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Abstract
Animals and humans rapidly detect specific features of sounds, but the time courses of the underlying neural
response for different stimulus categories is largely unknown. Furthermore, the intricate functional organization of
auditory information processing pathways is poorly understood. Here, we computed neuronal response latencies
from simultaneously recorded spike trains and local field potentials (LFPs) along the first two stages of cortical
sound processing, primary auditory cortex (A1) and lateral belt (LB), of awake, behaving macaques. Two types of
response latencies were measured for spike trains as well as LFPs: (1) onset latency, time-locked to onset of external
auditory stimuli; and (2) selection latency, time taken from stimulus onset to a selective response to a specific stimulus
category. Trial-by-trial LFP onset latencies predominantly reflecting synaptic input arrival typically preceded spike
onset latencies, assumed to be representative of neuronal output indicating that both areas may receive input
environmental signals and relay the information to the next stage. In A1, simple sounds, such as pure tones (PTs),
yielded shorter spike onset latencies compared to complex sounds, such as monkey vocalizations (“Coos”). This
trend was reversed in LB, indicating a hierarchical functional organization of auditory cortex in the macaque. LFP
selection latencies in A1 were always shorter than those in LB for both PT and Coo reflecting the serial arrival of
stimulus-specific information in these areas. Thus, chronometry on spike-LFP signals revealed some of the
effective neural circuitry underlying complex sound discrimination.
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Significance Statement

Primary auditory cortex (A1) and lateral belt (LB) areas are key subdivisions of auditory cortex. A1 plays
crucial role in processing of simple stimuli such as pure tones (PTs), whereas LB for processing of complex
sounds. Both areas receive direct inputs from medial geniculate nucleus (MGN) and have recurrent
connections. Nonetheless, the functional connectivity patterns between these subdivisions while process-
ing different sound categories are poorly understood. Using simultaneous spike-LFP recordings, our study
reveals that information about the presence of stimuli in the environment arrives concurrently in A1 and LB;
however, the information related to neuronal discrimination may arrive at different times, indicating that both
parallel and serial information transmission pathways exist and their presence is guided by the context of
the task.
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Introduction
Simple auditory stimuli such as pure tones (PTs) are

represented as tonotopic maps in primary auditory cortex
(A1; Hind, 1953; Merzenich et al., 1976; Romani et al.,
1982; Morel et al., 1993), whereas belt areas, lateral and
medial to the core, while still showing cochleotopic orga-
nization, process more complex features of sounds (Mus-
cari et al., 1990; Rauschecker et al., 1995; Tian and
Rauschecker, 2004; Recanzone, 2008; Kuśmierek and
Rauschecker, 2009; Niwa et al., 2013; Kikuchi et al.,
2014). The core is primarily defined based on the thalamic
connections from the ventral division of the medial genic-
ulate nucleus (MGN) and reciprocally connected with the
adjacent subdivisions of the belt (Hackett, 2011; Scott
et al., 2015). Thus, the functional organization of complex
sounds in core and belt can be hypothesized to follow a
serial processing stream, from core to belt, somewhat
analogous to V1 and the V2/V4/MT areas of the visual
system (Tian et al., 2013). At the same time, direct inputs
from the MGN to these brain areas point to parallel pro-
cessing pathways (Rauschecker et al., 1997), which con-
tinue further downstream (Sheline et al., 2010). Finally,
demands of a task, such as sound localization, categori-
zation, and discrimination, can also govern the serial ver-
sus parallel characterization of processing (Ahveninen
et al., 2006, 2013; Bizley and Cohen, 2013).

Chronometry of input and output related processing
events in candidate brain areas is a useful technique for
functional network identification (Kreiman et al., 2006;
Nielsen et al., 2006; Monosov et al., 2008; Banerjee et al.,
2010, 2012). While neuronal spike discharge is used as a
measure of output processing in a putative brain area
(Krüger and Becker, 1991; Middlebrooks et al., 1994;
Nawrot et al., 2003; Buzsáki et al., 2012), local field po-
tentials (LFPs) may carry information about the inputs
coupled with local neuronal processing that need not be
input specific, in a particular brain area (Gusnard et al.,
2001; Nielsen et al., 2006; Buzsáki et al., 2012) and by
extending this principle to multiple brain areas, aspects of

the functional circuitry underlying behavior can be re-
vealed (Hung et al., 2005; Banerjee et al., 2012; Fig. 1).
Conceptually, shorter latencies in one area compared to
another reflect faster processing and greater relevance of
the former brain area and thus indicate more efficient neu-
ronal coding (Gawne et al., 1996; Van Rullen and Thorpe,
2001; Bendor and Wang, 2008). Additionally, the timing of
input versus output of information processing in an area
can be used to infer the role of this area in processing of
a particular type of signal as well as the functional path-
ways involved in processing of the signal (DiCarlo and
Maunsell, 2005).

Spike trains and LFPs in auditory core exhibit compa-
rable frequency tuning (Kayser et al., 2007). On the other
hand, there is evidence suggesting that the cochleotopic
organization of belt areas is less precise, as observed in
spike-LFP responses (Guo et al., 2012). Hence, identifying
the temporal markers of inputs and outputs involved in
information processing in auditory core and belt across
single units and populations can help reveal the functional
specificity of the respective areas. Extending this line of
reasoning, Camalier and colleagues computed neuronal
onset latencies at different locations along the auditory
cortical pathways and reported that dorsal stream loca-
tions have shorter latencies, whereas the ventral locations
exhibit increasingly longer latencies as one proceeds from
lower to higher-order processing (Camalier et al., 2012).
This result conforms with human studies using magneto-
encephalography and transcranial magnetic stimulation
(Ahveninen et al., 2006, 2013) as well as with other monkey
studies (Scott et al., 2011; Kuśmierek and Rauschecker,
2014). Kikuchi et al. (2014) reported that PT-related spike
onset latencies were longer in lateral belt (LB) than in audi-
tory core, which is consistent with the notion that auditory
core is at a lower hierarchical level within cortex than LB.
However, do the two areas receive information about stim-
ulus presence concurrently? Furthermore, are the finer fea-
tures that allow discrimination of one signal from another
represented in the neural codes hierarchically?

To address these questions, we recorded spike and
LFP responses simultaneously from A1 and LB of two
adult macaques while they performed an auditory Go/
No-go discrimination task. We computed trial-by-trial on-
set Latency, time locked to stimulus onset, and selection
latency, the earliest time at which neural responses be-
tween PTs and Coos significantly differ. Computing these
measures in different subdivisions of auditory cortex, we
could tease out the functional network mechanisms in-
volved in sound processing and discrimination.

Materials and Methods
Animal preparations and behavioral task

Two adult male rhesus macaques (Macaca mulatta,
weighing 7.5–11.5 kg) participated in this study. Animal
care and all procedures were conducted in accordance
with the National Institutes of Health guidelines and were
approved by the Georgetown University Animal Care and
Use Committee. Animals were prepared for chronic awake
electrophysiological recordings under aseptic conditions.
Each animal was anesthetized and a head post and re-
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cording chamber were attached to the dorsal surface of
the skull with a guidance of MRI obtained with a 3T
scanner (0.5 mm voxel size, Siemens Tim Trio). The re-
cording sites in this study cover the auditory core (A1) and
the auditory LB region [the middle lateral (ML) and antero-
lateral (AL)]. We followed identical methods for assigning the
recording sites to either A1 or LB as described in Kikuchi
et al. (2014).

Electrophysiological experiments were conducted in a
single-walled acoustic chamber (Industrial Acoustics Com-
pany) installed with foam isolation elements (AAP3, Acous-
tical Solutions). The animal sat in a monkey chair with its
head fixed, facing a speaker located one meter directly in
front of it in a darkened room. The animal was trained to
perform an auditory discrimination task, in which a single
positive stimulus (S�), consisting of a 300-ms pink-noise
burst (PNB), was pseudo-randomly interspersed among
negative stimuli (S-), consisting of all other stimuli, for

20% of the trials. The animal initiated a trial by holding a
lever for 500 ms, triggering the presentation of one of the
acoustic stimuli, was required to release the lever within a
500-ms response window after the offset of the S� to get
a water reward (�0.2 ml) that followed by a 500-ms
intertrial interval (ITI). Lever release in response to S-
prolonged the 500-ms ITI by 1 s (timeout). The average
interstimulus interval was 2.3 � 0.45 s (mean � SD). The
detailed procedures for the animal preparations, behav-
ioral task, and data collection were the same as those
described in Kikuchi et al. (2014).

Sound preparation and stimuli
The sound wave form signals were sent from the

CORTEX dual-computer system through a 12-bit D/A con-
verter (CIO-DAS1602/12, ComputerBoards), and then
amplified, attenuated, and delivered through a free-field
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Figure 1. A, Simultaneous recordings from two arbitrary brain areas 1 and 2. On the right, we illustrate the definition of onset latencies
(OLs) and selection latencies (SLs) by plotting the spike response (left panel) and LFP (right panel) from each recording site. OL is
computed using an event as model 1 in the AccLLR framework (Banerjee et al., 2010) and prestimulus baseline as model 2 (see Eq.
1). SL is computed using PT stimulus as model 1 and Coo as model 2. B, The effective network architectures inferred from different
OL values. The solid lines reflect the effective network connections, whereas the dotted lines indicate a less likely connection that can
be inferred from latency measures.
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loudspeaker (Reveal 6, Tannoy) with a flat (�3 dB) frequency
response from 63 Hz to 51 kHz.

The monkey vocalizations (“Coo” calls) were recorded
in Morgan Island using a directional microphone (ME66 with
K6 powering module, Sennheiser, frequency response at
40–20,000 Hz � 2.5 dB) with a solid-state portable recorder
(PMD670, Marantz Professional) at a sampling rate of 48 kHz
(Laboratory of Neuropsychology, National Institute of
Mental Health). PTs and PNBs were created using Adobe
Audition 1.5 at a sampling rate of 48 kHz (32 bit). All
stimuli had a 300-ms fixed duration, including the monkey
vocalizations, gated with a 5-ms rise/fall linear ramp. The
stimuli were normalized across all stimuli by recording the
stimuli played through the stimulus presentation system
and filtering the recorded signal on the basis of Japanese
macaque audiograms (Jackson et al., 1999), and using
the maximum root mean square (RMS) amplitude during a
sliding window of 200-ms duration and presented at
�70-dB SPL. Details of the sound equalization method
were described by Kuśmierek and Rauschecker (2009).

The positive stimulus was a pink noise, a response to
which led to a reward, whereas the negative stimuli were
made up of both PTs and Coo vocalizations. A stimulus
set comprised of 10 PTs and 10 pitch-matched Coos, in
which the fundamental frequency (F0) of the Coo was
match to the corresponding frequency of PT using the
pitch-shift function in Adobe Audition 1.5 (Fig. 2). The
frequency of PTs and the F0 of the Coos ranged from G3
(196 Hz) to C#8 (4435 Hz) in six semitone steps. In each
recording session, the stimuli were presented in pseudo-
random order with at least 15 trials per stimulus.

Data collection and preprocessing
Multiple guide tubes carrying up to 4 tungsten micro-

electrodes (0.5–3.0 M�, epoxylite insulation, FHC) was
lowered into the target cortical sites identified on the MRI
scans. Each electrode was independently advanced using
a remote-controlled hydraulic, four-channel customized
multidrive system (NAN-SYS-4, Plexon. Inc.). For the
spike trains, raw signals were filtered with a bandpass of
150–8000 Hz, further amplified, and then digitized at 40
kHz. For the LFP, the raw voltage traces were filtered
between 0.7 and 500 Hz, amplified, and digitized at 1 kHz.
For further analyses, the LFP data were low-pass filtered
at 100 Hz. Time stamps for stimulus presentation timings,
behavioral response, and reward delivery were sent through

DOS-CORTEX dual computer system (CIO-DAS1602/12,
CIO-DIO24, ComputerBoards). Spikes were sorted by real-
time acquisition programs using template matching and
Principal Component Analysis (PCA) methods (RASPU-
TIN, Plexon). We focused on trials in which simultaneous
spike-LFP recordings were obtained from both monkeys
in both core and LB areas. Overall, we accumulated data
from 29 sessions in Monkey1 and 27 sessions from Mon-
key2, for a total of 56 sessions, where a session was
defined as a group of trials for which we obtained simul-
taneous spike train recordings from one neuron in A1 and
one in LB. Two sessions may have different single cells
(spike-sorted) but the same LFP representation. We ag-
gregated all 23 fundamental frequencies presented to the
monkeys under a single category called PT trials. Simi-
larly, all F0-matched monkey calls were categorized as
Coos. This enhanced the statistical power of our analyti-
cal framework but did not adversely affect the main goals
of the study. Hence, to increase the statistical power of
our analysis, we chose to categorize all PT trials as one
block and the F0-matched Coo trials as a different block.
Firing rates reported in Figure 3 were computed from
binary spike rasters by applying Gaussian smoothing with
a 10-ms window on the averaged peristimulus histogram
(PSTH) with a bin size of 1 ms. The mean evoked LFP
wave form was calculated by averaging LFPs across tri-
als.

Trial-averaged latency analysis
Histograms of binary spiking events were computed

using 1-ms bins and were convolved with growth-decay
functions (Thompson et al., 1996; Monosov et al., 2008) to
compute continuous spike density functions (SDFs). Time
constants for growth phase, �g � 1ms and for decay
phase, �d � 20ms were used to compute the spike density
fuctions following Thompson et al. (1996). A ms-by-ms t
test was applied to the two SDFs either within different
temporal segments of the same trial (for onset) or be-
tween trials from different conditions (for discrimination)
to obtain the onset and selection latencies, respectively,
over an entire session (Fig. 4). As LFPs are continuous
signals, the raw LFP traces (band-passed between 0 and
200 Hz) were used to compute onset and selection laten-
cies. Pairwise Wilcoxon rank-sum tests were performed
to establish significant effects. We report the statistical
analysis performed on data pooled from both monkeys
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Figure 2. Experimental design, Go/No-go task. A, Monkey waits during a rest period with hands on a lever and attends to the stimuli
(PT, Coo, or pink noise; presentation time, 300 ms). To obtain a water reward, the monkey must release the lever when pink noise
is presented. The next trial starts 600 ms after the previous stimulus onset. B, The spectrogram (time, frequency, and power) of PT
and Coo stimuli. The frequency of PTs matches the fundamental frequency of the Coo.
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and set a threshold of p � 0.01 for estimating signifi-
cance. We set the threshold to this slightly conservative
value since there were a large number of trials in each
session that were available for the trial-by-trial analysis
(see below).

Trial-by-trial AccLLR analysis
Spike trains and LFPs follow different statistical prop-

erties and hence the estimation of single-trial latencies
from these two signals requires a unified framework
(Banerjee et al., 2010, 2012). AccLLR addresses this issue
and computes spike-LFP latencies trial-by-trial (Fig. 5).
AccLLR is a model-based framework that requires two
competing models of observations. We have used time-
varying firing rate models for spiking (inhomogeneous
Poisson process) and time-varying continuous means and
standard deviations (Gaussian process) for LFP signals.
For further discussion on different kinds of models, see
Banerjee et al. (2010, 2012). Once the model parameters
(time-dependent firing rate for spikes and mean and stan-
dard deviation for LFP) are computed from a set of train-
ing trials, the likelihood that the time series for a test trial
(binary spike trains for spikes, continuous wave form for
LFP) belongs to model 1 or model 2 can be computed.
Finally, raw spike trains and continuous LFPs can be
transformed into the space of accumulated log-likelihood
ratios by first calculating likelihood ratios (LRs)

LR(t) �
P(x(t) Model1)
P(x(t) Model2)

(1)

where x�t� is the data point at which LR is computed. To
compute the LRs, we use the leave-one-out principle. The
trial at which LR was computed does not contribute to
obtaining the model parameters. The rest of the trials are
used in model development. This was done to minimize
the bias of any particular model.

By integrating the natural logarithm of LR�t�over time
we obtain accumulated log-likelihood ratios�AccLLR�t��,
which follow a drift-diffusion process (Gold and Shadlen,
2001; Eckhoff et al., 2008; Banerjee et al., 2010). Thus, the
difference in statistical properties of spike trains and LFPs
become inconsequential in the space of AccLLRs, which
unifies these measurements. Latencies are computed set-
ting bounds specific to a model (1 or 2) of AccLLRs (Fig. 6).

An important aspect of the AccLLR framework is that it
sets the bounds on the accumulation of integrated log-
likelihood ratios, ordinarily done using the sequential prob-
ability ratio test (SPRT; Wald and Wolfowitz, 1947). Under
this framework, accumulated log-likelihood ratios obtained
using Equation 1 reaches a decision threshold after “suf-
ficient” information has been collected. Alternatively, infor-
mation is sufficient to make a decision when a certain
threshold is reached. At an asymptotic limit, a mathematical
relationship connecting the location of bounds of AccLLR
accumulation to false positive and false negative rates can
be expressed (Wald and Wolfowitz, 1947).

For the purpose of decoding latencies within a biolog-
ically relevant time, we chose a data-driven approach to
set the bounds on AccLLR accumulation (Banerjee et al.,
2010). For a given poststimulus event as model 1, there
are two possibilities for detection within a finite time, viz,
whether the event is correctly detected (true positive) or
no detection is possible (false negative). On the other
hand, for the prestimulus baseline (null) as model 2, either
correct (true negatives) or incorrect (false positives) as-
signment is made. For setting a bound for onset detec-
tion, we chose an optimum threshold for which the false
positive rate for null data equals or exceeds the detection
of the true positive rate on event data. For setting bounds
for selection latency detection, we first computed the
AccLLRs for a “null” period (prestimulus baseline), 300 ms
from the start of a trial. There are three potential outcomes:

Figure 3. One representative session from each monkey, where simultaneous recordings from two areas spikes and LFP could be
obtained. First row indicates spike rasters (cyan and magenta dots) and firing rates (blue and red) computed using Gaussian
smoothing (10-ms window) for PT (cyan/blue) and Coo (magenta/red) stimuli. The second row depicts the trial-by-trial LFP waveforms
using the same color code as for spikes. The averaged LFP responses are plotted in blue and red. The spike-LFP responses in two
auditory cortical areas A1 and LB were recorded during the same session in each monkey.
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AccLLR reaches (1) an upper threshold corresponding to hit
rate for model 1; (2) a lower threshold corresponding to hit
rate for model 2; and (3) does not reach either threshold
(“don’t know”). Again, the threshold for detecting model 1
was chosen at an optimal point where the probability of
don’t knows exceeds the hit rate for model 1. Similarly,
the threshold for detecting model 2 was chosen at an
optimal point where the probability of don’t knows ex-
ceeds the hit rate for model 2 (Fig. 6). For further details,
see Banerjee et al. (2012).

While decoding latencies at the level of single trial brings
us close to revealing the true nature of neural processing
occurring at a realistic time scale, nonetheless, the pro-

cess of choosing a threshold is impacted by speed-
accuracy trade off, meaning a lower threshold can make
detection faster while increasing the false positives, and
on the other hand a higher threshold can increase accu-
racy but also increase the onset and selection latencies.
Hence, to check that the consistency of latency results
are extended to situations where accuracy is set at 100%,
we pooled all log-likelihood ratios from all trials within
a session to create a pseudo-trial. Accumulated log-
likelihood ratios were computed on this trial for each
detection context, onset and selection. AccLLR threshold
for onset detection was chosen to be the maximum Ac-
cLLR reached by a null trial. Similarly, AccLLR threshold
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for selection of one category of stimulus (model 1) was
determined by the maximum reached by AccLLR from the
second category (model 2).

Results
Spike-LFP recordings were obtained simultaneously

from two brain areas, A1 in the auditory core and LB. Our
recordings in LB came from two subdivisions, AL and ML
belt areas. Here, we were interested in trials where simul-
taneous spike-LFP recordings were obtained from both

monkeys in both A1 and the LB areas. We accumulated
29 sessions in Monkey1 and 27 sessions in Monkey2,
totaling 56 sessions in which simultaneous spike-LFP
recordings were obtained in A1 and LB. We computed the
onset latency of the neural response of either spike or LFP
using the method of accumulated log-likelihood ratios
(AccLLR; for details, see Banerjee et al., 2010). According
to this framework, for single/multiunit spiking activity,
the baseline can be the background firing rate during the
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prestimulus period. Analogously, in the case of LFP, the
baseline can be the distribution of voltage traces during
the prestimulus period. We computed the timing of infor-

mation processing events from trial-by-trial spike-LFP
data (for further details of the method, see Banerjee et al.,
2010, 2012).
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Figure 6. Decoding performance using AccLLR. A, Setting up the bounds of accumulation is an integral part of AccLLR analysis. The
probability of correct detection varies with where the bound is set for both spikes and LFPs. Furthermore, the onset latency also varies
with the selection of thresholds and, consequently, with the probability of correct detection. Optimal onset latency detection is defined
when the threshold for the false positive rate for prestimulus data (null) equals or exceeds the detection of true positives from event
(poststimulus period) data. For selection latency, there are three possibilities: PT, Coo, or don’t know (baseline). Here, the optimal
threshold was chosen when the probability of correct detection matched the probability of don’t knows from the rest period (null) data.
B, Error rates of decoding from spikes (1st column) and LFPs (2nd column). Error rates for onset (1st row) and selection latency (2nd
row) are also shown in matching color codes. Note that y-axis is error, lower error indicates better performance.
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Monkeys performed the auditory discrimination task in
a Go/No-go setup illustrated in Figure 2. Monkeys were
trained to discriminate different kinds of sounds (all neg-
ative, or No-go cues) from a pink noise stimulus (positive,
or Go cue), which, when responded to, resulted in a water
reward. Onset latency and selection latencies were com-
puted from spike-LFP responses. Onset latency charac-
terized the boundaries of a processing stage required for
encoding the presence of sound in the environment, thereby
a measure of stimulus-related processing. On the other
hand, selection latency characterized the boundaries of a
processing stage involved in coding the presence of a
specific sound in the environment, hence yielding a mea-
sure of stimulus-specific processing. Figure 3 illustrates
an example recording session in each monkey. In Mon-
key1, we observed a transient increase in spike frequency
around the beginning and end of the stimulus in A1,
whereas we saw sustained spiking responses in LB. Si-
multaneously, a difference in LFP waveforms is observed
during stimulus presentation for the two stimulus catego-
ries. In Monkey2, we observed sustained firing in A1
following a transient rise of spike rate at stimulus onset.
Furthermore, LFP differences were observed primarily be-
tween two stimulus categories in a period following the
termination of stimulus presentation. These examples il-
lustrate the diversity and complexity of spike/LFP re-
sponses across different recording sessions in both A1
and LB.

Chronometry on spike-LFP responses
We computed neuronal response latencies for onset

and discrimination using two approaches: a traditional
trial-averaged approach and single-trial AccLLR analysis
(Banerjee et al., 2010) of spike-LFP data. The former gives
a broad summary of the results, and the latter helps in
addressing the between-trial variability in neural signals

and gives a more consistent account of neuronal informa-
tion processing. In the first approach, a ms-by-ms t test
(Monosov et al., 2008) was used to compute trial-averaged
measures of latencies. This approach is a standard one,
used by most investigators. In the second approach, the
AccLLR framework was used to compute trial-by-trial
latencies of onset and selection (Banerjee et al., 2012).
Additionally, we applied ms-by-ms t test on trial-by-trial
AccLLR distributions for each session to compute the trial
averaged latencies. In both cases, simultaneously col-
lected data from two brain regions (A1 and LB) were used.
We report statistics performed over all sessions from two
monkeys in both the text (p values) and Table 1 (mean and
SEM).

Trial-averaged latencies from raw data
Ms-by-ms t test was applied to raw LFP traces and

spike distribution functions (for details, see Materials and
Methods) to extract spike-LFP latencies as followed by an
earlier study (Monosov et al., 2008). Analyses of the com-
bined data from both monkeys are presented in Figure 4A,
Table 1 (results from each monkey are also presented
separately in Fig. 4) for a sample size of 56 sessions (29
for Monkey1 and 27 for Monkey2). Note that we rounded
latencies to whole numbers for reporting group averages
and that p � 0.01 was chosen as the threshold in pairwise
t tests used to evaluate the statistical significance of both
trial-averaged and AccLLR analysis across stimuli cate-
gories and brain areas. For PTs, mean LFP onset latency
in A1 (45 ms) was not significantly different (p � 0.22) from
mean LFP onset latency in LB (57 ms). The same was true
not true for Coo (p � 0.001, mean 29 ms in A1, 45 ms in
LB). However, the stimulus-specific differences between
LFP onset latencies (i.e., between PT and Coo) were
significant in A1 (p � 0.01) but not in LB (p � 0.02).

Table 1. Mean neuronal latencies for onset and selection of auditory stimulus with SEM reported in parentheses

Signal Area
Onset (ms) Selection (ms)

PT (56) Coo (56) PT-Coo (56)
LFP A1 45 (4.0) 29 (1.93) 111 (16.86) Trial averaged

LB 58 (6.76) 45 (5.65) 121 (13.77) (t test on raw data)
Spike A1 87 (10.36) 63 (5.47) 140 (15.55)

LB 103 (13.11) 83 (8.86) 164 (26.15)

PT (56) Coo (56) PT-Coo (56)
LFP A1 60 (7.13) 51 (5.8) 155 (22.57) Trial averaged

LB 57 (5.59) 55 (7.37) 170 (22.19) (t test on AccLLR)
Spike A1 67 (10.54) 74 (6.15) 89 (16.54)

LB 87 (11.76) 94 (11.43) 106 (20.91)

PT (15319) Coo (15326) PT (13825) Coo (14035)
LFP A1 35 (0.22) 31 (0.21) 113 (1.04) 111 (1.03) AccLLR: trial-by-trial

LB 36 (0.32) 39 (0.29) 161 (1.38) 167 (1.48)
Spike A1 52 (0.40) 69 (0.46) 187 (1.64) 178 (1.77)

LB 92 (0.56) 66 (0.33) 163 (1.67) 155 (1.77)

LFP A1 38 (3.4) 26 (2.7) 62 (3.1) 58 (2.32) AccLLR: 100% accuracy
matched pooled trialsLB 30 (3.06) 31 (2.9) 90 (8.0) 84 (7.15)

Spike A1 39 (3.4) 48 (4.45) 69 (5.48) 75 (7.5)
LB 49 (5.3) 41 (4.3) 83 (8.02) 78 (7.33)

The sample sizes are indicated at the beginning of each column in parentheses and underlined. The numbers for A1 are presented in bold and LB in italics
for ease of view.
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Mean spike onset latencies for PT were 87 ms in A1 and
103 ms in LB. Mean spike onset latencies for Coo were 63
ms in A1 and 83 ms in LB. No stimulus-specific differences
were observed for spike onset latencies (PT vs Coo) in either
A1 (p � 0.1) or LB (p � 0.25). However, spike-LFP onset
latency differences in A1 and LB were significant for both
stimuli (PT and Coo; p � 0.01 for all four comparisons).
These results suggest that inputs arrive at A1 and LB from
a shared source and that there is considerable parallel
processing across the two areas.

Trial-averaged selection latencies are computed from
ensembles of trials belonging to two stimulus categories.
That is, one selection latency value is defined for two stim-
ulus categories for each session of recording. LFP selection
latencies in A1 and LB were not significantly different (p �
0.44, mean 111 ms in A1 and 121 ms in LB; detailed
statistics are presented in Table 1). Similarly, spike selec-
tion latencies across A1 and LB were also not significantly
different (p � 0.41, mean 140 ms in A1 and 164 ms in LB).

Spike-LFP selection latency differences were not sig-
nificant in LB (p � 0.01) and A1 (p � 0.03) with the
threshold level set at p � 0.01. Thus, hierarchical stimulus
processing from A1 to LB cannot be inferred from this
analysis. A largely similar pattern of results was observed
when the analysis was repeated for each monkey sepa-
rately (Fig. 4A).

Trial-averaged latencies from AccLLR estimates
AccLLR at the level of single trials is a probabilistic

method dependent on accumulation evidences. Inher-
ently, it has a “slowness” incorporated to it which is
further dependent on signal-to-noise ratios. Hence to get
a sense of the speed-accuracy trade-off that affects Ac-
cLLR analysis we applied ms-by-ms t tests on distribution
of AccLLRs to compute the trial-averaged latencies (Fig.
4B; Table 1). This will give an estimate of latencies that
can be achieved with maximum accuracy using AccLLR
analysis for the ensemble of trials and sessions.

Mean LFP onset latency for PT was 60 ms in A1 and 57
ms in LB and was not significantly different (p � 0.61).
Mean LFP onset latency for Coo was 51 ms in A1 and 55
ms in LB and was not significantly different (p � 0.09). The
stimulus-specific differences between LFP onset laten-
cies (i.e., between PT and Coo) were not significant in A1
(p � 0.06) and LB (p � 0.02).

Mean spike onset latencies for PT was 67 ms in A1 and
87 ms in LB, which were not statistically significant (p �
0.73). Mean spike onset latencies for Coo were 74 ms in
A1 and 94 ms in LB, which were not significantly different
(p � 0.62). We did not find any stimulus-specific differ-
ences for spike onset latencies (PT vs Coo) in A1 (p �
0.45) and LB (p � 0.47). Spike-LFP latencies were signif-
icant different for Coo in A1 (p � 0.01) but not for PT (p �
0.58). Spike-LFP latencies were not significantly different
in LB for both Coo (p � 0.03) and PT (p � 0.02) stimuli.

LFP selection latencies in A1 (155 ms) and LB (170 ms)
were not significantly different (p � 0.25). Analogously,
spike selection latencies in A1 (89 ms) and LB (106 ms)
were not significantly different (p � 0.24). No significant
differences were found between spike-LFP selection la-
tencies in A1 (p � 0.06) and LB (p � 0.25).

Trial-by-trial AccLLR analysis
AccLLR (Banerjee et al., 2010) was used to compute

trial-by-trial onset and selection latencies (Fig. 5; Table 1).
Spike and LFP data were transformed to AccLLR space
using inhomogeneous Poisson models for spikes and
Gaussian models for LFP. Latencies were computed by
setting decision bounds on AccLLR time series. For onset
latency estimation, model 1 was applied to spike/LFP
data during the stimulation period and model 2 to pre-
stimulus baseline; for selection latency, model 1 was
applied to PT trials and model 2 to Coo trials (for details,
see Materials and Methods). Latencies were estimated
using the leave-one-out rule, where model parameters
were estimated from all other trials leaving aside the one
for which the latency was being computed. Two major
advantages of using the AccLLR method were that we
could reduce the variability observed in the trial-averaged
analysis and that the stimulus-specific selection latencies
could be computed trial-by-trial. On the other hand, a
definition of single selection latency encompasses at least
two trial categories for trial-averaged analysis. The Ac-
cLLR analysis had orders of magnitude higher sample
sizes than those in the trial-averaged analysis (Table 1).
Theoretically, unlike the raw data, AccLLRs from both
spike and LFP follow the same statistical distribution (for
details, see Materials and Methods), hence spike-LFP
comparisons are quantitatively valid. The mean and SEM
for onset and selection latencies are reported in Table 1.

The mean LFP onset latencies in A1 and LB for PT
stimuli were nearly identical (35 ms in A1, 36 ms in LB,
p � 0.10). On the other hand, the mean LFP onset latency
for Coos differed significantly in the two areas (31 ms in
A1, 39 ms in LB, p � 0.01). Spike onset latencies differed
significantly between A1 and LB for PTs (52 ms in A1, 92
ms in LB, p � 0.01). For Coos, the difference in spike
onset latencies between A1 and LB is small but significant
(69 ms in A1, 66 ms in LB, p � 0.01). Together, these
results suggest that processing relatively simpler stimuli
like PT can be supported by A1, whereas more complex
stimuli such as Coo require resources of a higher order
area such as LB. LFP onset latencies always preceded
spike onset latencies in each area and each stimulus
category (p � 0.0001).

Interestingly, for either type of stimulus, LFP selection
latencies were always shorter in A1 than in LB (for PT,
means of 113 ms in A1 vs 161 ms in LB, p � 0.01; for Coo,
111 ms in A1, 167 ms in LB, p � 0.01), whereas spike
selection latencies were always shorter in LB than in A1.
For PT, spike selection latency was 187 ms in A1 and 163
ms in LB, p � 0.01; and for Coo, 178 ms in A1 vs 155 ms
in LB, p � 0.01. Most interestingly, for Coo the LFP
selection latency (167 ms) lagged the spike selection
latency (155 ms) significantly (p � 0.01).

Estimates from pooled trials with 100% accuracy
To evaluate whether the pattern of results holds in a

scenario where detection accuracy is 100% (thus taking
into consideration the effects of speed-accuracy trade-
off), we pooled all trials in a session to create a single trial
in the log-likelihood space. Details of procedures of how
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thresholds were selected are described in Materials and
Methods.

The LFP mean onset latencies for PT was very similar in
A1 and LB (Table 1), a difference of 8 ms, which was not
significant (p � 0.03). A similar pattern followed for Coo
(p � 0.26). A1 seems to have lower LFP onset latency for
PT (26 ms) compared to Coo (38 ms), but the effect was
weak (p � 0.01). In LB, the LFP mean onset latencies were
identical for PT (30 ms) and Coo (31 ms; p � 0.87). A
similar pattern followed for mean spike onset latencies,
and as well was observed for LFP. When spike-LFP la-
tencies were compared except in A1 for PT where spike-
LFP latencies were not different (p � 0.12), LFP latencies
typically precede spike latencies.

Mean selection latencies for LFP were much lower than
that obtained with single trial measures however the main
pattern of LFP selection latencies being lower in A1 com-
pared to LB was consistent (p � 0.0001). The mean spike
onset latencies were in close proximity and none of the
comparisons was significant at p � 0.01. Even the spike-
LFP latency differences were not significant for individual
selection contexts, for PT in A1 (p � 0.33), Coo in A1 (p �
0.1), PT in LB (0.60), and Coo in LB (p � 0.93).

Decoding performance
An important requirement in any decoding analysis

framework is to control for the false positives and false
negatives while setting thresholds for category distinc-
tion. In principle, the AccLLR test is optimal (Wald and
Wolfowitz, 1947). Under conditions in which sufficient infor-
mation is available or after infinite accumulation, the num-
ber of times any threshold is crossed is circumscribed by
type 1 and type 2 errors. However, we are interested in
latencies which would be biophysically relevant and com-
puted using comparable statistical constraints on spike
trains and LFP data. Detection of latencies within a finite
time is constrained by a trade-off between accuracy and
early detection (Fig. 6A). Hence, we have chosen a data-
driven approach to set the optimal thresholds for AccLLR
accumulation, details of which are provided in Materials
and Methods (Fig. 6). Trial-by-trial onset and selection
latency decoding performance were significantly worse
than the chance level in most sessions (Fig. 6B). Error
rates for most LFP sessions were below the chance level
(probability of target detection is achieved by random
selection) for both onset and selection. For the onset
latency, there are only two detection scenarios, whether
the signal can be classified as category 1 (the pattern of
spike/LFP response to a stimulus) or category 2 (the
animal is alert but not hearing any sound). Hence, the
probability of detection by chance is 0.5. For selection
latency, the probability of detection by chance is 0.67
since there are three possibilities in a given datum (PT,
Coo, or prestimulus baseline). Figure 6B unambiguously
illustrates that error rates for selection latency detection
from spikes and LFPs were mostly lower than chance level
indicating superior performance of the AccLLR technique.
Typically, recording sites with good onset detection also
yielded superior selection detection and decoding from
LFPs were more reliable with more consistent error rates
over sessions.

Discussion
Using two measures, onset latency for detecting the

presence of sound in the environment and selection la-
tency for identifying stimulus-specific neural codes in pri-
mate auditory cortical areas we aim to characterize the
functional pathways of underlying information processing.
We observed a trend in which LFP onset/selection laten-
cies were shorter than spike onset/selection latencies by
applying ms-by-ms t test on time series data. However,
the trial-averaged techniques do not allow the measure of
stimulus-specific selection latencies since a distribution
of PT trials is used to identify the time of selection from a
distribution of Coo trials.

AccLLR analysis of our data refined the statistical sig-
nificance of the trends and helped to mathematically
define stimulus-specific selection latencies. In a trial-
averaged analysis using the t test on raw data as well as
AccLLRs, a single numerical value of selection latency
was obtained for all trials within a session and by construc-
tion across two stimulus categories. Hence, not surprisingly,
latencies computed by AccLLR exhibited variability that
were orders of magnitude smaller than trial-averaged tests.
Both trial-averaged analysis and AccLLR at the level of
single trials as well as accuracy matched pooled trials
yielded similar values for LFP onset latencies across A1
and LB. This reinforces the view that areas A1 and LB may
process simple stimuli in parallel. Except in case of A1 and
PT stimulus, all three onset scenarios had LFP latencies
preceding spike latency when accuracy was matched. Prox-
imity of spike and LFP latency typically indicates a central
role of the recorded brain area in neuronal processing. Thus,
our observations highlight area A1’s dominant role in
coding PTs, whereas coding of complex stimulus such as
Coo and in areas higher order than A1 are more mixed in
nature. Selection latencies for each trial category can be
only obtained from AccLLR analysis. Shorter LFP selec-
tion latencies for A1 than LB suggest information arrival in
auditory brain areas can occur hierarchically. Interestingly
both single-trial decoding as well as performance
matched pooled trial analysis showed non-significant dif-
ferences between LFP and Spike selection latency in LB;
in particular the performance matched analysis revealed
that LFP selection latencies had a trend of preceding
spike selection latency thus reflecting a greater involve-
ment of higher order LB area in neuronal stimulus discrim-
ination.

There is a substantial literature on subdivisions of
auditory cortical areas and their roles in processing com-
plex sounds (Romani et al., 1982; Rauschecker et al.,
1995; Eggermont, 1998; Bendor and Wang, 2008;
Ghazanfar et al., 2008; Recanzone, 2008; Kuśmierek and
Rauschecker, 2009; Bandyopadhyay et al., 2010; Kikuchi
et al., 2010, 2014; Camalier et al., 2012; Sundberg et al.,
2012; Niwa et al., 2013). In this study, we investigated one
such complex sound, viz., a Coo, that can be represented
spectro-temporally as containing higher harmonics of a spe-
cific fundamental frequency (Fig. 2), as opposed to a simple
sound consisting of a single frequency. The animals were
trained to respond to a stimulus that had no periodic
temporal structure (pink noise), but that required them to
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allocate equivalent levels of attention to both simple and
complex sounds (PTs and Coos, respectively). A tradi-
tional, trial-averaged analysis of the data indicated that
the spike-onset latency for the PT was shorter in A1 than
in LB (Kikuchi et al., 2014). However, there was a minimal
difference in latency between A1 and LB for Coo sounds,
a finding that may seem surprising from the perspective
of serial hierarchical information processing. We argue
that an effective way to tease out the entire processing
architecture is to look at simultaneous measurements of
inputs and output of a brain area using both spike and
LFP recordings. We showed that stimulus-specific spike
and LFP responses are present in A1 and LB, as found in
previous studies (Ghazanfar et al., 2005, 2008). We then
compared single-trial latencies from spike trains and LFPs
at the same electrode and across different electrodes.
This presents a unique way to extract the local functional
connectivity in auditory cortex underlying complex sound
processing.

Latency comparison has been used previously to esti-
mate functional neural circuitry underlying complex tasks
(DiCarlo and Maunsell, 2005; Hung et al., 2005; Buschman and
Miller, 2007; Monosov et al., 2008). The key methodological
innovation in the current paper is employing the AccLLR
framework, which allows single-trial decoding of latencies
from spike/LFP data (Fig. 5). Using AccLLR, we were able
to evaluate latencies statistically within one session as
well as compare them across sessions and thereby en-
hance the statistical power of our results. A somewhat
similar approach based on the computation of a “surprise
index” was proposed earlier by Hanes and colleagues
(Hanes et al., 1995). For comparison, we also performed
the latency analysis by applying the commonly used
method employing a ms-by-ms rank sum test (Fig. 4).
Comparison of Figures 4, 5 (AccLLR results) illustrate a
dramatic improvement in statistical significance of results
for the trial-by-trial analysis. The trial-by-trial analyses as
well as pooled trial analysis (accuracy matched) confirm
the pattern of results reported by Kikuchi et al. (2014):
spike onset latencies were shorter in A1 than in LB for PTs
but close to each other for Coos. Error rates from de-
coded LFPs were higher than corresponding spike-
analysis sessions, although across sessions decoding
was better than chance, indicating the robustness of the
information contained in LFPs. Robust decoding using
LFPs was also reported in earlier studies (Hung et al.,
2005; Markowitz et al., 2011; Bansal et al., 2012).

Functional neural circuitry underlying auditory
processing

A central aim of the current study was to compare laten-
cies of spike and LFP responses in two different contexts, at
onset and during neuronal selection. Latencies were com-
pared across stimuli (PT vs Coo) to investigate the
stimulus-specific components. A key result from AccLLR
analyses (both trial-by-trial and performance matched)
was the nearly identical LFP onset latency in A1 for PTs
and Coos and the very similar onset latencies in LB for
these two stimulus categories (Figs. 4, 5). If we consider
LFPs to be coupled more to inputs, the information re-

lated to the presence of an auditory stimulus in the envi-
ronment arrives at both brain areas simultaneously.
Previous studies demonstrated that A1 and LB receive
inputs in parallel from subcortical structures, which may
be the reason that there is little difference in LFP onset
latencies across the two areas (Rauschecker et al., 1997;
de la Mothe et al., 2006). In the case of sensory areas,
where feed-forward connections dominate, relative spike
latency can indicate a putative area’s contribution to in-
formation processing (VanRullen et al., 2005). In our find-
ings, spike onset latency was usually longer than LFP
onset latency in agreement with previous studies in sen-
sory areas (Eggermont, 1998; Sundberg et al., 2012). We
observed that the spike onset latency computed from
trial-averaged data are shorter in A1 than in LB for PTs but
not for Coos. The also followed this trend. Interestingly,
spike onset latency for Coo in LB was shorter than spike
onset latency for PT using both single trial and perfor-
mance matched AccLLR analyses (although a clear trend
was observed in the latter analysis that matched trial-by-
trial results, the latency differences were not significantly
different). This validates the view that the auditory cortex
is organized into lower-order sensory areas (e.g., A1),
relevant for coding simple features such as fundamental
frequencies, and (relatively) higher-order LB areas for
coding more complex auditory features (Rauschecker
et al., 1995; Kikuchi et al., 2010). On the other hand, spike
onset latencies for Coo in A1 and LB were not significantly
different. This suggests that complex signals require more
distributed resources for processing. The aforementioned
findings were replicated when statistical analysis was
applied to the data from each monkey individually (Fig. 5).

An important point to note here is that the single-trial
latencies detected by AccLLR analysis are typically longer
than trial-averaged latencies or ones obtained from pool-
ing all trials and setting detection accuracy to 100%. In an
earlier stimulus onset latency detection study, Banerjee
et al. (2010) showed that latencies computed from trial-
averaged AccLLRs can decrease by 15 ms at the expense
of an increase in false-alarm rates. In our study, only the
LFP onset latencies were very close among trial-averaged,
pooled trial AccLLR and single trial AccLLR results. For
spike onset latencies, the differences were maximal be-
tween trial-averaged and AccLLR measures and same
pattern was followed in latency distributions from pooled
trials. This indicates that LFPs may have the least vari-
ability in recording the presence of an auditory stimulus,
and such tight time-locking is most likely due to the
subcortical nature of the stimulus processing before it
arrives in A1.

Area-specific properties in processing differences be-
tween stimuli can be investigated using selection laten-
cies. Shorter LFP selection latencies in A1 compared to
LB may reflect the hierarchical organization of these areas
vis-à-vis stimulus-specific processing, e.g., dissociating
simple (PT) from complex (Coo; Fig. 5). For both trial-averaged
and trial-by-trial analysis, spike selection latency in LB was
shorter than spike selection latencies in A1, indicating a stron-
ger role of LB in processing stimulus-specific features. Com-
bining this finding with the results from the onset latency
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analysis, we can dissociate the function of the two brain
areas in computing different components of information
processing in an environmental signal, i.e., just the pres-
ence of sound versus the detailed features of that sound.
We did not observe a stimulus-specific difference, PT
compared to Coo, in LFP selection latency in the two
areas (p � 0.57 in A1, p � 0.01 in LB, latencies reported
in Table 1). The effect was robust when the analysis was
performed in individual monkeys as well as when laten-
cies were computed by pooling all trials and applying the
AccLLR framework (Fig. 5), although it was not present in
the trial-averaged analysis from raw time series (Fig. 4).
We thus conclude that at least some stimulus-specific
information arrives serially in these two brain areas, con-
trary to what we observed for LFP onset latency. An
alternative possibility is that the lower-order auditory area
A1 receives feedback projections from LB or other higher-
order areas. Spike selection latency in A1 was longer than
the LFP selection latency when both trial-averaged and
trial-by-trial analyses were performed on individual mon-
key data as well as on the population data. When detec-
tion threshold was set at 100% in pooled trials this
difference in spike-LFP selection latencies in A1 was not
observed.

On the other hand, spike selection latency in LB was
comparable to the LFP selection latency, although there is
a slight variability in this result when one examines the
data on individual monkeys (Fig. 5). Monkey1 exhibited
the general trend of spike selection latency being longer
than LFP selection latency, just as in the case of onset
latencies. However, Monkey2 showed slightly shorter
spike selection latencies than LFP selection latencies in
LB (Fig. 5). Earlier research has established that A1 and
LB have strong reciprocal connections (de la Mothe
et al., 2006; Hackett, 2011). Together, these data raise
the possibility that LB has a top-down preparatory role
for selection-related processing, whereas A1 is primarily
involved in bottom-up gating of sensory signals.

Future directions and limitations
Our study provides a design-analysis framework to

support neurophysiological findings that could help ad-
dress questions related to functional networks at both
local area-specific scales and global interareal scales.
Such studies would shed light on task-specific network
mechanisms underlying complex behavior. One limitation
of the current study is that it ignores the information about
the endogenous neural states present in ongoing oscilla-
tions and how such processes affect extrinsic stimulus
driven processing. A recent study has shown that neu-
ronal areas separated across large distances whose
activities are coherent may also exhibit lower latencies in
information processing using AccLLR (Wong et al., 2016).
The same framework could also be adapted to detect the
timing of oscillatory-response onsets and phase differences
from the electrical activity of nearby and distant populations.
Finally, AccLLR can be applied to macroscopic neural re-
cordings such as electroencephalogram (EEG), intracranial
EEG, and magnetoencephalogram (MEG) to estimate net-

work mechanisms and thereby inform a wider research
community.
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