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Fusion energy is expected as a promising candidate for alternative next generation energy. For fusion
reactor, the plasma facing components (PFCs) are the most critical components to achieve this goal.
PFCs will suffer severe thermal shock due to repective cyclic high heat flux (HHF) loads. This paper
investigates the effects of thermal shock and damage behavior of tungsten armored PFCs under steady,
transient and combined thermal loads. The distribution of stress field is analyzed, and crack initiation
is predicted using the extended finite element method (XFEM). The unique features of thermal-
mechanical behavior of tungsten armored PFCs under simulated service condition are discussed. The
dominant factor of the cracking of the tungsten armor is the brittleness of tungsten below ductile-
to-brittle transition temperature (DBTT). Under the steady loads, the cracking position is apt to near
the interface of tungsten armor and the interlayer, and the threshold of cracking is between 14 MW/
m? and 16 MW/m?2. With 6 MW/m? steady loads, applying 1 ms duration of transient load, the cracking
threshold is between 0.2 GW/m? to 0.4 GW/m?. The depth of cracking increases from 100 um to 500 um
with the transient load increasing from 0.4 GW/m? to 1.0 GW/m?. Researches are useful for the design
and structural optimization of tungsten-armored PFCs, and the long-term stable operation of further
reactor.

In thermonuclear fusion reactor, PFCs are crucial to withstand high temperature plasma irradiation and timely
transfer heat away to protect vacuum chamber walls and internal components. The PFCs are generally composed
of plasma facing materials (PFMs), interlayer and heat sink materials2. With the development of fusion reac-
tors, candidate PFMs have undergone a transition from low-Z carbon-based or beryllium materials to high-Z
tungsten®*. As tungsten has many unique properties such as low sputtering erosion and tritium retention, high
melting point and moderate thermal expansion’, it has been choosing as the main divertor PFMs in ITER and has
been foreseen as the most suitable candidate for the first wall in demonstration fusion reactor (DEMO) or future
fusion reactors®®.

In addition, tungsten monoblocks in the divertor vertical target are designed as the high heat flux handling
unit where heat loads are maximal®. Therefore, the study on the thermal shock performance and damage behav-
ior of tungsten divertor monoblock is of great significance to the safe operation of the reactor. This paper aims
to systematically investigate the damage behavior of ITER tungsten divertor monoblock under steady state and
ELM-like thermal shock loads, mainly including the plastic deformation and cracking behavior of tungsten
armor.

FE Model

Geometry, FE mesh and materials. We design the monoblock and build the model as shown in Fig. 131912,
Both width and height of the selected monoblock are 28 mm, the axial length is 12 mm and the armor thickness is 6 mm.
The CuCrZr alloy has been chosen as the heat sink material because of its good irradiation resistance and high thermal
conductivity, and its tube diameters are 12/15mm (ID/OD). The oxygen free high conductivity copper (OFHC-Cu)
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Figure 1. Sketch map of the model size and the FE mesh of the model.

Temperature Thermal conductivity | Coefficient of thermal | Young’s modulus | Poisson’s Yield strength | Tangent modulus
Material (°C) (W-m~L.K™) expansion (10°K~!) | (GPa) ratio (MPa) (GPa)
20 173 4.5 398 0.28 1360 1.3
200 156 — 396 — 1154 —
500 133 4.7 390 — 854 1
w 800 118 — 379 0.29 604 —
1000 111 5.1 368 — 465 0.8
1500 101 5.6 333 0.30 204 —
1800 99 5.8 306 — 103 —
20 403 16.7 125 69 1.5
OFHC.-Cu 200 392 17.2 115 034 60 1.3
400 379 17.8 100 48 0.9
700 360 18.9 70 30 0.6
20 326 16.7 128 0.32 293 0.9
CuCrZr 250 343 17.2 118 0.42 257 0.7
500 348 18.2 103 0.52 195 0.6

Table 1. Thermal physical properties of the selected materials at considered temperature.

with a thickness of 1 mm is selected as an interlayer to reduce the thermal stress caused by the thermal expansion mis-
match of PEMs and heat sink material CuCrZr'*!*. The thermal physical properties of the selected materials are listed
in Table 1 which is created based on ITER material properties handbook!® and related documents'®-1%,

The FE package ABAQUS' was employed for the simulations using quadratic brick elements of 20 nodes.
According to the symmetry of the sample, the 1/2 simplified FE model was used, as shown in Fig. 1, with a total
of 61,152 elements.

Loads and boundary conditions.  The ITER-relevant cooling condition is selected: coolant water for 10 m/s,
4.0 MPa at 100°C and perfect thermal contacts at the interfaces were assumed?. In the analysis of FE, different ther-
mal loads were uniformly applied to the top surface of the monoblock and 100 °C was set as the initial temperature.
Stefan-Boltzmann’s law was adopted to calculate the radiation loss, and emissivity of loaded surface was defined
as 0.3'. The coefficient of convection heat transfer (CCHF) between the cooling tube and the coolant water was
110kW/(m*K), which was calculated using the well-known Dittus-Boelter formula?!. Finally, symmetric bound-
ary conditions were applied based on simplification, and a pressure of 4.0 MPa was applied to the inner surface of
cooling tube to simulate the pressure caused by cooling water. The boundary conditions were as follows: mechanical
constraint in all directions at bottom face of W monoblock, the side surface of interlayer and tungsten armor is free;
the thermal conduction between a heated tungsten armor and the neighbor armor is negligible; coolant temperature
at 100°C. It should be noted that all components are bonded to each other perfectly for simplifying the FE analysis.

Steady Heat Flux Simulation

During the operation of ITER, high-temperature plasma will deposit energy on the surface of divertor target
through thermal radiation and particle collision. During some transient event (up to 105s), steady load can reach
to 10~20 MW/m? at tungsten monoblock in the vertical target®. To study the real working conditions of the mon-
oblock in the fusion device, heat flux loads which range from 6 MW/m? to 20 MW/m? were applied on the top
surface of tungsten monoblock.
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Figure 2. Temperature contour plots under different steady state loads.
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Figure 3. The highest temperature values at different steady state loads.

Thermal and mechanical simulations. The temperature distribution of the monoblock under different
steady loads is illustrated in Fig. 2. With different heat flux loads, the temperature at the bottom of the sample is
relatively low, less than 200 °C, and the highest temperature appears at the top surface of the monoblock. Figure 3
shows the highest temperature at different heat flux, and a nearly linear relationship between different heat flux
densities and the highest temperatures they produced is demonstrated.

The stress distribution of monoblock at different steady state loads is shown in Fig. 4. Because of the gradual
accumulation of heat, as the heat flux density increases from 6 MW/m? to 12 MW/m?, thermal stress of the top
surface of tungsten armor increases gradually. When the heat flux is higher than 12 MW/m?, the thermal stress
exceeds the yield strength, causing plastic deformation and the value of stress gradually decreases. The position
with highest stress at different steady loads is always near the junction between tungsten armor and interlayer.

The Mises yield criterion can be used to determine whether or not the material yields which is resulted from
plastic deformation?.
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Where o, is Mises equivalent stress, o, is the first principal stress, o, is the second principal stress, o5 is the third
principal stress, o, is the Yield Strength. Under different heat flux loads, the o, corresponding to the temperature
distribution on the path A-M (Fig. 1) and the o, on the path A-M are represented in one figure, as shown in
Fig. 5. 12 MW/m? is the threshold of plastic deformation. In the range of 6-10 MW/m?, os is always greater than
oe, which means the material is not plastically deformed. When the steady state load is greater than 12 MW/m?,
plastic deformation occurs on the surface of the armor. Figure 6 shows the thickness of plastic deformation under
loads between 12 MW/m? and 20 MW/m?.
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Figure 4. Von Mises equivalent stress contour plots under different steady state loads.
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Figure 5. oe and os on the path A-M under different steady-state heat flux loads: (a) 6-12 MW/m?; (b)
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Figure 6. Plastic deformation thickness of tungsten armor under different steady state loads.
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Figure 7. XFEM simulations for different steady-state loads. The value of STATUSXFEM is 1.0 characterizes an
opened crack. The values smaller than 1.0 present that cracks require additional energy to be opened. The heat
sink layer and the interlayer are not shown in the plots.
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Figure 8. Crack initiation time of 16 MW/m?. Temperature contour plots (left) and maximum principal stress
contour plots (right).

XFEM simulations. XFEM, an extension of the conventional finite element method, is used to simulate
crack initiation and propagation®. The criterion of maximum principal stress (MPS) and energy-based damage
evolution law are used. Once the principal stress exceeds the maximum allowable value, cracks will be initiated.
Considering that the formation of cracks is mainly due to the brittleness of tungsten below DBTT?, MPS is
defined as 700-900 MPa according to the corresponding temperature (400-700 °C), which is estimated from the
value of maximum tensile strength of tungsten in the temperature near DBT'T. In the process of crack propaga-
tion, a certain amount of energy is released. According to the basic hypothesis of energy release rate criterion,
when the maximum energy release rate reaches a critical value, the cracks become unstable and begin to expand.
The critical energy release rate is defined as 0.25 mJ/mm?, referenced the researches performed by Gludovatz et
al.».

Cracking under different steady loads is shown in Fig. 7, when steady load value is greater than or equal to14
MW/m? cracking is predicted. Therefore, the threshold of cracking under steady state load is between 14 MW/m?
and 16 MW/m?. The thermal expansion mismatch of tungsten armor and interlayer causes the stress concentra-
tion at the junction of those two layers. If the stress exceeds tensile strength of tungsten it may be cracked. Taking
the 16 MW/m? crack initiation time as an example (Fig. 8), the maximum value of the principal stress exceeds the
corresponding MPS (700 MPa), crack initiations are predicted.

Transient Heat Flux Simulation

During the operation of fusion reactor, The PFCs targets suffers not only steady state thermal loads but strong
transient loads such as edge localized modes (ELMs, about 1 MJ m~2) and disruptions (several 10 MJ m~2)%. In
this study, a transient heat flux was applied to the top surface of tungsten while sample was under different steady
loads conditions to simulate the damage on the monoblock caused by ELM-like transient thermal shock loads.
Then all thermal loads are removed and the monoblock is cooling down. The boundary conditions were the same
as in the steady simulation.

Thermal and mechanical simulations. Figure 9 shows the temperature distribution with different
transient loads of 1.0 ms under steady loads of 6 MW/m? and 12 MW/m? (0 GW/m? means no transient load).
Applying different transient loads, temperature changing on the path A-M demonstrates the effects of transient
load on the tungsten armor. The impacting depth of different transient loads with loading times of 0.2~1.0ms
on tungsten armor is 0.4~0.8 mm (Fig. 10). A remarkable fact is that when the pulse duration is constant, the
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Figure 9. Temperature contour plots after 1.0 ms of different transient thermal shocks is applied on the basis of
steady-state load. Steady state load is 6 MW/m? (above). Steady state load is 12 MW/m? (below).
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Figure 10. Temperature distribution on the path A-M after the application of transient loads for 0.2 ms, 0.6 ms
and 1.0 ms. Steady state load is 6 MW/m? (above). Steady state load is 12 MW/m? (below).

impacting depth of different transient loads on tungsten armor is almost the same, in other words, the impacting
depth on tungsten armor only increases as the pulse duration increases. In addition, the greater the load value is,
the higher the temperature gradient on the path is.

It should be noted that if the transient load and the pulse duration are fixed, the increase of the surface tem-
perature of tungsten armor would be a fixed value which is unrelated to the steady state load value (base temper-
ature). When transient load is 1 GW/m? for 1 ms, the temperature increasing of the top surface of tungsten armor
is about 1950 °C. Therefore, to avoid the surface temperature of tungsten armor reaching melting point (3420 °C),
the surface temperature of tungsten armor under steady load should be lower than 1470°C. In other words, steady
load should lower than 14 MW/m?

The effect of different transient loads combined with steady loads of 6 and 12 MW/m? on the plastic deforma-
tion of the tungsten armor is represented in Fig. 11. Under the base condition of steady load of 6 MW/m?, when
the pulse duration of transient load is 0.2 ms and the transient load value is 0.6 GW/m? or 1.0 GW/m?, the surface
of the tungsten armor is plastically deformed. When the pulse duration of transient load is 0.6 ms or 1.0 ms and
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Figure 11. Equivalent plastic strain on the path A-M after the application of transient loads for 0.2 ms, 0.6 ms
and 1.0 ms. Steady-state load is 6 MW/m? (left). Steady-state load is 12 MW/m? (right).
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Figure 12. The increase of the A point plastic strain during the application of transient load.

6 MW/m? 12MW/m?
+0.2GW/m? | +0.6GW/m? | +1.0GW/m? | +0.2GW/m? | +0.6 GW/m? | +1.0 GW/m?
00ms |N N N N N N
02ms | N N N N Y Y
0.6ms |N Y Y N Y Y
1.0ms | N Y Y N Y Y
Table 2.

The situation of crack initiation with different transient loads applied under steady-state loads.

the transient load value is 0.2 GW/m?, 0.6 GW/m? or 1.0 GW/m?, the surface of the tungsten armor is plastically
deformed. Under the steady load of 12 MW/m?, the top surface of tungsten armor has undergone plastic defor-
mation. As the transient load and the pulse duration increase, the thickness and the degree of plastic deformation
increase.

XFEM simulations.

Table 2 shows the situation of cracking within different transient loads combined steady
loads of 6 and 12 MW/m?. “Y” represents that the cracking is predicted and “N” is not. The dash line in the table
represents the threshold of the load value and the pulse duration of cracking.

In process of the transient load thermal shock, the tungsten surface temperature rises rapidly and irreversible
expansion occurs. The plastic strain increasing of the “A” point (cracking area) during the application of transient
load of 1 GW/m? for 1 ms combined with steady load of 6 MW/m? is shown in Fig. 12. And Fig. 13 shows the
changes of temperature and the maximum principal stress of “A” point during cooling period. It can be found
that the principal stress has already exceeded the critical MPS (700 MPa) before the temperature drop down to
DBTT (~700°C). This result validates the illustration of the experiment on cracking of tungsten under single
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Figure 15. The depth of crack in different transient loads for 1 ms under steady state load of 6 MW/m?>

pulse thermal shock loads?*. During the cooling period, the plastic deformation remains in the load application
area, which hinders the contraction of the elastic deformation and generates tensile stress. When the temperature
drops below DBTT, tungsten is in brittle state. If the stress exceeds the tensile strength, cracking will occur.

Applying different transient loads for 1 ms under steady load of 6 MW/m?, cracks around the middle area of
top surface of monoblocks parallel to the coolant tube axis are show in Fig. 14. When the pulse duration of tran-
sient loads is fixed, the higher the transient load applied, the larger the plastic strain on the path A-M will be, and
the deeper the cracking depth will be. The cracking depth increases from 100 um to 500 um when transient loads
increases from 0.4 GW/m? to 1.0 GW/m?, as shown in Fig. 15.

Conclusions and Discussions
The damage behavior of ITER tungsten divertor monoblock under steady and ELMs-like transient thermal shock
loads is investigated using the method of FEM and XFEM. The main results are summarized as follows:

Under steady loads, Plastic deformation of the top surface of tungsten armor is found at 12 MW/m? and the
threshold of tungsten armor crack initiation is between 14 MW/m? and 16 MW/m?, the thermal expansion mis-
match between tungsten armor and interlayer causes stress concentration which is the driving force for cracking.
The cracking position is near the interface of tungsten armor and interlayer. In fact, there is a complex interface
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between tungsten and the interlayer, therefore, it should be noted that the results at the interface between tung-
sten and the interlayer are indicative and need to be verified through further experiments. This result reflects
the problem that stress concentration caused by the mismatch of thermal expansion coeflicient should be noted.

During the cooling stage, tensile stress caused by plastic deformation is the driving force for cracking.
However, under steady loads, the plastic deformation of the surface is insufficient to cause cracking. Based on
steady loads, applying a transient load, the amount of plastic deformation on the surface of tungsten armor will
increase. When the plastic strain increases to a certain extent, cracking will occur on the top surface of the tung-
sten. And the larger the plastic strain is, and the greater the depth of cracking will be.

The crack caused by a single pulse is mainly due to the brittleness of tungsten below the DBTT. When the base
temperature is set above a certain threshold (DBTT), both the simulation®?” and experiment?*?® results implied
that there is no crack on tungsten with single pulse loading. Under this circumstance, the fatigue failure caused by
the cyclic load becomes the main factor of cracking and the numerical simulation of the fatigue failure behavior
of tungsten monoblock under cyclic loading should be considered.
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