrofolate reductase (Tyr22-DHFR) variant and enhanced green fluorescent 

protein (eGFP) coding sequences. EFDIG contains a picornaviral internal ribosomal entry 

site (IRES), DL2G constitutes a genetic fusion between the two transgenes, and CSIIEG 

encodes GFP alone. To construct REDPeG, the Tyr22-DHFR coding sequence was 

amplified from pCCDG 12 using sense (5'-

TCTCGAGGATTCTCTAGAGCAAGCTTTTA-3') and anti-sense (5'-

GGCGGTACCGATAAGCTGATCCTCTA-3') primers (BamHI and KpnI sites underlined). 

The PCR product was cloned between BamHI and KpnI sites in pRSCEMPGw2 (a construct 

identical to REDPeG containing a methylguanine DNA methyltransferase sequence at the 

site into which DHFR was inserted, kindly provided by Dr. Hans-Peter Kiem, Fred 

Hutchinson Cancer Research Center, Seattle, Washington) to yield REDPeG, in which the 

hEF-1α promoter regulates transcription of Tyr22-DHFR, and the human phosphoglycerate 

kinase (hPGK) promoter regulates expression of GFP. To construct the Tyr22-DHFR-

expressing lentivirus vector plasmid CSIID, Tyr22-DHFR was excised from CCDG 12 and 

cloned into the EcoRI and BamHI sites of CSIIMCS 40. Lentiviral vectors were packaged 

by DNA-calcium phosphate mediated transfection of human HEK 293 cells, collected, 

concentrated and titered as previously described 53.

Transduction of human embryonic stem cells

Confluent hESCs growing on Matrigel (BD Biosciences, San Jose, CA) were treated with 

0.05% trypsin plus 2% chicken serum (Sigma-Aldrich) for 7 minutes at 37°C with or 
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without a 1-hour pretreatment with 10 µM Rho Kinase (Rock) inhibitor Y-27632 

(CalBiochem, EMD Biosciences, San Diego, CA,). Cells were collected by centrifugation 

and then suspended in transduction medium (conditioned medium described above, plus 8 

ng/mL bFGF, 8 µg/mL polybrene, with or without 10 µM Rock inhibitor). One million cells 

(in small aggregates) were mixed with lentivirus vector to achieve a multiplicity of infection 

(M.O.I) of 2.5 (based on functional titer [DHFR or GFP transducing units/mL] on 3T3TK- 

fibroblasts) and replated on Matrigel. Cell suspensions were gently agitated every hour for 

three hours to facilitate virus-cell contact. Twenty-four hours later, the cells were gently 

washed with Dulbecco’s modified phosphate buffered saline (DPBS) and covered with fresh 

conditioned medium plus 8 ng/mL bFGF. Two weeks and two passages later, confluent 

transduced cell populations were subcultured 2:1 onto MEF feeders.

Karyotype analysis

The University of Minnesota Cytogenetics Core laboratory performed the karyotype 

analysis. Gene-modified undifferentiated hESCs were cultured in 6-well plates as described 

above. Cells in metaphase were evaluated by G-banding. For each gene-modified cell 

population, 20 metaphase cells were analyzed at a 400–475 band resolution.

MTXr-DHFR enzyme assay

Transduced, undifferentiated hESCs were collected by centrifugation and stored at −20°C in 

DPBS. Cell extracts were prepared and protein content determined as described 12. Cell 

extracts were incubated with or without 0.25 µM MTX for 10 minutes. The addition of 120 

µM NADPH (β-nicotinamide adenine dinucleotide phosphate reduced tetrasodium salt) and 

20 µM dihydrofolic acid started the enzyme reaction. The change in absorbance (A340) on a 

DU40 spectrophotometer (Beckman Coulter, Fullerton, CA) was monitored and recorded 

after reaction initiation. One unit of enzyme activity is defined as the amount of enzyme 

required to reduce 1 nmol of dihydrofolic acid per minute (ε = 12,300 M−1 cm−1) 54.

Hematopoietic differentiation of hESCs

Undifferentiated hESCs were subcultured onto M210 cells in RPMI media with 15% FBS 

and allowed to differentiate as described 41. Between days 7 and 35, wells were harvested 

every three to seven days for flow cytometric analysis of phenotype and GFP expression. 

For colony forming assays (CFU), differentiation co-cultures were collected 16 to 19 days 

after plating on M210 stromal cells. 2.5 × 105 cells were replated into Methocult GF+ 

medium (Stem Cell Technologies, Vancouver, BC, Canada) supplemented with or without 5 

µM dipyridamole (Sigma-Aldrich) and 30 nM MTX. Hematopoietic colonies were scored 16 

days later for computation of colony-forming cells (CFC) in the plated cell population.

Animals

NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice (The Jackson Laboratory, Bar Harbor, ME) 

were bred and maintained in microisolator cages and provided with autoclaved food and 

water containing antibiotics ad libetum. All procedures were reviewed and approved by the 

University of Minnesota Institutional Animal Care and Use Committee.
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Bone marrow transduction and transplantation in NSG mice

Bone marrow was flushed from the hind limbs of eight- to twelve-week-old male NSG 

donor mice processed as described 12. Cells were suspended in complete StemPro medium 

(Invitrogen) supplemented with 2 mM L-glutamine (Gibco), 1% P/S, 8 µg/mL polybrene 

(Simga-Aldrich), and cytokines (100 ng/mL each of human IL-3, IL-6, and mouse SCF [all 

from R&D Systems, Minneapolis, MN]) 12. Lentivirus was added to cell suspensions to 

achieve a M.O.I. of 10 and incubated overnight in a humidified atmosphere containing 5% 

CO2 in air at 37°C. Eight- to twelve-week old syngeneic female recipient mice were 

irradiated using a cesium source (320 cGy) and then intravenously infused with 2 to 3 × 106 

transduced marrow cells.

Teratoma formation in NSG mice

CSIIEG and EFDIG hESCs were harvested and aggregates suspended in DMEM:F12 plus 

10% FBS. Equal volumes of CSIIEG- and EFDIG-hESC aggregates were injected 

intramuscularly (I.M.) into the right and left hind limbs, respectively, of untransplanted and 

CSIID-marrow transplanted NSG mice (transplant described in preceding section). One 

month after cell aggregate injection, mice were treated 5 to 7 days per week with PBS or 

MTX, starting at 2 mg/kg/day on days 1–7 and then escalating to 4 mg/kg/day on days 8–30. 

Animals were euthanized and teratomas excised, diameter measured, and sections prepared 

for real time qPCR, immunofluorescence, or histopathologic analysis.

Transplantation of hESC-derived hemato-endothelial cells in NSG mice

EFDIG-hESCs co-cultured with M2-10B4 stromal cells for 10 days were harvested by 

trypsinization as described above. 4 × 106 cells were injected intravenously into 8- to 12-

week old female NSG mice. In some cases, the mice were transplanted with CSIID 

transduced bone marrow 1 to 3 months (as described above) before hESC-derived cell 

transplantation. One week after hESC-hematopoietic cell infusion, animals were treated with 

PBS or MTX 5 days per week for 4 weeks (see Results). Blood samples were taken 6 and 12 

weeks after cell transplantation and analyzed by flow cytometry for GFP marking and 

human cell content.

Fluorescence microscopy, immunofluorescence and histopathology

Gene-modified hESCs were visualized using a Zeiss inverted fluorescence microscope 

(Axiovert 200M). Images were captured using a digital camera (Zeiss AxioCam) with 

AxioVision version 4.6 software interface (all from Carl Zeiss MicroImaging GmbH, 

Müchen, Germany). Fluorescent images were captured (10–20× objective) at the same 

exposure and modified identically in Adobe Photoshop CS2 Version 9. Fluorescent images 

of hematopoietic colonies were captured in a 9 second exposure time.

Teratomas were embedded in optimal cutting temperature medium (O.C.T.) and frozen or 

fixed in 10% formalin. For immunofluorescence, teratomas were sectioned, fixed onto slides 

with 10% formalin and permeabilized with 0.25% Triton-X 100 in DPBS. 10 µm sections 

were incubated with 10% donkey serum to block non-specific antibody binding and 

incubated with either 1:200 rabbit-anti-GFP in 10% donkey serum (Molecular Probes, 

Invitrogen) or rabbit isotype control antibody (Zymed, Invitrogen) overnight at 4°C. Slides 
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were washed several times with DPBS, incubated for 1 hour at room temperature with 

FITC-conjugated donkey anti-rabbit secondary antibody (1:200 in 10% donkey serum), 

washed and set with Prolong gold antifade reagent plus DAPI (Invitrogen). Sections were 

visualized and images captured (20× objective, 4 second exposure time) by fluorescence 

microscopy as described above. For histopathologic analysis, formalin fixed teratomas were 

embedded in paraffin, sectioned, mounted, stained with hematoxylin and eosin and analyzed 

by a veterinary pathologist without prior knowledge of sample identity or treatment (MTX, 

PBS).

Real-time quantitative PCR

DNA was extracted from human teratomas or mouse tissue samples using the Puregene 

DNA purification system (Gentra Systems, Inc., Minneapolis, MN). DNA was quantitated 

spectrophotometrically (A260) and qPCR reactions carried out as previously described 

without prior knowledge of sample identity or treatment (MTX, PBS).

Flow cytometry

Flow cytometric analysis of differentiating hESCs in stromal cell co-culture was performed 

as previously described 17,41. To assess engraftment of hESC-derived progeny and gene 

marking in vivo, blood, bone marrow and spleen were harvested from mice after euthanasia 

and treated with ammonium chloride solution (Stem Cell Technologies). Liver was treated 

with collagenase mixture (1 mg/mL collagenase IV, 50 µg/mL DNase I (Gibco, Invitrogen), 

10% FBS in RPMI). Cells were resuspended in Iscove’s modified DMEM plus 5% FBS 

(I-5) medium and layered onto Ficoll Paque Plus (GE Healthcare Biosciences AB, Uppsala, 

Sweden). After centrifugation, the ficoll layer was collected. Blood, bone marrow and liver 

cells were suspended in I-5 medium, filtered, collected and incubated in blocking solution 

(5% human AB serum [Valley Biomedical, Winchester, VA] 5% FBS in DPBS) for 30 

minutes on ice. Cells stained with PE-conjugated TRA-1–85 (R&D systems, Minneapolis, 

MN) were also treated with 4 µg of human IgG1 protein (R&D Systems) for 15 minutes at 

room temperature. Cells were suspended in flow cytometry buffer (0.1% NaN3, 2% FBS in 

DPBS) and stained with pairs of APC- and PE- conjugated mouse anti-human antibodies for 

20 minutes at 4°C in the dark. Cells were suspended in buffer plus 2 µg/mL 7-amino 

actinomycin D (7-AAD, Sigma-Aldrich).

All flow cytometry data were collected using a FACSCalibur Instrument with CellQuest Pro 

software interface (BD Biosciences, San Jose, CA). Depending on the cell or tissue sample, 

5,000–20,000 live events (7-AAD negative gate) were collected for analysis. Data were 

analyzed using FlowJo software, version 8.6.1. (Tree Star, Inc., Ashland, OR). All 

antibodies were obtained from BD Pharmingen (San Diego, CA) except PE-conjugated 

Flk-1, TRA-1–85 (both from R&D Systems) and CD235A (GlyA) (from Becton Coulter 

[Fullerton, CA]).

Statistical analysis

To test for differences among treatment groups or gene-modified cell populations, data were 

evaluated using an unpaired, two-tailed student t-test in Microsoft Excel, Version 11.5. 

Differences were considered statistically significant if p values were less than 0.05.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. GFP expression in DHFR-GFP transduced hESCs
(a) DHFR-GFP lentivirus vector schematics. The human EF1-α promoter regulates 

transcription of Tyr22-DHFR and/or GFP, along with an internal ribosomal entry site (ires) 

between the two coding sequences (EFDIG) or as a genetic fusion (DL2G). In a two-

promoter configuration (REDPeG), EF1-α regulates Tyr22-DHFR and the human PGK 

promoter regulates GFP expression. Other features (described in Materials and Methods) 

include the HIV-1 R, U5, self-inactivating U3, and rev response element (rre), and the post-

transcriptional regulatory element from the woodchuck hepatitis virus ([w2]wpre). (b) GFP 
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expression was evaluated by fluorescence microscopy of the lentivirus transduced hES cell 

line H9 4 days after transduction. All images (10–20× objective) were captured at the same 

exposure time and modified identically in Photoshop CS2 version 9 (Brightness altered to 

−60, contrast +35 then applied smart sharpen). (c) Flow cytometric evaluation of GFP 

expression at 4 weeks. Transduced cells were stained with PE-conjugated anti-SSEA-4 to 

assess co-expression of GFP and surface expression of SSEA-4 as a marker for 

undifferentiated hESCs.
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Figure 2. MTXr-teratoma formation during methotrexate administration
Four million undifferentiated EFDIG- and CSIIEG-hESCs were injected into the left and 

right hind limbs of DHFR-BM transplanted NSG mice (n=8), respectively. One month after 

hESC injection, mice were treated 5–7 days/wk with PBS or MTX for one month and 

euthanized at day 60 post hESC-transplantation. (a) Endpoint teratoma diameter in PBS and 

MTX treated mice. CSIIEG teratomas trended toward growth inhibition in the presence of 

MTX. Teratomas were also evaluated for GFP marking by qPCR (bottom). The fold change 

in GFP copy number was calculated by dividing the mean number of copies per genome 
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equivalent in the teratomas divided by the copies per genome equivalent in the input 

undifferentiated cell populations (b) Representative teratoma sections were stained with 

hematoxylin and eosin (H&E) to show the presence of germ layer cell derivatives including: 

Mixed (bone, pigmented epithelium, smooth muscle), Ectoderm, Mesoderm (cartilage), and 

Endoderm (gut-like structure surrounded by pigmented epithelium). Frozen teratoma 

sections were stained with DAPI and anti-GFP to detect transgene expression after multi-

lineage differentiation. Left to Right: PBS/CSIIEG, PBS/EFDIG, MTX/CSIIEG, MTX/

EFDIG, all stained with rabbit anti-GFP primary and FITC conjugated donkey anti-rabbit 

secondary antibodies.
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Figure 3. Hemato-endothelial differentiation of DHFR-GFP hESCs in M210 stromal cell co-
culture
Flow cytometric analysis of gene-modified hESCs stimulated to differentiate by co-culture 

with M2-10B4 stromal cells was performed weekly for 5 weeks to assess differentiation 

potential and differences among cell populations. (a) Total GFP and (b) CD34 expression 

during differentiation. (c) Co-expression of CD34 and CD31, and (d) the pan-hematopoietic 

marker CD45. Results from each time point represent the mean +/− S.D. from 3 to 4 

separate experiments. (e) Co-expression of CD34 and GFP in gene-modified cells after 21 
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days in M2-10B4 co-culture. Cell populations as indicated: GFP negative isotype control, 

CD34-APC stained H9, CSIIEG, REDPEG, DL2G, and EFDIG hESC-derived 

hematopoietic progeny. For flow cytometric analysis, gates were determined by isotype 

controls for each gene-modified cell population.
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Figure 4. MTXr-hematopoietic CFC from hESC-derived hematopoietic progenitors
hESCs were induced to differentiate by co-culture with M2-10B4 stromal cells. At day 18 of 

co-culture, populations were evaluated for colony forming cells (CFC) using no drug (−/−), 

30 nM methotrexate 31 (+/−) or both methotrexate and 5 µM dipyridamole (+/+) (a). The 

numbers represent the mean of three or four replicates per group +/− S.D. Statistical analysis 

was performed to determine whether colony formation was reduced in the presence of 

methotrexate (MTX) and dipyridamole (DP). CSIIEG-CFC were significantly inhibited in 

the presence of MTX/DP, compared to untreated CSIIEG-CFC (p=0.028). In (b), drug 
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resistant colonies derived from DL2G expressing cells that formed in the presence and 

absence of selective conditions are shown (10× objective). Fluorescent images were 

captured at the same exposure (9 seconds) and then modified identically in Photoshop CS2 

version 9 (brightness: −60, contrast: +35, smart sharpen).
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Figure 5. Detection of hESC-derived progeny in the peripheral blood of recipient mice
After 10 days in co-culture with M210 stromal cells, EFDIG-hESC-derived hematopoietic 

cells were infused into DHFR-BMT mice (High dose MTX group [HDM]) or non-irradiated 

mice (low dose MTX [LDM], PBS groups). One week after transplantation, mice were 

treated daily with PBS, 0.5 mg/kg (LDM) or 2 mg/kg (HDM) MTX for 4 weeks. GFP 

marking and circulation of human cells (as detected by staining with TRA-1–85 antibody) in 

the peripheral blood was evaluated by flow cytometry at 6 (a) and 12 (b) weeks post cell 

transplantation. Mean percentages for each group are shown (bars). GFP percentages were 

also normalized to the total GFP marking (20%) associated with the input EFDIG hESC-

differentiated population. Levels of statistical significance: * p<0.05, ** p< 0.005, *** 

p<0.0005
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Figure 6. Long-term engraftment of hESC-derived hematopoietic cells in mouse bone marrow, 
liver and spleen
Animals were evaluated 12–16 weeks after EFDIG-hematopoietic cell transplantation 

(generated during 10 day co-culture with M210 stromal cells) and 8 weeks after withdrawal 

of MTX chemotherapy. Total GFP marking and engrafted cell phenotypes were evaluated 

by flow cytometry in the bone marrow (a), liver (b), and spleen (c) of PBS, LDM and HDM 

treated mice. GFP percentages in the bone marrow were also normalized to the total GFP 

marking (20%) associated with the input EFDIG hESC-differentiated population. GFP 

marking in the bone marrow was evaluated by qPCR for detection of GFP DNA sequences. 

Mean percentages are shown. * p<0.05, ** p< 0.005, *** p<0.0005
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Table 1

MTXr-Tyr22DHFR Enzyme Activity in DHFR-GFP hESC Extracts

−MTX
U/mga

−MTX
p valueb

+MTX
U/mga

+MTX
p valueb

EFDIG-H9 15 ± 3 0.151 15 ±4 0.001

DL2G-H9 12 ± 8 0.988 13 ±7 0.007

CSIIEG-H9 12 ± 2 0

a
Cell lysates from transduced or untransduced H9 cells were assayed for DHFR activity in the presence and absence of 0.25 µM MTX. One unit of 

enzyme activity is defined as 1 nmol/min. Results shown are the mean of three assays ±S.D.

b
Enzyme activity in extracts from EFDIG-H9 cells and DL2G-H9 cells were compared to CSIIEG-H9 cells using an unpaired, two-tailed student’s 

t-test.
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